

Molecular Technology in Newborn Screening: SCID and Beyond

ARUP Seminar Salt Lake City, Utah October 17, 2013

Mei Baker, M.D., FACMG

Associate Professor, Department of Pediatrics

Co-Director, NBS Laboratory at WSLH

University of Wisconsin School of Medicine and Public Health

DEPARTMENT OF

Pediatrics

UNIVERSITY OF WISCONSIN SCHOOL OF MEDICINE AND PUBLIC HEALTH

History of NBS Molecular Testing

- 1994
 - Washington: hemoglobin second tier testing (Hb S, C, and E) by RELP
 - Wisconsin: CFTR mutation analysis for F508del
- 1998
 - New England: 2 GALT mutations (Q & N) by RFLP
- 1999
 - New England: MCADD (c.985A>G) by RFLP
- 2005
 - Wisconsin: MSUD (p.Y438N) by Tetra-primer ARMS-PCR

History of NBS Molecular Testing

- 2006
 - New York: Krabbe disease (3 polymorphisms & 5 mutations) by DNA sequencing
- 2008
 - Wisconsin: TREC assay for SCID screening by Real-time PCR
 - 1st use of molecular test as a primary test for population screen
- 2010
 - 36 NBSPs in US use molecular testing for CF

Severe Combined Immunodeficiency (SCID)

Then...

Now...

Severe Combined Immunodeficiency (SCID)

- Infections in first year of life
 - recurrent, etiology bacterial, viral and fungal
 - persistent despite routine treatment
 - severe--including sepsis, meningitis
 - opportunistic pathogens, such as PCP (pneumonia)
- Failure to thrive, chronic diarrhea
- T cells decreased or absent
 - poor proliferation *in vitro* to mitogens
- B cells absent or non-functional
 - low Ig's after maternal IgG wanes; no specific antibody responses
- Fatal without immune reconstitution

SCID Genetic Analysis

- X-linked SCID is most common form (males)
- Specific gene defect can be found in 80% of cases (15 genes known)
- Clinical applications:
 - Carrier and prenatal dx
 - Predict response to BMT
 - Gene therapy

Buckley Ann. Rev Imm 2004

Available Curative Treatment Modalities for SCID

- Bone Marrow Transplantation
- Gene Therapy (X-linked and adenosine deaminase deficiency SCID)

Does SCID fulfill NBS criteria?

- Prevalence of the disease (1:100,000 or greater)
 - SCID: 1:66,000 (conservative estimate)
- Can the disorder be detected by routine physical exam?
 - SCID: No, SCID baby appears normal at birth.
- Does the disorder have a short asymptomatic period after birth?
 - SCID: Yes, SCID baby can be protected by passive maternal immunity.
- Does the disease cause serious medical complications?
 - SCID: Yes, universally fatal within the first year of life
- Is there potential for successful treatment?
 - SCID: Yes, hematopoietic stem cell transplantation
- Is there a confirmatory test?
 - SCID: Yes, lymphocyte subpopulation analysis (flow cytometry)
- Does early intervention leads better outcome?
 - SCID: Yes!
- Is there a screening test?
 - SCID: Yes, measurement of TRECs using real-time qPCR

SCID: Benefits of Early Diagnosis

Screening for SCID in Newborns Considerations

- •Many genes
- Many mutations in each known gene
- Some genotypes still not known

TRECs are reduced in nearly ALL forms of SCID

Genet Med 2004:6(1):16-26.

= T-cell receptor excision circle (TREC)

T-cell Generation in Newborns

- Two mechanisms:
 - Thymic output
 - Postthymic T-cell proliferation
- Consequences:
 - Majority of T-cells are naïve T cells in newborns.
 - TREC s are diluted out, and 10% T cells contain TRECs in newborns.

Schönland et al. *Blood*.2003; 102: 1428-1434 Gent et al, *Clinical Immunology.* 2009; 133: 95–107

T Cell Receptor Recombination During Development in the Thymus

Ponchel et al. BMC Biotechnology 2003 3:18 doi:10.1186/1472-6750-3-18

Overall Analysis Scheme

ABI 7900HT Fast Real-Time PCR System

Multiplexing _384-well Plate

SCID Reporting Algorithm

Confirmatory testing

- Flow cytometry lymphocyte subset enumeration for T , B and NK cell quantitation
- Lymphocyte (T and/or B) proliferation tests
- Quantitative immunoglobulin assessment (IgG, IgA, IgM and IgE)
- HIV testing (to rule out secondary causes of T-cell lymphopenia)
- Genetics testing
- Others: enzymes, Fluorescence *in situ* hybridization (FISH)

Special Considerations

- TREC copy numbers
 - Measurement units
 - DNA extraction
 - Calibrators
- TREC assay platform
 - Multiplexing vs. single target
 - 384-well vs. 96-well
- Automation
- QA/QC issues
- Premature Newborns

Wisconsin Experience (January 1, 2008- December 31, 2012)	
Infants Screened:	340,037
 Premature (< 37 wks) 	30,664
- Full term	309,373
Abnormal results:	246
 Premature (<37 wks) 	147 (0.04%)
- Full term	99 (0.03%)
Inconclusive Results:	472
 Premature (<37 wks) 	382 (0.11%)
- Full term	90 (0.03%)

Total number of flow cytometry referral: 108

Wisconsin Experience (January 1, 2008- December 31, 2012)

Severe T cell Lymphopenia Cases

- Rac 2 mutation
- ADA SCID
- T-B-NK+ SCID
- T-B+NK+ (3)
- RAG 1 SCID

Wisconsin Experience (January 1, 2008- December 31, 2012)

Other T cell Lymphopenia Cases

- Chromosomal abnormalities
 - 22q11.2 deletion (11)
 - Trisomy 21
- Syndromes with T cell impairment
 - Jacobsen syndrome
 - Tar syndrome
 - Ectrodactyly ectodermic dysplasia
 - Ataxia Telangiectasia
- Idopathic T-cell lymphopenia

Two Mut.

Screening

Positive

*Disease-causing mutations and mutations with varying consequences. (Sosnay et al, *Nature Genetics,* 2013)

One Mut.

Screening

Normal ??

Specific Aims

- 1. Establish a method of simultaneously detecting 162 *CFTR* mutations/gene variants using dried blood spot routine newborn screening specimens to create IRT/DNA/DNA CF screening opportunity.
- 2. Demonstrate that the three-tier IRT/DNA/DNA CF screening protocol would significantly reduce false positive screening results caused by identification of CF heterozygote carrier infants.
- 3. Demonstrate that it is cost effective to implement the three-tier IRT/DNA/DNA CF screening protocol into routine NBS for CF.

MiSeqDx Cystic Fibrosis System

- 162 CFTR mutations/variants (IUO version*)
 - 127 single nucleotide mutations/variants
 - 32 insertion/deletion mutations
 - 2 large deletions
 - PolyTG/PolyT region

*Product is currently under FDA review.

Sequencing Library Generation

Genotyping-by-sequencing

Michael L. Metzker, Nature Review Genetics, 2010

 Immediate result w/o additional informatics requirements

Funding Support for SCID

Wisconsin Newborn Screening Laboratory

Jeffrey Modell Foundation

Children's Hospital of Wisconsin

Wisconsin State Laboratory of Hygiene

Center for Disease Control and Prevention

Children's Specialty Group™

Funding Support for CF The Legacy of Angels Foundation

Co-Funders: Paul and Sue Rosenau

legacy of angels

Acknowledgements

UWSMPH/WSLH

Charles Brokopp, DrPH Daniel Kurtycz, MD Gary Hoffman, BS Michael Cogley, BS Lisa Berkan, MT(ASCP) Marcy Rowe, BS

UWSMPH/Pediatrics

Christine Seroogy, MD

DHS Murray Katcher, MD, PhD

CHW/MCW

Jack Routes, MD Bill Grossman, MD, PhD James Verbsky MD, PhD Trivikram Dasu, PhD

CDC Robert Vogt, PhD Francis Lee, PhD

NIAID Daniel Douek, PhD

Acknowledgements

- WSLH and SMPH at University of Wisconsin-Madison Philip Farrell, MD, PhD. (Co-PI) Anne Atkins, MPH
- Michigan: Kevin Cavanagh, PhD Samya Nasr, MD
- Minnesota: Mark McCann, MS
 Warren Regelmann, MD
- Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention
 Suzanne Cordovado, PhD
 Marie Earley, PhD
 Carla Cuthbert, PhD