**Clinical Cytogenetic Testing: Applications in Constitutional and Oncology Settings** 

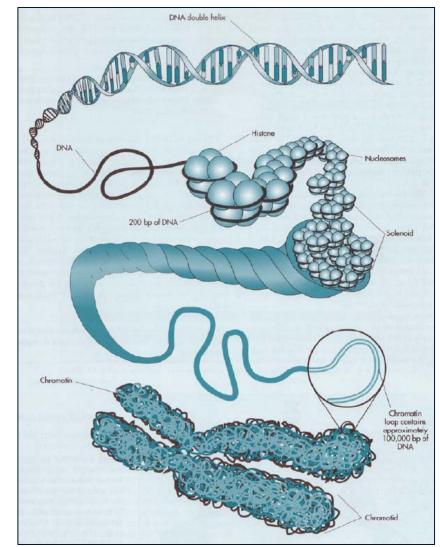
## Erica Andersen, PhD, FACMG

Medical Director, Cytogenetics and Genomic Microarray ARUP Laboratories Assistant Professor, Department of Pathology University of Utah Salt Lake City, UT, USA





## **Learning Objectives**


- List the areas of medicine that overlap with clinical cytogenetics and common indications for testing across these disciplines
- Explain the basic methodologies, technical capabilities and limitations of chromosome analysis, FISH and genomic microarray
- List common cytogenetic abnormalities encountered across different clinical contexts, including childhood developmental phenotypes, prenatal and perinatal diagnosis, pregnancy loss and in cancer





## What is Cytogenetics?

- The study of chromosomes and genomic structure, function, and variation and their role in human disease and heredity
- Clinical cytogenetics overlaps with several areas of medicine: pathology, pediatrics, neurology, endocrinology, psychiatry, obstetrics and gynecology, hematologic oncology, other areas of medical oncology



Gersen and Keagle, <u>Principles of Cytogenetics</u>, 3<sup>rd</sup> Ed 2013 reprinted from Jorde et al. <u>Medical Genetics</u> 3<sup>rd</sup> Ed 2006



## **Constitutional versus cancer cytogenetics**

- Constitutional cytogenetics: diagnosis of heritable genetic abnormalities in children, adults, pregnancy, and fetal loss
  - Abnormalities may be inherited or de novo
- Cancer cytogenetics: detection of acquired or somatic (versus germline/constitutional) genetic abnormalities for the diagnosis, prognosis, therapy, and/or monitoring of many types of cancer (especially leukemia and lymphoma)





## **Indications for Constitutional Cytogenetic Testing**

- Postnatal, childhood growth and development
  - Perinatal: Birth defects, malformations, dysmorphisms, ambiguous genitalia
  - Growth: failure to thrive, growth delay, short stature
  - Developmental delay (fine and gross motor, speech)
  - Cognitive: intellectual disability, learning disability
  - Neurological: hypotonia, seizures, ataxia
  - Behavioral: autism, OCD, psychiatric illness

#### Tissues studied: Peripheral blood, buccal swab, skin biopsy





## **Indications for Constitutional Cytogenetic Testing**

- Adolescent, adult sexual development and fertility
  - Amenorrhea, primary or secondary ovarian failure, premature menopause
  - Azoospermia, oligospermia, hypogonadism
  - History of infertility or spontaneous abortions
  - Birth of a child with a chromosomal abnormality

#### Tissues studied: Peripheral blood





## **Indications for Constitutional Cytogenetic Testing**

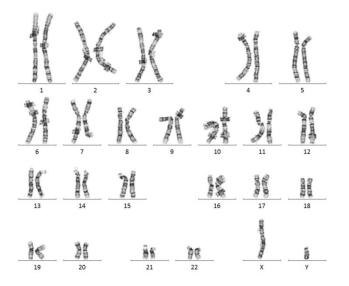
- Prenatal
  - Abnormal maternal serum screening (first or second trimester)
  - Abnormal cell-free DNA testing (cfDNA), non-invasive prenatal testing (NIPT)/screening (NIPS)
  - Abnormal ultrasound findings: cystic hygromas/hydrops, cardiac defects, other malformations, IUGR, etc.
  - Advanced maternal age (AMA), generally  $\geq$  35 yrs
  - Parental or familial chromosome abnormality
- Fetal or neonatal demise (products of conception, POC)

Tissues studied: Amniotic fluid, chorionic villus sampling, fetal tissues

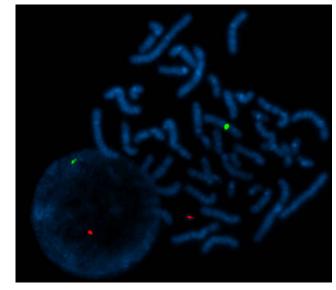


## **Indications for Cancer Cytogenetic Testing**

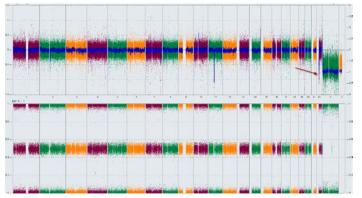
- Hematologic oncology
  - Myeloid: Acute myeloid leukemia (AML), Chronic myeloid leukemia (CML), Myelodysplastic syndromes (MDS), Myeloproliferative neoplasms (MPN)
  - Lymphoid: Acute lymphoblastic leukemia/lymphoma (ALL), Chronic lymphocytic leukemia (CLL), Non-Hodgkin lymphoma (NHL), Plasma cell neoplasms (Multiple Myeloma, MM)
- Bone marrow transplant
- Other areas of oncology (solid tumors)


Tissues studied: bone marrow, peripheral blood, lymph nodes, solid tumor, pleural fluid, spinal fluid






## **Techniques for Cytogenetic Studies**

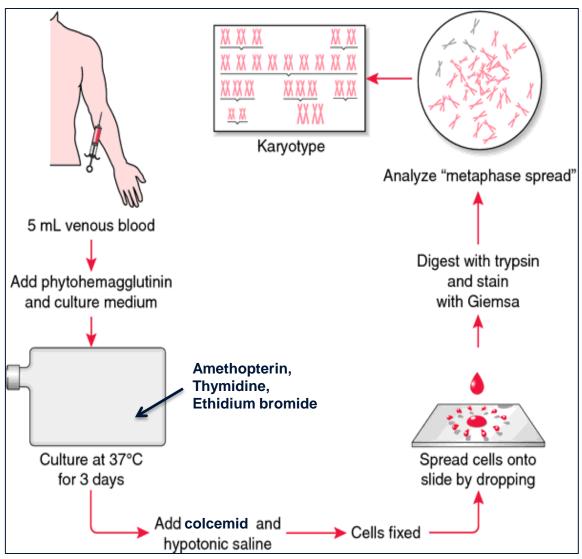

#### Chromosome analysis/karyotyping



#### Fluorescence in situ hybridization (FISH)



#### Genomic microarray analysis (GMA)



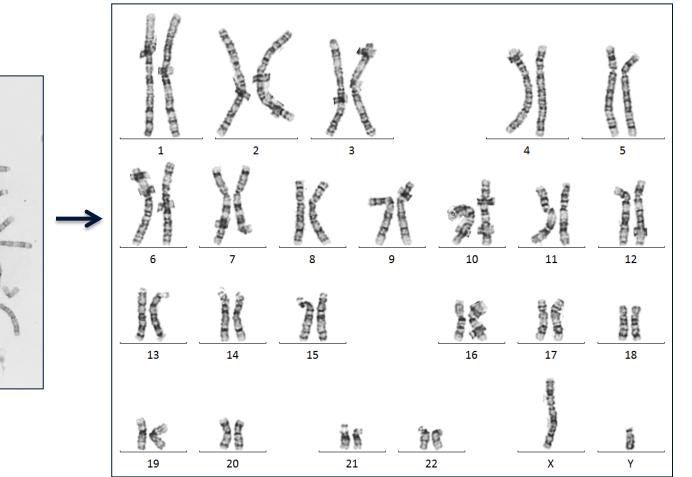

| Copy Num       | nber Stat | te (segn                                | nents)                              |                                             |                                         |           |                                     |                                                |                                               |                                                                                                                                                                                                                                                                                                                                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                                 |               |                                                           |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
|----------------|-----------|-----------------------------------------|-------------------------------------|---------------------------------------------|-----------------------------------------|-----------|-------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|---------------|-----------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| ; : Weighted I | Log2 Ra   | atio                                    | ~                                   |                                             |                                         |           |                                     |                                                |                                               |                                                                                                                                                                                                                                                                                                                                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                                 |               |                                                           |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| SmoothSig      | gnal      |                                         |                                     |                                             |                                         |           |                                     |                                                |                                               |                                                                                                                                                                                                                                                                                                                                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                                 |               |                                                           |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ****                                   |
| : Allele Diffe | erence    | · • • • • • • • • • • • • • • • • • • • | L                                   | ی <i>د</i> یر                               |                                         |           |                                     |                                                |                                               | *****                                                                                                                                                                                                                                                                                                                                                    | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                                 |               | ~~~~                                                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| BAF            |           |                                         | indiataliji (red<br>Silankansi (red | 1.4.1.4.1.1<br>1.4.1.1.1.1.1.1.1.1.1.1.1.1. | 8.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 |           | afa lasia<br>ali i sis<br>ali i sis | geraanske and<br>mense it ster<br>tere steress | ang si ng | a Salah di S<br>Salah di Salah di Sala<br>Salah di Salah |                      | - 1940)<br>- 1940<br>- | ۇ داۋىدۇر.<br>مەربىلەر بىر<br>ئۇ مەربىلەر | i sona en so<br>an estar en so<br>an estar en s | 899-96-96<br> | i destruito<br>de regesto<br>destruito<br>destruito de la | مرور مردور<br>مرجو وردو<br>مرجو وردو | e de la composition<br>la composition<br>la composition de la composition<br>la compositio | માં લેવા<br>મેં લેવા<br>મુંદર્ભ સંવર્ષ |
|                |           | :-3+(#\$)                               |                                     | 4-1-5-1-54P                                 | 944 - () <b>9</b> 44.                   | 4.41.1044 | nie 14.99                           | anta a si a cara                               | ۇ د <b>ۇھۇ</b> مۇ                             | an a                                                                                                                                                                                                                                                                                                                 | - <b>9.4</b>         | [454] 44]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e 2.43%                                   | * *                                             |               | ini yang ja                                               | l-njesi or                           | ۇيدۇمىرۇ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.4640                                |
|                | I         |                                         |                                     |                                             |                                         | ∎HII I    |                                     |                                                |                                               | H II                                                                                                                                                                                                                                                                                                                                                     | HI <b>I</b> I IIIIII |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                                 |               |                                                           | H                                    | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
| )00kb          | <br>1500  |                                         | 2000                                | ))))))))))))))))))))))))))))))))))))))      | 250                                     | 00kb      |                                     | 11 <b>-</b> Hill<br>30000kl                    | <b>    -  </b>                                | 3500                                                                                                                                                                                                                                                                                                                                                     | DOkb                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>     </b>                              |                                                 |               | 45000                                                     |                                      | IHII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5000                                   |
| p11.1          | 911       | 1                                       | q11.21                              | -                                           | q11.23                                  | q12.3     | 1                                   | q12.2                                          | _                                             | q12.3                                                                                                                                                                                                                                                                                                                                                    |                      | q13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | q13.2                                           |               | q13.3                                                     | 31                                   | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |





## **Preparation of metaphase chromosomes**




Modified from Preparation of a karyotype. From Mueller and Young, 2001





## Karyotyping

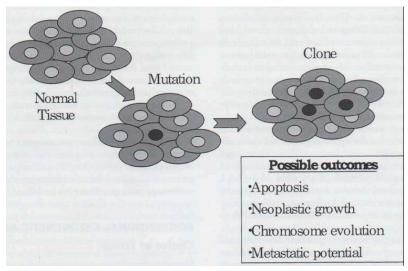
Karyogram



#### Karyotype: 46,XY



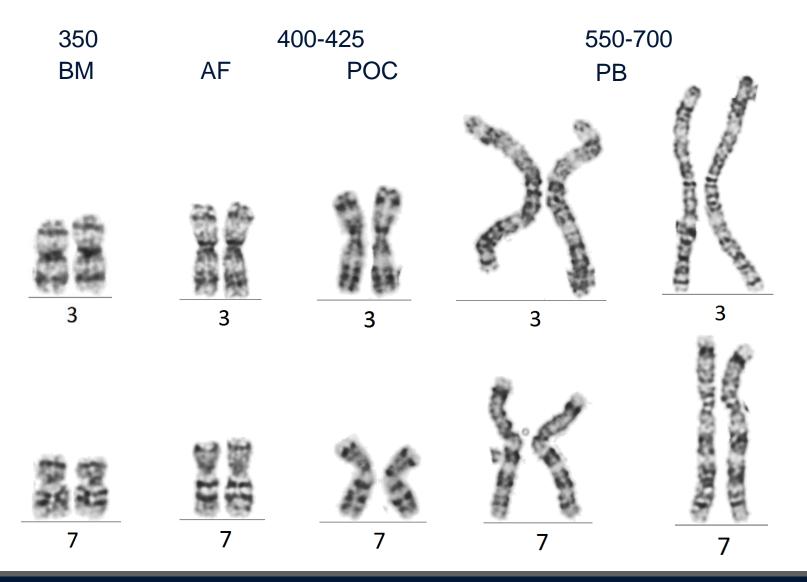
A Children


Metaphase spread

#### 

S103

## **Overview of chromosome analysis**


- Generally, 20 cells are analyzed from multiple cultures
- Definition of a clone:
  - At least two metaphase cells with the same extra chromosome or structural abnormality
  - At least three metaphase cells with the same chromosome loss



Dewald *et al.*, Cytogenetic Studies in Neoplastic Hematologic Disorders 2<sup>nd</sup> Ed.



## **Differences in level of resolution by sample type**



AR PLABORATORIES | Institute for Learning



## **Pros and Cons of Chromosome Analysis**

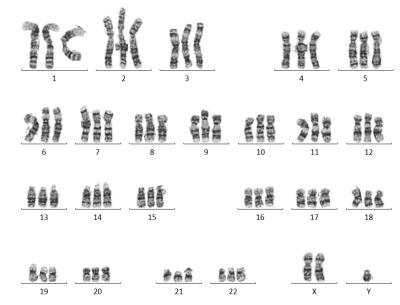
### Advantages

- Genome-wide approach
- Detects both numerical and structural abnormalities
- Gold standard: wellestablished technology

#### Disadvantages

- Resolution is limited
- Requires culturing
  - Some tissues/cell types do not grow well in culture
  - Potential for *in vitro* artifacts
- Analysis is subjective




## **Common Constitutional Numerical Abnormalities**

#### Aneuploidy

- 47,XXY (Klinefelter syndrome)
- 45,X (Turner syndrome)
- 47,XX,+21 (Down syndrome)
- 47,XY,+18 (Edwards syndrome)
- 47,XY,+13 (Patau syndrome)
- 47,XX,+16

### Polyploidy

• Triploidy (e.g. 69,XXY)



Tetraploidy (e.g. 92,XXYY)



## **Observed frequencies of chromosomal abnormalities in gametes and pregnancy**

#### Incidence of aneuploidy during development

| Gestation (weeks)              |         |         | 0                               | 6-8                                  | 20               | 40                                 |
|--------------------------------|---------|---------|---------------------------------|--------------------------------------|------------------|------------------------------------|
| Stage                          | Sperm   | Oocytes | Pre-<br>implantation<br>embryos | Spontaneous abortions                | Stillbirths      | Livebirths                         |
| Incidence of<br>aneuploidy     | 1-2%    | ~20%    | ~20%                            | 35-50%                               | 4%               | 0.3%                               |
| Most<br>common<br>aneuploidies | Various | Various | Various                         | 45,X, +16,<br>+21, +22,<br>Triploidy | +13, +18,<br>+21 | +13, +18,<br>+21, XXX,<br>XXY, XYY |

Table modified from Hassold and Hunt, 2001, Nat Rev Genet





## **Chromosome size and gene content correlates with incidence of** *postnatal* **trisomy**

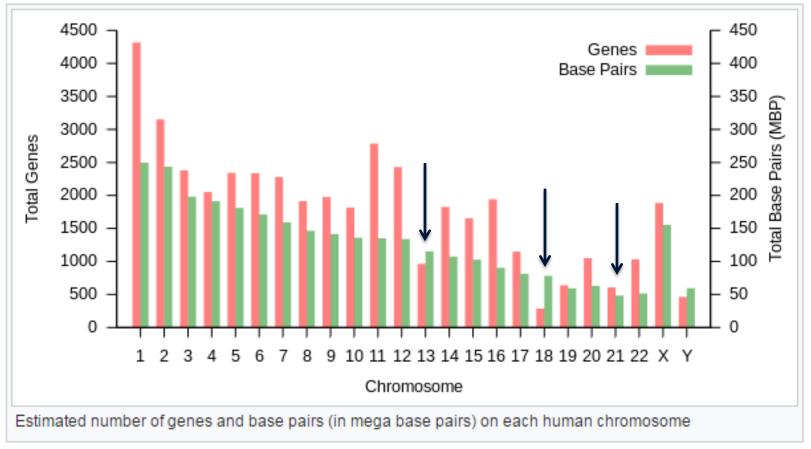



Image source: wiki commons





## **Incidence of aneuploidy detected in newborns**

| Abnormality                       | Rate/1000 | Rate (1/n) |                         |
|-----------------------------------|-----------|------------|-------------------------|
| Autosomal Trisomies (All)         | 1.62      | 617        |                         |
| 13                                | 0.04      | 24,058     |                         |
| 18                                | 0.21      | 4,812      |                         |
| 21                                | 1.37      | 730        |                         |
| Sex Chromosome Aneuploidies (All) | 2.70      | 375        | Incidence of sex        |
| 45,X and variants                 | 0.29      | 3,509      | chromosome              |
| 47,XXX and 47,XXX/46,XX           | 0.50      | 2,000      | aneuploidy is<br>higher |
| 47,XXY and variants               | 0.72      | 1,400      | 3                       |
| 47,XYY and 46,XY/47,XYY           | 0.53      | 1,887      |                         |

Data from: Milunsky and Milunsky, Genetic Disorders of the Fetus, 6th Ed. (2010). Benn, Chp. 6

True rates are underestimated, especially for sex chromosome aneuploidies, which may be unrecognized at birth



## **Parental Origins of Aneuploidy**

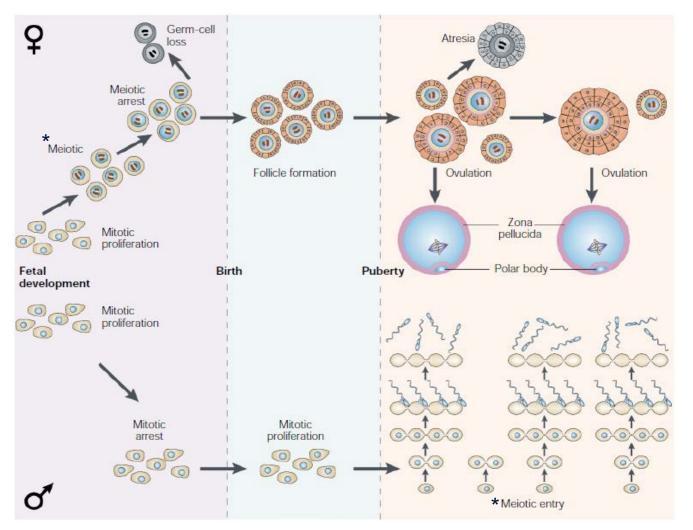
| Trisomy          | n   | Maternal | l       | Paternal |         | PZM (%) |               |
|------------------|-----|----------|---------|----------|---------|---------|---------------|
|                  |     | MI (%)   | MII (%) | MI (%)   | MII (%) |         |               |
| Acrocentrics     |     |          |         |          |         |         |               |
| 13               | 74  | 56.6     | 33.9    | 2.7      | 5.4     | 1.4     |               |
| 14               | 26  | 36.5     | 36.5    | 0.0      | 19.2    | 7.7     |               |
| 15               | 34  | 76.3     | 9.0     | 0.0      | 14.7    | 0.0     | <b>=</b> 👼    |
| 21               | 782 | 69.6     | 23.6    | 1.7      | 2.3     | 2.7     | Chromosome 14 |
| 22               | 130 | 86.4     | 10.0    | 1.8      | 0.0     | 1.8     | Acrocentric   |
| Non-acrocentrics |     |          |         |          |         |         |               |
| 2                | 18  | 53.4     | 13.3    | 27.8     | 0.0     | 5.6     | <b>D</b>      |
| 7                | 14  | 17.2     | 25.7    | 0.0      | 0.0     | 57.1    |               |
| 8                | 12  | 50.0     | 50.0    | 0.0      | 0.0     | 50.0    |               |
| 16               | 104 | 100      | 0.0     | 0.0      | 0.0     | 0.0     |               |
| 18               | 150 | 33.3     | 58.7    | 0.0      | 0.0     | 8.0     |               |
| XXX              | 46  | 63.0     | 17.4    | 0.0      | 0.0     | 19.6    | Chromosome 1  |
| XXY              | 224 | 25.4     | 15.2    | 50.9     | 0.0     | 8.5     | Metacentric S |
| Х                |     | ~30      |         | ~70      |         |         |               |

Table 1. Summary of studies of the origin of human trisomies<sup>a</sup>

<sup>a</sup>Adapted from Hall *et al.* (6). MI, meiosis I; MII, meiosis II; PZM, post-zygotic mitotic.

Table: Hassold, Hall and Hunt, 2007, Hum Mol Genet

Images modified, source: http://learn.genetics.utah.edu/content/chromosomes/readchromosomes/





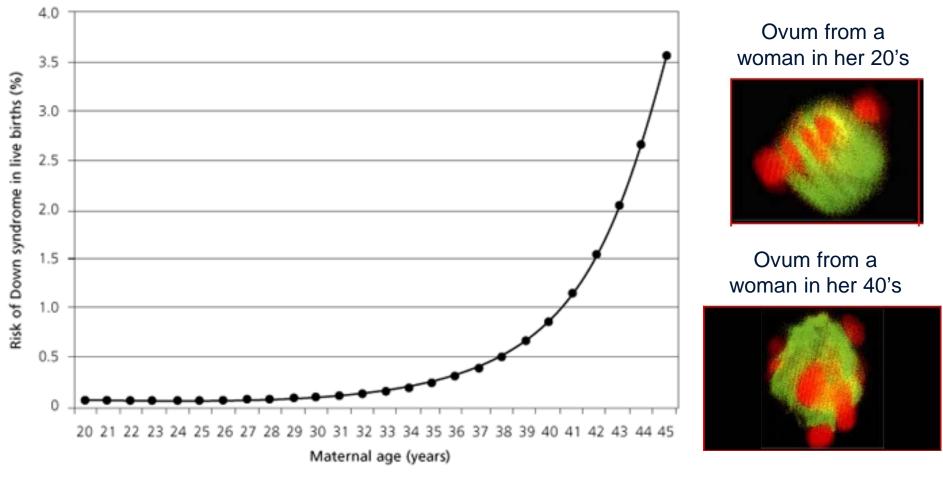

а

Chromosome 4 Submetacentric

## **Oogenesis vs Spermatogenesis**



#### Hassold and Hunt (2001) Nat Rev Genet




Institute for Learning

AR

LABORATORIES

## **Down Syndrome and Maternal Age**



Newberger (2000) Am Fam Physician

Battaglia et al., 1996





# **Incidence of aneuploidy detected prenatally with various ultrasound findings**

Table 6.11 Ultrasound abnormalities and frequency of fetal aneuploidy

| Defect                          | Nicolaides et                        | al. 1992 <sup>131</sup>              | Halliday<br>et al. 1994 <sup>132</sup> | Hanna et al.<br>1996 <sup>133</sup>             | Rizzo et al.<br>1996 <sup>134</sup>             | Overall<br>frequencyª    |  |
|---------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------|--|
|                                 | Isolated<br>No. Aneupl/<br>Total (%) | Multiple<br>No. Aneupl/<br>Total (%) | lsolated<br>No. Aneupl/<br>Total (%)   | Primary U/S<br>Abn. No.<br>Aneupl/<br>Total (%) | Primary U/S<br>Abn. No.<br>Aneupl/<br>Total (%) | No. Aneupl/<br>Total (%) |  |
| Abdominal wall defect           | 1/30                                 | 41/86 (48)                           | 3/45 (7)                               | 38/196 (19)                                     | 7/16l (44)                                      | 90/373 (24)              |  |
| Agenesis of corpus<br>callosum  | -                                    | -                                    | -                                      | 0/2 (0)                                         | 8/19 (42)                                       | 8/21 (38)                |  |
| Choroid plexus cyst             | 1/49                                 | 33/72 (46)                           | 0/21 (-)                               | 21/514 (4)                                      | -                                               | 55/656 (8)               |  |
| Congenital heart disease        |                                      |                                      |                                        |                                                 |                                                 | 166/339 (49)             |  |
| Unspecified                     | 0/4                                  | 101/152 (66)                         | 8/42 (19)                              | 10/60 (17)                                      | 20/34 (59)                                      |                          |  |
| Ventricular septal defect       | -                                    | -                                    | -                                      | 8/21 (38)                                       | 9/13 (69)                                       |                          |  |
| Atrioventricular canal          | -                                    | -                                    | -                                      | 2/2 (100)                                       | 8/11 (82)                                       |                          |  |
| Cystic hygroma                  | 0/4                                  | 35/45 (73)                           | 11/21 (52)                             | 65/108 (60)                                     | 22/33 (67)                                      | 133/211 (63)             |  |
| Diaphragmatic hernia            | 0/38                                 | 17/41 (41)                           | 2/17 (12)                              | 8/72 (11)                                       | 2/5 (40)                                        | 29/173 (17)              |  |
| Duodenal atresia                | 1/6                                  | 9/17 (53)                            | 3/10 (30)                              | 10/45 (22)                                      | 8/15 (53)                                       | 31/93 (33)               |  |
| Echogenic bowel                 | -                                    | -                                    | -                                      | 5/34 (15)                                       | -                                               | 5/34 (15)                |  |
| Facial cleft                    | 0/8                                  | 31/56 (55)                           | 1/7 (14)                               | -                                               | 3/11 (28)                                       | 35/82 (43)               |  |
| Holoprosencephaly               | 0/7                                  | 15/51 (29)                           | 3/9 (33)                               | 9/19 (47)                                       | 6/12 (50)                                       | 33/98 (34)               |  |
| Hydrocephaly                    | 2/42                                 | 40/144 (28)                          | 7/30 (23)                              | 25/256 (9)                                      | -                                               | 74/472 (16)              |  |
| Hydronephrosis                  | -                                    | -                                    | -                                      | 8/110 (7)                                       | -                                               | 8/110 (7)                |  |
| Hydrops (nonimmune)             | 7/104                                | 18/106 (17)                          | 23/57 (40)                             | 37/116 (32)                                     | 6/17 (35)                                       | 91/400 (22)              |  |
| IUGR                            | 4/251                                | 133/424 (31)                         | 8/37 (22)                              | 71/389 (18)                                     | -                                               | 216/1101 (20)            |  |
| Limb anomalies                  | 0/18                                 | 195/457 (43)                         | 4/29 (14)                              | 3/39 (8)                                        | 3/6 (50) <sup>b</sup>                           | 205/549 (37)             |  |
| Microcephaly                    | 0/1                                  | 8/51 (16)                            | 0/1 (0)                                | 5/28 (18)                                       | -                                               | 13/81 (16)               |  |
| NTD <sup>c</sup>                | -                                    | -                                    | 1/33 (3)                               | 4/57 (7)                                        | 2/6 (33)                                        | 7/96 (7)                 |  |
| Nuchal fold/thickness/<br>edema | 0/12                                 | 53/132 (40)                          | 5/21 (24)                              | 15/75 (20)                                      | -                                               | 73/240 (30)              |  |
| Oligohydramnios                 | -                                    | -                                    | 1/14 (7)                               | 14/97 (14)                                      | -                                               | 15/111 (14)              |  |
| Polyhydramnios                  | -                                    | -                                    | 2/9 (22)                               | 23/194 (12)                                     | -                                               | 25/203 (12)              |  |
| Renal anomalies                 | 9/482                                | 87/360 (24)                          | 3/29 (10)                              | 7/107 (7)                                       | -                                               | 106/978 (11)             |  |
| TF/EA                           | 0/1                                  | 18/23 (78)                           | -                                      | 4/10 (40)                                       | 3/6 (50)                                        | 25/40 (63)               |  |
| Two-vessel cord                 | -                                    | -                                    | -                                      | 5/72 (6)                                        | -                                               | 5/72 (7)                 |  |

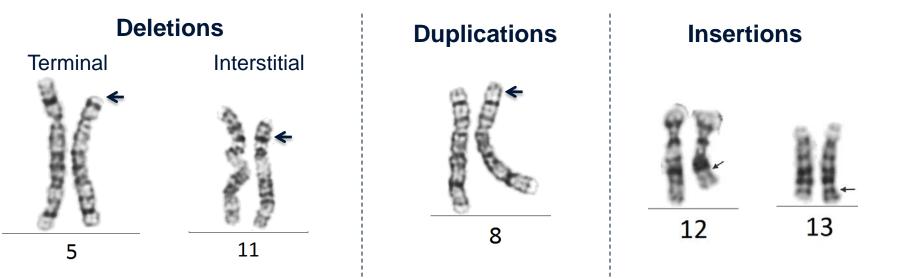
| Defect                         | Overall frequency |
|--------------------------------|-------------------|
| Cystic hygroma                 | 133/211 (63%)     |
| Tracheo -esophageal<br>atresia | 25/40 (63%)       |
| Congenital heart defect        | 166/339 (49%)     |
| Agenesis of corpus collosum    | 8/21 (38%)        |
| Limb anomalies                 | 205/549 (37%)     |
| Neural tube defect             | 7/96 (7%)         |
| Choroid plexus cyst            | 55/656 (8%)       |

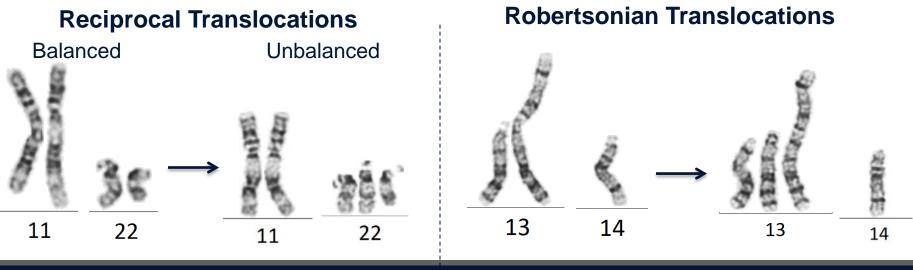
Benn P. 2010. Prenatal Diagnosis of Chromosomal Abnormalities through Amniocentesis. In: Milunsky and Milunsky, eds. Genetic Disorders of the Fetus. 6<sup>th</sup> Edition.





## **Structural Abnormalities**


- Definition: Breakage and rejoining of chromosomes or chromosome segments
- May be either balanced or unbalanced
- Breakpoints can disrupt gene expression (within a gene or regulatory element)
- Can create gene fusions or affect gene expression (↑↓) by position effect
  - Common in cancer

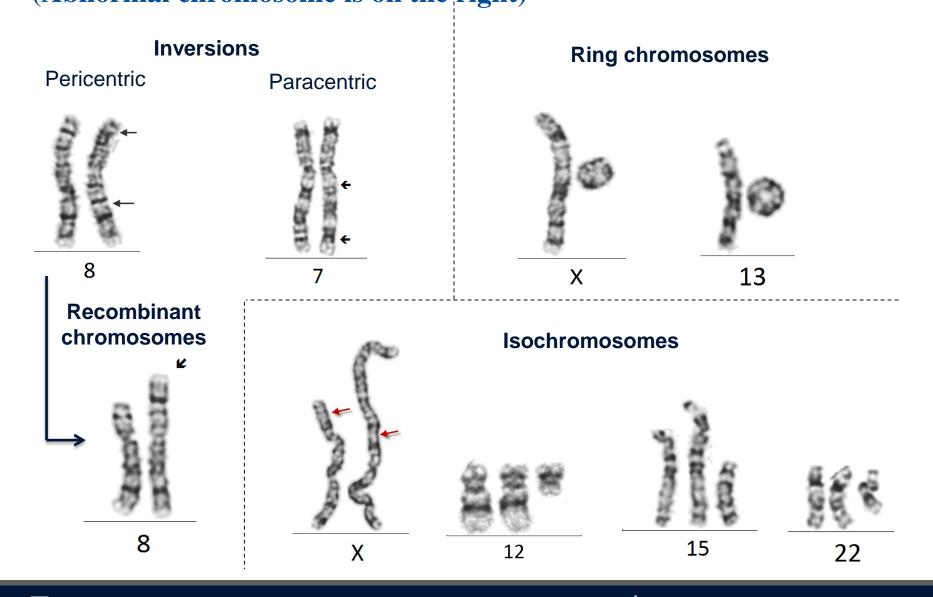





## **Structural Chromosome Abnormalities**

#### (Abnormal chromosome is on the right)








Institute for Learning



## **Structural Chromosome Abnormalities** (Abnormal chromosome is on the right)





AR

CHOOL OF MEDICINE

#### **Incidence of chromosome abnormalities detected in newborns**

| Abnormality                            | Rate/1000 | Rate (1/n) |
|----------------------------------------|-----------|------------|
| Autosomal Trisomies                    | 1.62      | 617        |
| Sex Chromosome Aneuploidies            | 2.70      | 375        |
| Balanced Structural Rearrangements     | 2.04      | 490        |
| Translocations, insertions             | 0.97      | 1,028      |
| Inversions                             | 0.16      | 6,331      |
| Robertsonians                          | 0.91      | 1,099      |
| Unbalanced Structural Rearrangements   | 0.63      | 1,587      |
| Translocations, insertions, inversions | 0.09      | 10,935     |
| Robertsonians                          | 0.07      | 13,366     |
| Deletions, rings                       | 0.06      | 17,184     |
| +Markers (e.g. isochromosomes)         | 0.41      | 2,455      |

Data from: Milunsky and Milunsky, Genetic Disorders of the Fetus, 6th Ed. (2010). Benn, Chp. 6

 $\sim$  ~1/500 is a carrier of a balanced rearrangement





#### Some syndromic microdeletion and duplication regions

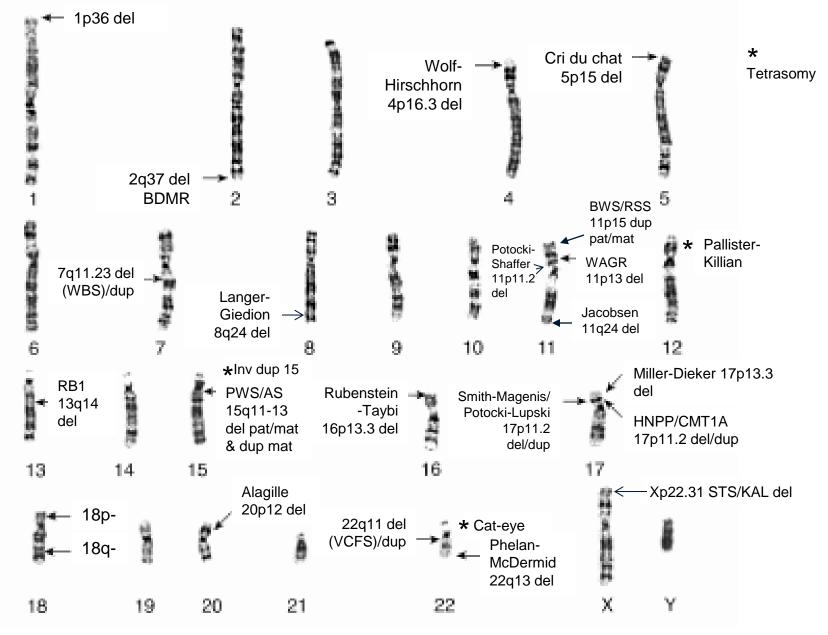
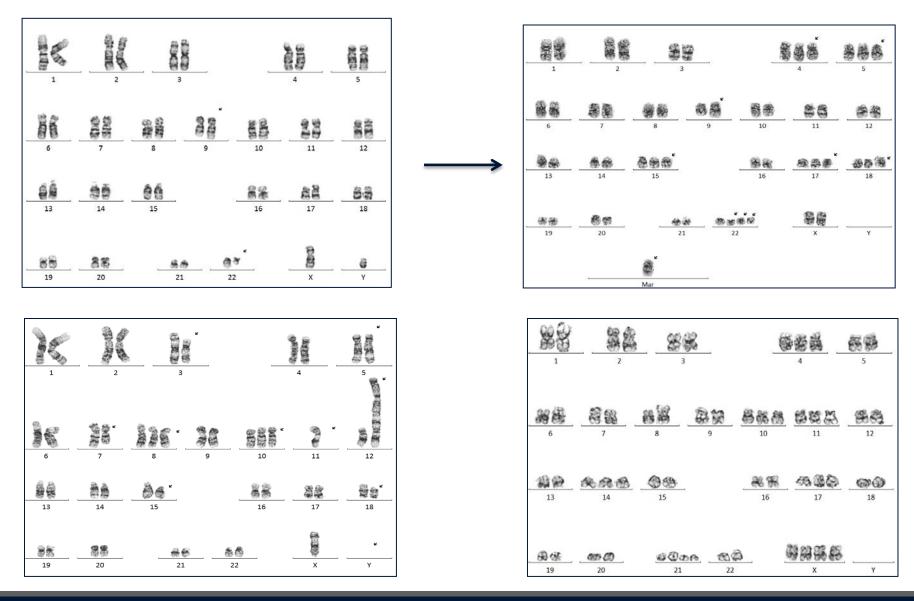



Image modified from Gardner, Sutherland and Shaffer Chromosome Abnormalities and Genetic Counseling 4<sup>th</sup> ed (2011)

### **Incidence of Microdeletion and Duplication Syndromes**

| Syndrome                 | Incidence | Cause                                                            |
|--------------------------|-----------|------------------------------------------------------------------|
| 1p36 deletion            | 1:7500    | Terminal deletion                                                |
| 1q21.1 deletion (distal) | 1:500     | Interstitial deletion (SD)                                       |
| 4p-/Wolf-Hirschhorn      | 1:50,000  | Terminal deletion                                                |
| 5p-/Cri du chat          | 1:50,000  | Terminal deletion                                                |
| 7q11.23/Williams         | 1:7500    | Interstitial deletion (SD)                                       |
| 15q11q13/Prader-Willi    | 1:20,000  | Interstitial deletion (pat)/<br>mUPD/methylation defect/mutation |
| 22q11.2/DiGeorge/VCFS    | 1:5000    | Interstitial deletion (SD)                                       |





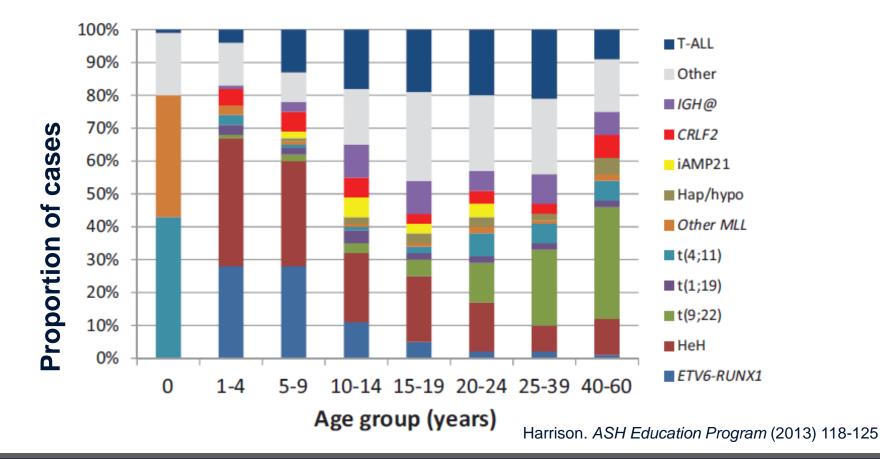

## **Chromosome Abnormalities in Cancer**

- Numerical
  - Aneuploid: 2n or + chromosomes
    - Monosomy or trisomy
  - Polyploid: 1n, 2n, 3n, 4n, etc. where n=23 chr.
- Structural
  - Deletions
  - Duplications/amplifications
  - Translocations: balanced or unbalanced
  - Inversions
- Copy-neutral loss of heterozygosity (LOH)
  - Mitotic recombination
  - Mitotic malsegregation: uniparental disomy



# **Karyotyping in Cancer**






Institute for Learning



## e.g. Clinical Utility of Karyotype in ALL

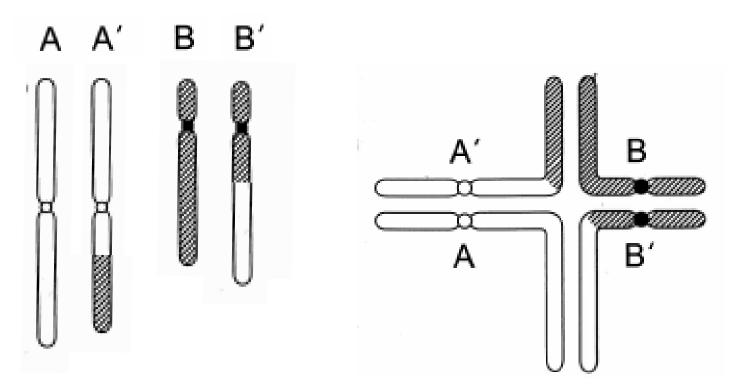
## Cytogenetic subtype distribution by age





JNIVERSITY OF UTAH School °F Medicine

## **Effects of Translocations**


- Constitutional carriers are at risk for infertility, recurrent miscarriage and/or birth of a child with a congenital anomaly syndrome
  - Most risk figures fall into the range of 0-30% for a liveborn child with an abnormality (higher end if previous child)
- May disrupt gene expression (breakpoint within a gene or regulatory element by position effect)
  - In the prenatal setting and if *de novo*, risk=~6% (Warburton '91)
- Create gene fusions and affect gene expression by position effect, especially in cancer
  - e.g. Translocation 9;22 BCR-ABL1 chimeric transcript in CML and ALL
  - e.g. Translocation 11;14 CCND1 upregulation by translocation near the IGH locus regulatory region in MCL and MM





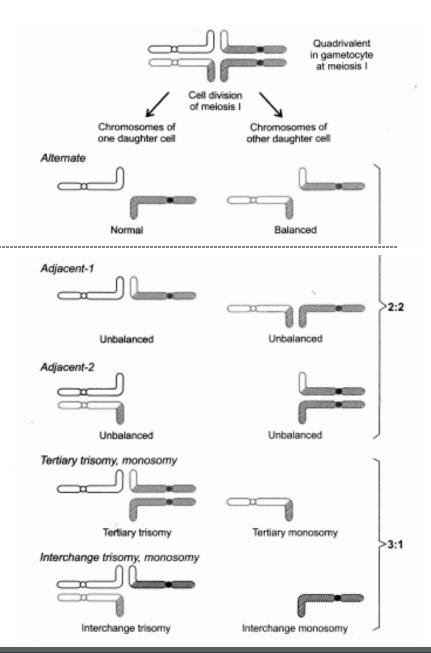
## **Meiosis in the Balanced Translocation Carrier**

- A, B: Normal chromosomes
- A', B': Derivative chromosomes



Gardner, Sutherland and Shaffer. 2012




Institute for Learning

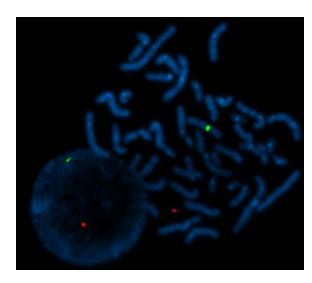
#### Meiosis in the Balanced Translocation Carrier

Only alternate segregation will result in normal/balanced gametes

All other modes of segregation result in unbalanced gametes

Chromosome Abnormalities and Genetic Counseling. 4<sup>th</sup> ed. Gardner, Sutherland and Shaffer. 2012

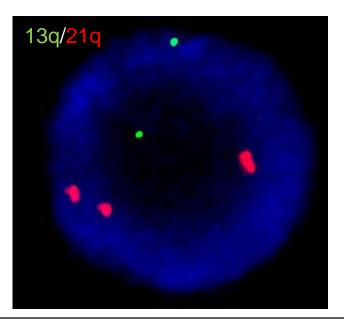


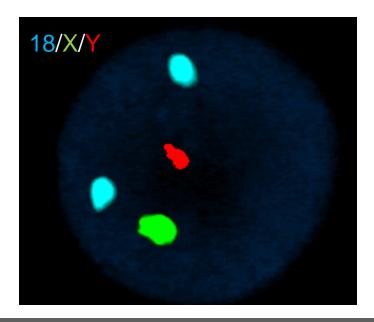



ABORATORIES

## Fluorescence in situ hybridization (FISH)

- A fluorescently labeled DNA fragment is used to detect a chromosome, region or gene *in situ*
- Advantages:
  - Much higher resolution compared to karyotyping for identifying deletions, duplications, insertions, and translocation breakpoints (down to the 100's of kb range)
  - Can use cells in any state of the cell cycle (interphase or metaphase), as well as archived tissue
  - Does not require culturing = shorter TAT
  - Greater sensitivity for low-level mosaicism compared to chromosomes (1-5% by interphase FISH)
- Limitation:
  - Targeted approach: only analyzing the region of the genome that is complementary to the FISH probe


FISH for X and Y centromeres on an interphase and metaphase cell

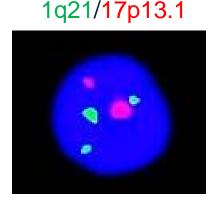


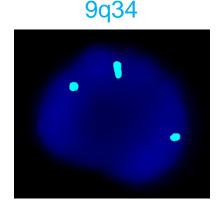



## **FISH Applications in Constitutional Studies**

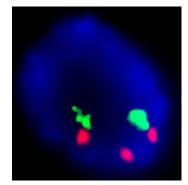
- Detecting aneuploidy with rapid TAT
- Characterizing structural abnormalities (e.g. translocations)
- Detecting microdeletions/microduplications
  - For undiagnosed patients, genomic microarray is recommended



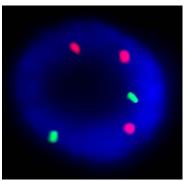






## **FISH Applications in Oncology Studies**

- Diagnosis: often using panels targeting recurrent and/or prognostic/therapeutic alterations, some cytogenetically cryptic
- Monitoring: using FISH probe(s) specific to the abnormal clone or panels to simultaneously monitor for residual disease and disease progression

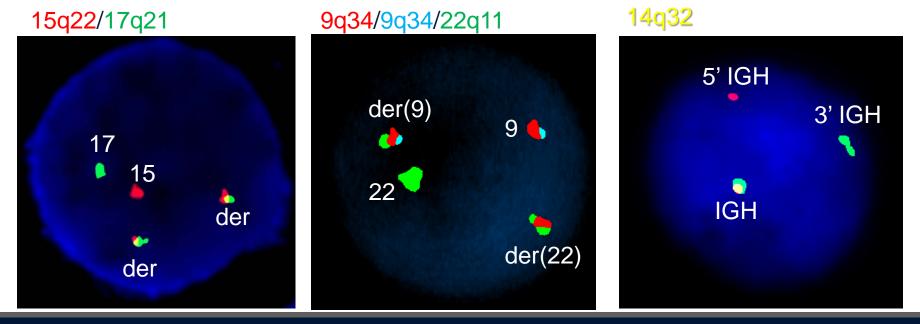





11q13/14q32



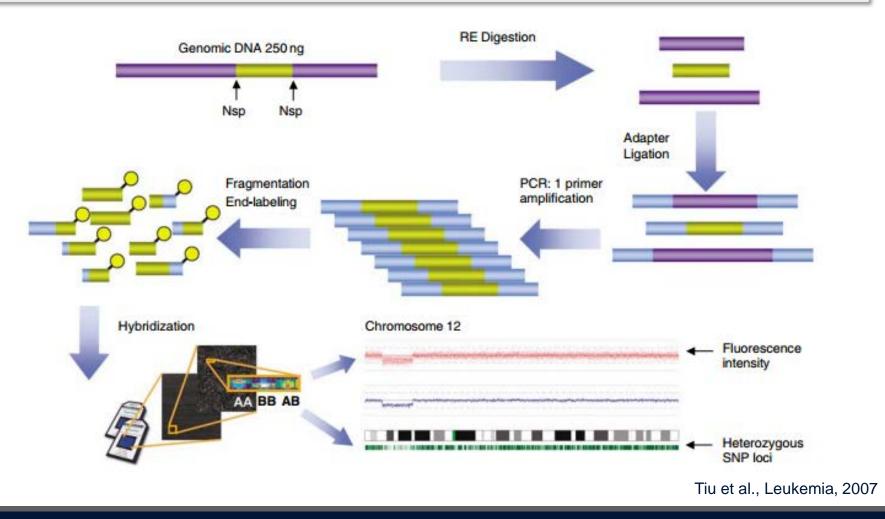
15q22/17q21.2








## **FISH Applications in Oncology Studies**


- Diagnosis: often using panels targeting recurrent and/or prognostic/therapeutic alterations, some cytogenetically cryptic
- Monitoring: using FISH probe(s) specific to the abnormal clone or panels to simultaneously monitor for residual disease and disease progression



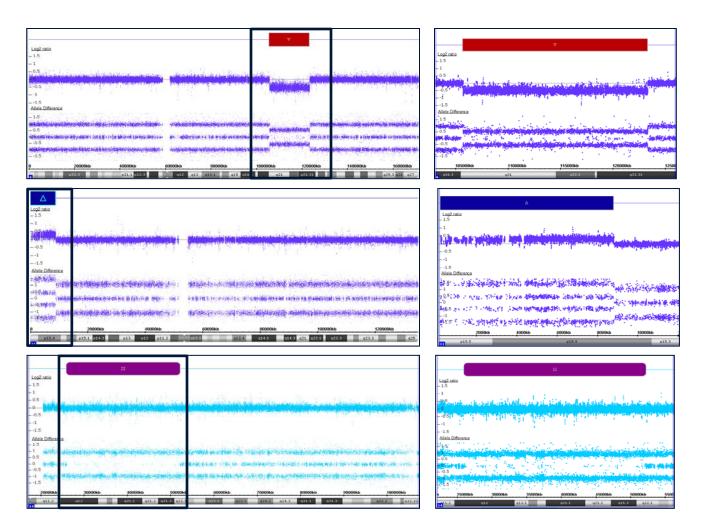
LABORATORIES Institute for Learning



## **Genomic SNP Microarray (SNP-A)**



AR P<sup>\*</sup><sub>LABORATORIES</sub> Institute for Learning


UNIVERSITY OF UTAH

## **Genomic Alterations Detected by SNP-A**

#### Deletion

### Duplication

Region of Homozygosity (ROH)





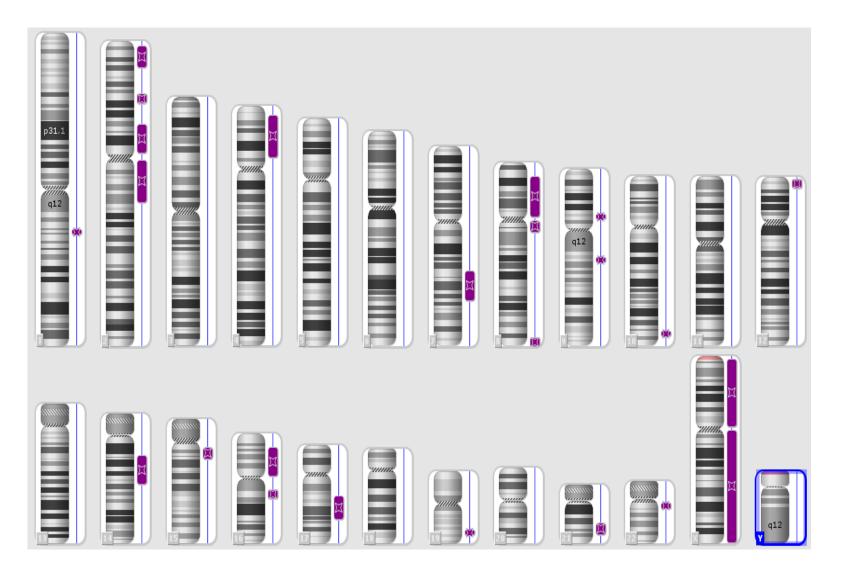


## **Pros and Cons of Genomic Microarray (GMA)**

#### **Advantages**

- High resolution technology
  - Down to 10's of kb range (compared to 3-5 Mb by 550-band chromosomes, 100's kb by FISH)
- No cell culturing or cell preparation required
  - Can use on archived tissues: frozen or formalin-fixed paraffin-embedded (FFPE)
- Objective analysis
- Detection of absence or loss of heterozygosity (AOH/LOH) if SNP genotyping is incorporated

#### Limitations


- Cannot detect balanced structural abnormalities (i.e. translocations, inversions)
- Cannot interrogate repetitive DNA sequence

#### Considerations

• May uncover findings unrelated to the indication for testing (incidental findings)



#### **Increased Genome-Wide Absence of Heterozygosity (AOH)**



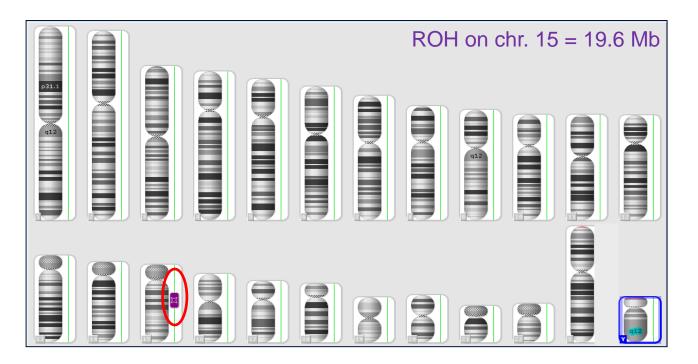




#### American College of Medical Genetics and Genomics: standards and guidelines for documenting suspected consanguinity as an incidental finding of genomic testing

Catherine W. Rehder, PhD<sup>1</sup>, Karen L. David, MD, MS<sup>2,3</sup>, Betsy Hirsch, PhD<sup>4</sup>, Helga V. Toriello, PhD<sup>5</sup>, Carolyn M. Wilson, MS<sup>6</sup> and Hutton M. Kearney, PhD<sup>6</sup>

2013


- There is clinical utility in the detection of genomic AOH, even when the % is quite low (<3%)</li>
  - Risk for autosomal recessive disease
- Cases with >10% genomic AOH have the potential of uncovering a situation of familial abuse
- Laboratories are encouraged to develop a reporting policy in conjunction with their ethics review committee and legal counsel





## Single large region of homozygosity (ROH) ...

...may indicate inheritance of both chromosomes from the same parent (i.e. uniparental disomy, UPD)



Usual observation is ROH on a single chromosome

Results from an error during meiosis or mitosis





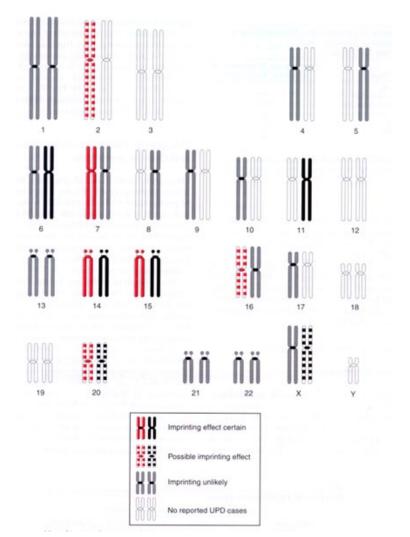
## **Uniparental disomy (UPD)**

 Biparental inheritance: the normal situation; one chromosome is inherited from each parent

- Uniparental disomy: both chromosome copies come from a single parent
  - Risk for recessive disease for genes in the homozygous chromosome segment
  - Risk for imprinting disorder if involving chromosomes that contain imprinted genes, differentially expressed dependent on parent of origin



**Biparental** 




Images modified from Yamazawa et al., 2010, Am J Med Gen C





## **Imprinted chromosomes and human disease due to uniparental disomy (UPD)**



| Chromosome UPD<br>and Inheritance | Associated Genetic Disease or<br>Abnormalities                                                                       |  |  |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Paternal UPD 6                    | Transient neonatal diabetes<br>mellitus                                                                              |  |  |  |  |
| Maternal UPD 7                    | Silver-Russell syndrome                                                                                              |  |  |  |  |
| Paternal UPD 11                   | Beckwith-Wiedemann syndrome                                                                                          |  |  |  |  |
| Maternal UPD 14                   | Hypotonia, motor development<br>delay, mild dysmorphic facial<br>features, low birth weight, growth<br>abnormalities |  |  |  |  |
| Paternal UPD 14                   | Severe mental and muscoskeletal<br>abnormalities                                                                     |  |  |  |  |
| Maternal UPD 15                   | Prader-Willi syndrome                                                                                                |  |  |  |  |
| Paternal UPD 15                   | Angelman syndrome                                                                                                    |  |  |  |  |
| Maternal UPD 16                   | Intrauterine growth retardation                                                                                      |  |  |  |  |
| Maternal UPD 20                   | Intrauterine growth retardation<br>and/or postnatal growth<br>retardation                                            |  |  |  |  |

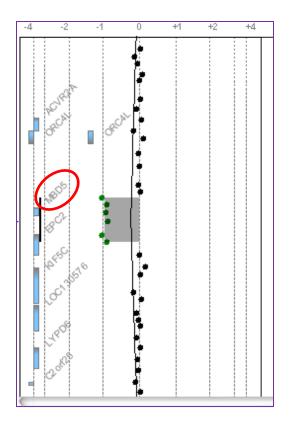
#### Image from: http://carolguze.com/text/442-10-nontraditional\_inheritance.shtml

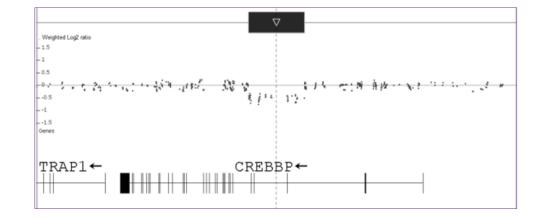
### AR PLABORATORIES | Insti

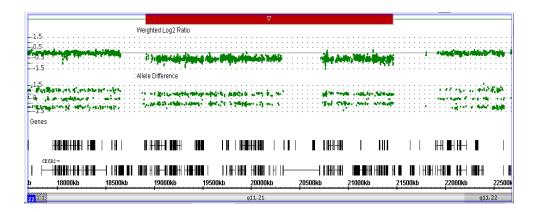


## **Clinical Utility of GMA in Postnatal Studies**

Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies


Miller et al., The American Journal of Human Genetics 86, 749–764, May 14, 2010


- International standards for cytogenomic arrays (ISCA) consortium: reviewed evidence from 33 studies, including >21,000 patients tested by GMA
- For genetic testing of individuals with unexplained developmental delay, intellectual disability, autism or multiple congenital anomalies, this technology offers a much higher dx yield (between 15-20%) compared to ~3% by karyotype and excluding other recognizable chromosome syndromes






### **Detection of submicroscopic, small pathogenic CNVs**









AR

LABORATORIES

Department of Pathology

## **Clinical Utility of GMA in Prenatal Studies**

#### Clinically relevant findings in cases with normal karyotype:

| Indication                       | Total Clinically Relevant | 95% CI    |  |
|----------------------------------|---------------------------|-----------|--|
| AMA<br>(n=1966)                  | 34 (1.7%)                 | 1.2 – 2.4 |  |
| Positive Serum Screen<br>(n=729) | 12 (1.6%)                 | 0.9 – 2.9 |  |
| Ultrasound Anomaly<br>(n=755)    | 45 (6.0%)                 | 4.5 – 7.9 |  |

Wapner et al., NEJM 2012



Institute for Learning

AR

LABORATORIES

## **Clinical Utility of GMA in Prenatal Studies and in Pregnancy Loss**



The American College of Obstetricians and Gynecologists WOMEN'S HEALTH CARE PHYSICIANS



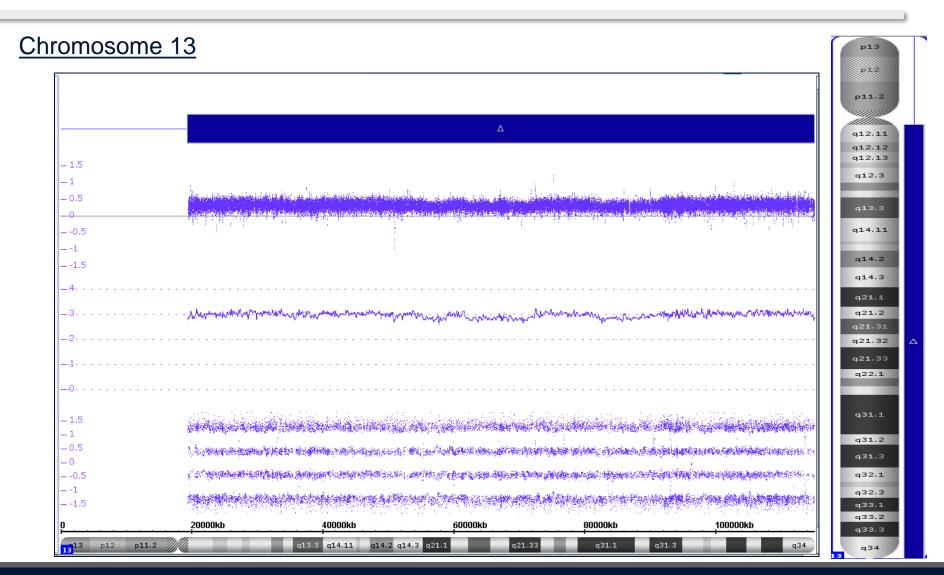
Society for Maternal-Fetal Medicine

### **COMMITTEE OPINION**

Number 581 • December 2013

(Replaces No. 446, November 2009. Reaffirmed 2015) (See also Practice Bulletin No. 88)

#### The American College of Obstetricians and Gynecologists Committee on Genetics Society for Maternal-Fetal Medicine

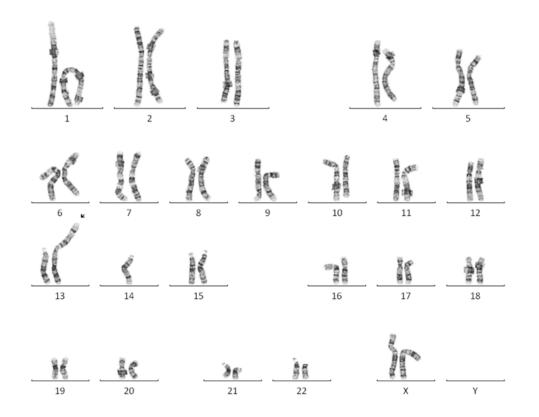

This document reflects emerging clinical and scientific advances as of the date issued and is subject to change. The information should not be construed as dictating an exclusive course of treatment or procedure to be followed.

#### The Use of Chromosomal Microarray Analysis in Prenatal Diagnosis

- Use in prenatal diagnosis: in patients with a fetus with one or more structural abnormalities identified on ultrasound, patients undergoing invasive prenatal diagnostic testing, not restricted to women aged 35+
- Use in intrauterine fetal demise or stillbirth: when further cytogenetic analysis is desired, not recommended for first or second trimester losses due to limited data on utility



#### Case: IUFD 24 weeks, fetal tissue, CHR: no grow




LABORATORIES Institute for Learning

AR



### Maternal chromosome analysis: 45,XX,der(13;14)(q10;q10)



GMA cannot characterize the structure of copy number changes

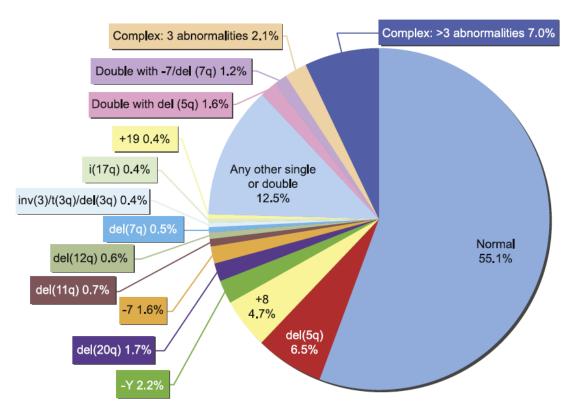
Consideration for recurrence risk should be incorporated into interpretation

AR



# Which types of cancers should be studied by GMA?

- Those characterized by recurrent copy number changes
- Those that typically have a normal karyotype (do not grow well in culture or have poor mitotic activity compared to nonmalignant cells)

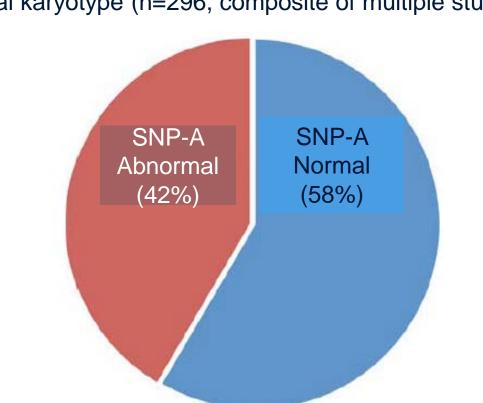

## Examples: ALL, CLL, MDS, MM





## **Recurrent cytogenetic findings in MDS**

Schanz et al., 2012 J Clin Oncol (Table 2)




#### Image source: Nybakken and Bagg, JMD 2014

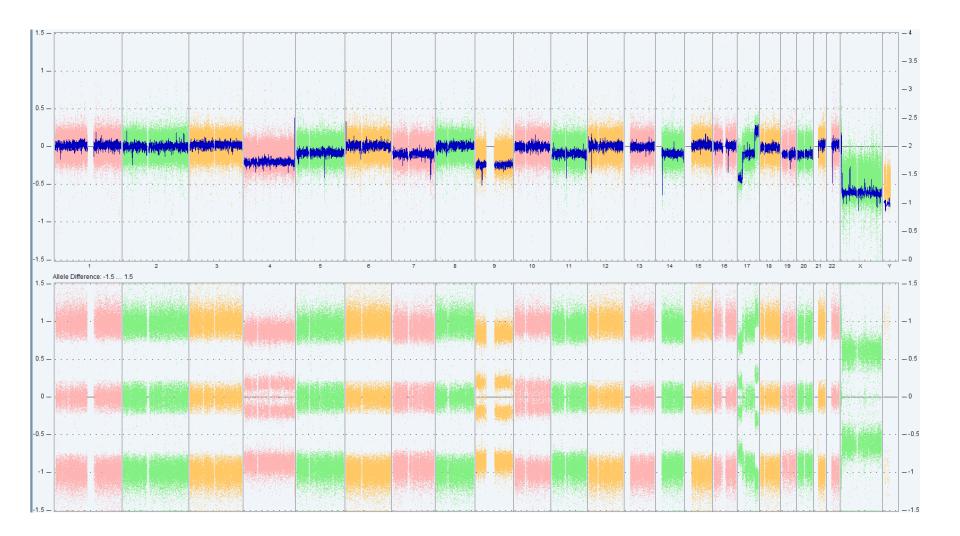




# SNP-A increases the diagnostic yield in MDS from 50% to 70-80%



Normal karyotype (n=296, composite of multiple studies)


Image source: modified from Kulasekararaj, Br J Haematol 2013

See references: Gondek et al., 2008; Heinrichs et al., 2009; Tiu et al., 2011; others





# Example: ALL with no karyotype results due to poor growth in culture, SNP-A shows hypodiploidy







# Multiple techniques are employed for the detection of different cytogenetic abnormalities

| Technique                         | Resolution            | Sensitivity<br>(mosaicism) | Culturing<br>required? | Global? | Unbalanced<br>abs? | Balanced<br>abs?<br>Structural<br>info? |
|-----------------------------------|-----------------------|----------------------------|------------------------|---------|--------------------|-----------------------------------------|
| Chromosome<br>analysis            | 3-5 Mb<br>(550 bands) | 10-15%                     | Yes                    | Yes     | Yes                | Yes                                     |
| Metaphase<br>FISH                 | 100's kb              | n/a                        | Yes                    | No      | Yes                | Yes                                     |
| Interphase FISH                   | 100's kb              | 1-5%                       | No                     | No      | Yes                | Yes                                     |
| Genomic<br>microarray<br>analysis | 10-100's kb           | 10-20%                     | No                     | Yes     | Yes                | No                                      |









Department of Pathology

© 2018 ARUP Laboratories

ARUP IS A NONPROFIT ENTERPRISE OF THE UNIVERSITY OF UTAH AND ITS DEPARTMENT OF PATHOLOGY.