Hereditary Breast and Ovarian Cancer and Genetic Testing

Rong Mao, MD
Medical Director, Molecular Genetics and Genomics
Associate Professor of Pathology, University of Utah
Breast Cancer

- Breast cancer is one of the most common forms of cancer among women (40,290 in 2015).
- It is second only to lung cancer as a cause of cancer deaths in American women,
- One-third of women with breast cancer die from breast cancer,
- One out of every eight women will be diagnosed with breast cancer in 2015.
Breast Cancer Risk Factors

All women are at risk.

- Age
- Family Risk
- Not having children
- Birth control pills
- Hormone replacement therapy
- Controllable
- Uncontrollable
- Obesity
- Exercise
- Breastfeeding
- Alcohol
Breast Cancer Risk Factors: Age

<table>
<thead>
<tr>
<th>Age</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>By age 30</td>
<td>1 out of 2,000</td>
</tr>
<tr>
<td>By age 40</td>
<td>1 out of 233</td>
</tr>
<tr>
<td>By age 50</td>
<td>1 out of 53</td>
</tr>
<tr>
<td>By age 60</td>
<td>1 out of 22</td>
</tr>
<tr>
<td>By age 70</td>
<td>1 out of 13</td>
</tr>
<tr>
<td>By age 80</td>
<td>1 out of 9</td>
</tr>
<tr>
<td>Lifetime risk</td>
<td>1 out of 8</td>
</tr>
</tbody>
</table>

Family History as a Risk Factor

Breast Cancer

- 70% Sporadic
- 15–20% Family clusters
- 5–10% Hereditary

Ovarian Cancer

- 90% Sporadic
- 5–10% Hereditary
Compare Hereditary vs. Sporadic Cancer

- A younger age at the onset of cancer
 - Generally < 50 years of age

- Multiple primary cancers:
 - Breast
 - Ovarian
 - Other
Causes of Hereditary Susceptibility to Breast Cancer

5–10% of breast cancers can be attributed to inherited factors.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Contribution to Hereditary Breast Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td>20–40%</td>
</tr>
<tr>
<td>BRCA2</td>
<td>10–30%</td>
</tr>
<tr>
<td>TP53</td>
<td><1%</td>
</tr>
<tr>
<td>PTEN</td>
<td><1%</td>
</tr>
<tr>
<td>Undiscovered genes</td>
<td>30–70%</td>
</tr>
</tbody>
</table>
• **BRCA1** (for **BR**east **CA**ncer gene 1) was described in 1990 on chromosome 17 and isolated in 1994.

• **BRCA2** was isolated on chromosome 13 in late 1994.
Passing on Risk: Autosomal Dominant

Each child has 50% risk of inheriting a familial mutation.

Legend
- **B**: BRCA gene with mutation
- **b**: Normal BRCA gene

- **Normal BRCA genes (bb)**
 - **Bb**
 - **bb**

- **BRCA mutation (Bb)**
 - **Bb**
 - **bb**

- **Susceptible BRCA gene**
 - **Susceptible BRCA gene**
 - **Population risk**
 - **Susceptible BRCA gene**
 - **Population risk**
Consequences of Having a *BRCA* Mutation

<table>
<thead>
<tr>
<th></th>
<th>BRCA Mutation Carriers</th>
<th>In General Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast Cancer ♀</td>
<td>50–85%</td>
<td>11%</td>
</tr>
<tr>
<td>BRCA1 & BRCA2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>40–60%</td>
<td>1–2%</td>
</tr>
<tr>
<td>BRCA1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>10–20%</td>
<td>1–2%</td>
</tr>
<tr>
<td>BRCA2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast Cancer ♂</td>
<td>≤6%</td>
<td>Rare</td>
</tr>
<tr>
<td>BRCA2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Other BRCA+ Related Cancers

Slight risk for other cancers

• Shown to be increased in carriers:
 – Pancreatic
 – Melanoma
 – Stomach
 – Colon
 – Prostate
 – Male breast cancer
Who Should Be Tested?

• Multiple family members with breast cancer
• A family member with primary cancer in both breasts
 – Especially if manifested before age 50
• A family member with ovarian cancer
• A family member with male breast cancer
• A family member with an identified BRCA1 or BRCA2 mutation
• Jewish ancestry
BRCA1 and BRCA2 Mutations

- **BRCA1**: 1873 mutations
 - Point mutations: 1574 (84%)
 - Large deletions/duplications: 299 (16%)

- **BRCA2**: 1597 mutations
 - Point mutations: 1523 (95%)
 - Large deletions/duplications: 74 (5%)
Three mutations in *BRCA1* and 2 account for 97% of *BRCA1* and *BRCA2* mutations in Ashkenazi Jewish individuals:

- *BRCA1*: 185delAG, 5382insC
- *BRCA2*: 6174delT
Hereditary Breast/Ovarian Cancer Testing

- Ashkenazi Jewish \((BRCA1\) and \(BRCA2\)), 3 Mutations (2011958)

- Breast and Ovarian Hereditary Cancer Syndrome \((BRCA1\) and \(BRCA2\)) Sequencing and Deletion/Duplication (2011949)

- Breast and Ovarian Hereditary Cancer Panel, Sequencing and Deletion/Duplication, 20 Genes (2012026)
Test Recommendation for Jewish Ancestry

- Test with Ashkenazi Jewish (BRCA1 and BRCA2), 3 Mutations (2011958): sensitivity 97% (PCR/ capillary electrophoresis)

- Negative: Breast and Ovarian Hereditary Cancer Syndrome (BRCA1 and BRCA2) Sequencing and Deletion/Duplication (2011949)

185delAG
Testing for High-Risk Individuals

- Breast and Ovarian Hereditary Cancer Syndrome (*BRCA1* and *BRCA2*) Sequencing and Deletion/Duplication (2011949)
 - Sequencing *BRCA1* and *BRCA2* genes: sensitivity 80–84% and 90–95%
 - Deletion/duplication of *BRCA1* and *BRCA2* genes: sensitivity 16% and 5%
Breast Cancer Multi-Gene Panel

- Breast and Ovarian Hereditary Cancer Panel, Sequencing and Deletion/Duplication, 20 Genes (2012026)

- 20 genes associate with increased risk of breast cancer: ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, MEN1, MLH1, MSH2, MSH6, MUTYH, NBN, PALB2, PTEN, RAD51C, RAD51D, STK11, TP53

Next-generation sequencing

Array CGH
Is This Sequence Variant a Mutation?

M18T in *BRCA1*: Is this a mutation or benign?
Publication, computational prediction, database

http://www.arup.utah.edu/
<table>
<thead>
<tr>
<th>Location</th>
<th>Mutation Type</th>
<th>Nucleotide Change</th>
<th>Protein Change</th>
<th>Classification</th>
<th>Posterior Probability</th>
<th>Reference</th>
<th>Secondary Reference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 2</td>
<td>Insertion</td>
<td>c.32_33insC</td>
<td></td>
<td>5 - Definitely pathogenic</td>
<td>>0.99</td>
<td>Szabo (1995) Hum Mol Genet 4: 1811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 2</td>
<td>Deletion</td>
<td>c.61delA</td>
<td></td>
<td>5 - Definitely pathogenic</td>
<td>>0.99</td>
<td>Thirthagiri (2008) Breast Cancer Res 10; R59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Management of BRCA+ Women

Prevention and Screening Options

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylactic surgery</td>
<td>Mastectomy</td>
</tr>
<tr>
<td></td>
<td>Oophorectomy</td>
</tr>
<tr>
<td>Chemoprevention</td>
<td>Tamoxifen</td>
</tr>
<tr>
<td></td>
<td>Oral contraceptives</td>
</tr>
<tr>
<td>Screening</td>
<td>Mammograms</td>
</tr>
<tr>
<td></td>
<td>MRI</td>
</tr>
<tr>
<td></td>
<td>Ultrasound</td>
</tr>
<tr>
<td></td>
<td>Clinical breast exams</td>
</tr>
</tbody>
</table>
Current Screening Recommendations for BRCA+ Women

- **Breast**
 - Monthly breast self-exams (begin by age 18)
 - Early clinical surveillance (begin by age 25)
 - Biannual clinical breast exams at a breast center
 - Annual mammography
 - Sonography? MRI?

- **Ovarian: no good options**
 - Transvaginal ultrasound
 - CA-125 blood levels
Conclusion:
Identifying high-risk individuals will help surveillance and prevention of breast/ovarian cancer.
Germline Pharmacogenetics in Breast Cancer

Gwen McMillin, PhD, DABCC(CC,TC)
Medical Director, Toxicology
Co-Medical Director, Pharmacogenetics
Germline vs. Somatic Genetics

Somatic mutations
- Occur in *non-germline* tissues
- Cannot be inherited

Germline mutations
- Present in egg or sperm
- Can be inherited
- Cause cancer family syndrome

Mutation in tumor only (for example, breast)

Mutation in egg or sperm

All cells affected in offspring

Adapted from the National Cancer Institute and the American Society of Clinical Oncology
Germline Pharmacogenetics

Inherited genes can predict/explain if and how a person will tolerate and respond to a drug:

– Pharmacokinetics, such as drug metabolism
– Pharmacodynamics, such as drug response
Good response

Unconventional dose and/or dosing frequency

Poor response

Sensitivity

No side effects

Resistance

Adverse effects
Drug Metabolism

- Most drugs are metabolized.
- Some drugs require metabolism to be converted to an active form (drug activation); these drugs are called “prodrugs.”

[Chemical structures of Codeine and Morphine showing O-dealkylation process]
• Most drugs are inactivated by metabolism to promote elimination of the drug.

• Drug metabolism is mediated by enzymes; the cytochrome P450 (CYP) family is one of the most clinically significant.
Proportion of Drugs Metabolized by P450 Enzymes

Relationship to Breast Cancer

CYP2D6

- Major enzyme responsible for activation of tamoxifen and some pain drugs
- Major enzyme responsible for inactivation of many drugs, such as antidepressants

CYP2C19

- Minor enzyme responsible for activation of tamoxifen
- Major enzyme responsible for inactivation of many drugs, such as antidepressants and gastrointestinal drugs

Genetic variants can increase, decrease, or obliterate metabolism.
Common Genetic Variants (Alleles)

CYP2D6
- **CYP2D6*4** (↓ function)
 - 1–8% of Asians
 - 6–18% of Caucasians and African-Americans
 - 8% of Middle Easterners
- **CYP2D6*1 or 2xN** (↑ function)
 - 1% of Asians
 - 2–3% of Caucasians and African Americans
 - 7% of Middle Easterners

CYP2C19
- **CYP2C19*2** (↓ function)
 - 30–35% of Asians
 - 15–20% of Caucasians and African Americans
 - 55% of Oceanians
- **CYP2C19*17** (↑ function)
 - 1–15% of Asians
 - 15–20% of Caucasians and African Americans
 - 2.5% of Oceanians

2015 CPIC Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of SSRIs —Supplemental v1.0.
Two Alleles = Genotype

From which phenotype is predicted

- EM = extensive metabolizer = normal
- IM = intermediate = combinations of non-functional and/or reduced function alleles and/or normal alleles
- PM = poor = two non-functional alleles
- UM = ultra-rapid = duplications of functional alleles or alleles that increase expression
Tamoxifen

- Most commonly prescribed anti-estrogen
- Prodrug
- Used since 1971 for breast cancer treatment, adjuvant therapy, prevention, and several other indications
- Annual sales in the U.S. > $500 million
- ~35% of women do not respond
Simplified Schematic of Tamoxifen Metabolism

Tamoxifen (TAM) → N-desmethyl TAM

CYP2D6
(CYP2B6, CYP2C9, CYP2C19, CYP3A)

4-hydroxy TAM → Endoxifen

CYP3A4/5
(CYP2C9 + other CYP isoforms)

CYP3A4/5

SULT1A1
Theoretical Effect of CYP Phenotypes on Activation of Tamoxifen

<table>
<thead>
<tr>
<th>CYP2D6</th>
<th>PM</th>
<th>IM</th>
<th>Normal</th>
<th>UM</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>PM</td>
<td>IM</td>
<td>Normal</td>
<td>UM</td>
</tr>
<tr>
<td>IM</td>
<td>Little to no active drug</td>
<td>Potentially inadequate active drug</td>
<td>Active drug</td>
<td>More than average amounts of active drug</td>
</tr>
<tr>
<td>Normal</td>
<td>Some active drug</td>
<td>Active drug?</td>
<td>More active drug</td>
<td></td>
</tr>
<tr>
<td>UM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CYP Phenotype and Amitriptyline Recommendations

CYP2D6

<table>
<thead>
<tr>
<th>CYP2C19</th>
<th>PM</th>
<th>IM</th>
<th>Normal</th>
<th>UM</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>Avoid use</td>
<td>Consider 25% dose reduction; TDM to optimize</td>
<td>Standard dosing</td>
<td>Avoid use</td>
</tr>
<tr>
<td>IM</td>
<td>Avoid use</td>
<td>Consider 50% dose reduction</td>
<td>Standard dosing</td>
<td>Avoid use</td>
</tr>
<tr>
<td>Normal</td>
<td>Avoid use</td>
<td>Consider 25% dose reduction; TDM to optimize</td>
<td>Standard dosing</td>
<td>Avoid use</td>
</tr>
<tr>
<td>UM</td>
<td>Consider alternate drug</td>
<td>Consider alternate drug</td>
<td>Standard dosing</td>
<td>Avoid use</td>
</tr>
</tbody>
</table>

https://www.pharmgkb.org/guideline/PA166105006
CYPs for Other Drugs Used in Treating Breast Cancer Patients

CYP2D6
- Antidepressants
 - Paroxetine, venlafaxine
- Other psychiatric drugs
 - Risperidone, atomoxetine
- Analgesics
 - Codeine, tramadol, oxycodone
- Cardiac drugs
 - Flecainide, propafenone

CYP2C19
- Antidepressants
 - Citalopram, sertraline
- Gastrointestinal drugs
 - Omeprazole, lansoprazole, rabeprazole
- Cardiac drugs
 - Clopidogrel
- Other misc. drugs
 - Voriconazole, clobazam
Single gene

- CYP2D6: 0051232
 - 14 variants and gene duplication/deletion

- CYP2C19: 0051104
 - 9 variants

Multi-gene DME panel

- Includes CYP2D6, CYP2C19, and CYP2C9 (test code 2008920)

Notes:

- **CYP3A5** will be available with the November 2015 hotline and will be added to the gene panel in 2016.
- A **saliva kit** will be available soon to promote non-invasive (not blood), outpatient collections.
- **Custom interpretation for multi-gene panel** is anticipated for 2016.
Summary and Conclusions

• Germline pharmacogenetic testing can help personalize drug therapy by predicting whether a patient will be able to metabolically activate and inactivate drugs.

• CYP genetic testing is relevant to all breast cancer patients who are prescribed drugs, particularly tamoxifen, antidepressants, and opioid analgesics.