Dysplasia of the GI Tract: Pitfalls and Solutions

Mary P. Bronner, M.D.

Division Chief of Anatomic Pathology and Molecular Oncology

University of Utah / ARUP Laboratories

Neoplastic Progression in Chronic Inflammatory GI Dz

Chronic Reflux

Definition

Neoplastic epithelium confined within the basement membrane of the gland within which it arose

IBD/DMSG Hum Pathol 1983 Pathol 1983;14:831

Barrett's Esophagus with Dysplasia

Grading System for GI Dysplasia

- Negative
- Indefinite
- Positive
 - Low-gradeHigh-grade

Modified from IBD/DMSG Hum Pathol 1983 Pathol 1983;14:831

Barrett's Dysplasia

- Two types
 - Intestinal (85%)
 - Gastric Foveolar (15%)

Barrett's Intestinal-type Dysplasia

Intramucosal Adenocarcinoma

- Single cell lamina propria invasion
- Sheets of malignant cells
- Abortive angulated glands
- Never ending gland pattern

Barrett's Gastric Foveolar-type Dysplasia

Gastric-Type Barrett's Dysplasia

- Very different criteria from intestinal-type
- Non-stratified, basal nuclei precludes loss of nuclear polarity criterion

Gastric-Type Barrett's Dysplasia

- Gastric-type LGD & HGD distinguished by
 - nuclear size cut off of 3-4X small lymph
 - increased but mild pleomorphism
 - prominent nucleoli
 - eosinophilic to oncocytic cytoplasm
 - crowded, irregular glandular architecture

Mahajan D, et al. *Mod Pathol* 23:1, 2010 Serra S, et al. Path 49:391, 2017; *J Clin Pathol* 67:898, 2014

Gastric-Type Barrett's Dysplasia

Natural history poorly defined

- <100 pts in composite literature
- F:M = 2.7:1
- Decade older than intestinal dysplasia (73 vs 63 yrs mean age)
- More often high-grade (70%)
- Neoplastic progression in 64% over 8 years of follow-up

Mahajan D, et al. *Mod Pathol* 23:1-11, 2010 Stefano A, et al. *J Clin Pathol* 67:898, 2014

DDX GERD vs. Foveolar Dysplasia				
Top-Heavy Atypia	0	80%	<0.00001	pts •80 bxs
Full Thick ^T Atypia	<i>Ium Pathol</i> 444146-53, 2013	0	<0.00001	gastric-type dvsplasia
Villiform	6%	53%	0.0006	(13 LGD, 30
Crowded Glands	78%	0	<0.00001	HGD)
Nucleoli	79%	33%	0.0003	GERD
Pleomorph Mild	35%	10%	0.09	
	Patil DT, et al. <i>Hum Pathol</i> 44:1146-53, 2013			

Reactive Cardia/GERD Villiform & 'Top-Heavy" Atypia

Reactive Cardia/GERD: Stratified Surface Nuclei

Gastric-type Dysplasia: Full-thickness Atypia

Gastric-type Dysplasia: Non-stratified Nuclei

Goblet Cells in 100% of Barrett's with Foveolar Dysplasia

- Goblet cells still required to diagnose Barrett's
- Gastric foveolar dysplasia changes only the criteria for dysplasia within Barrett's, not the definition of Barrett's itself

GI Dysplasia: Problems

- Sampling
- Distinction from reactive change
- Observer variation
- Squamous overgrowth
- Natural history incompletely understood
Distribution of Dysplasia

Dysplasia: Problems

- Sampling
- Distinction from reactive change

Dysplasia: Problems

- Sampling
- Distinction from reactive change
- Observer variation

Spectrum of Dysplasia

Interobserver Agreement: Dysplasia in Barrett's

Diagnosis	Kappa Statistic	Agreement
HGD/CA	0.65	Substantial
LGD	0.32	Fair
Indefinite	0.15	Poor
Negative	0.58	Moderate

From: Montgomery E, et al. Hum Pathol 32:368-78; 2001

Two Main Problems In Barrett's Pathology

- Over diagnosis of Barrett's esophagus
- Over diagnosis of high-grade dysplasia

Inaccuracy in the Diagnosis of Barrett's with HGD

- PDT multi-center trial for Barrett's with HGD
 - 485 patients with "HGD" screened
 Review original slides
 - Repeat protocol endoscopy 4 quad q2cm
 - 248 with confirmed HGD (51%)
 - 193 patients downgraded (40%) Sangle NA, et al. Mod Pathol 2015;28:758-65

193 Downgraded Patients			
Reinterpretations	No.	Percent	
Gastric only	18	9%	
Barrett's negative	35	18%	
Barrett's indefinite	61	32%	
Barrett's LGD	79	41%	

Sangle NA, et al. Mod Pathol 2015;28:758-65

Diagnostic Pitfalls: HGD in Barrett's Esophagus

- NOT atypia limited to basal glands
- NOT reactive gastric cardiactype mucosa
- NOT inflammatory reactive change
- Sampling error

NOT Baseline Glandular Atypia

NOT Reactive Gastric Mucosa

NOT Inflammatory Atypia

Loss of Nuclear Polarity to DDX Low & High-Grade Dysplasia

Dysplasia: Problems

- Sampling
- Distinction from reactive change
- Observer variation
- Squamous overgrowth
- Natural history incompletely understood

BE Progression to Cancer Based on Diagnosis at First Visit

High Grade Dysplasia Management Options Surveillance Ablation/EMR Surgery

Interobserver Variability:				
At Lea	ist Hig	gh-grad	de Dyspla	isia
Dx	Kappa	P-value	95% CI	Interp
ALL	0.30	<0.001	0.28-0.32	Poor
HGD	0.47	<0.001	0.44-0.51	Mod
HGD-MAD	0.21	<0.001	0.18-0.25	Poor
IMC	0.30	<0.001	0.26-0.33	Poor

Erinn Downs-Kelly, et al. Am J Gastroenterol 103:2333-2340, 2008

< 0.001

0.14-0.21

Poor

0.17

SMC

Can we tell BAD from WORSE?

- NO! Not on Biopsies!
- Management based on distinction between HGD, IMC & SMC in biopsies is questionable
- What about EMR?

Bx vs. EMR Histology

Study	# Pt	Up- stage by EMR	Down- stage by EMR	Total EMR Altered
Larghi '05	48	13%	2%	15%
Hull '06	41	34%	5%	39%
Chennat [,] 09	49	14%	31%	45%
Moss '10	75	20%	28%	48%

Note: EMR results altered the bx diagnosis 15-48% of the time

EMR for T1a (HGD/IMC)

Study	# Pt's	Avg F/U	Compl Resp	Recur/ Metach
May, 2002	70	34 mo	98%	30%
Pech, 2008	279	64 mo	97%	22%
Chennat, 2009 CBE-EMR	32	23 mo	97%	3%
Moss, 2010	75	31 mo	94%	11%
Anders, 2014 <i>CBE-EMR</i>	90	65 mo	90%	6%

Duplicated Muscularis Mucosae in Barrett's

Estrella, et.al. Am J Surg Pathol 2011; 35:1045

Duplicated Muscularis Mucosae

- Easy to overcall split MM space as submucosa (T1b)
- EMR & EUS also overstage
- >60% of IMC cases overstaged

Mandal, et.al. Am J Surg Path 2009;33:620

Split MM CA's are T1a

Invasion	Nodal
Depth	Mets
Mucosa &	1/69
Dupl MM	(1.4%)
Submucosa	10/30 (33.3%)

Estrella JS, et.al. Am J Surg Pathol 2011; 35:1045

BE Neoplasia Summary

- Intestinal vs gastric foveolar types
- Sampling, observer variation, nat hx
- Over diagnosis of HGD
 - Baseline atypia, cardia atypia, inflammation, nuclear polarity
- HGD options: surveillance, ablation, CBE-EMR, surgery
- Duplicated MM: don't overstage

Dysplasia in IBD

Risk Factors for Carcinoma in Ulcerative Colitis

- Extent and duration of disease
- Family history of colorectal cancer
- Age at onset
- Primary sclerosing cholangitis
- Presence of dysplasia
- Relationship to activity?

Options for Managing Cancer Risk in UC

- Ignore it
- "Prophylactic" colectomy
- Colonoscopic surveillance for dysplasia / early carcinoma

Comparison of IIBD and BE Neoplasia

Similarities	Differences
Definition of Dysplasia	Nomenclature of Cancer (No IMC in Colon)
Grading of Dysplasia	DALM lesions
Reactive Change	Sampling error UC>BE
Observer Variation	Natural History: less known for UC than BE

Grading System for Dysplasia

- Negative
- Indefinite
- Positive
 - Low-gradeHigh-grade

Modified from IBD/DMSG Hum Pathol 1983;14:831

LGD-Dystrophic Goblet Cells

LGD-Increased Endocrine Cells

Adequate Biopsy Sampling - Histology **Histologic Category** Cancer Dysplasia No. Bx for 33 34 90% confidence No. Bx for 56 64 95% confidence From: Rubin CE, et al. Gastroenterology 1992;103:1611

Better Risk Markers Needed!!!

- Ideal biomarker for IBD cancer risk:
 - Pancolonic
 - Rectal
 - Objective, high Sens/Spec/PPV/NPV
- FISH CIN, aneuploidy, numerous single gene alterations (ex: p53), MSI, genomic, transcriptomic and proteomic alterations, and gene hypermethylation
- None yet ready for prime time

Adequate Biopsy Sampling

Mathematical modeling study:

- 80% confidence- 32 random biopsies
- 90% confidence- 45 biopsies
- 95% confidence- 58 biopsies
- 18 biopsies yields only 60% confidence!

From: Awais D, et al. Modeling dysplasia detection in UC clinical implications of surveillance intensity. Gut 2009;58:1498-1503

Ulcerative Colitis Surveillance Protocol

Rectosigmoid Predominance of UC Cancer

Location of Colorectal CarcinomaRSDTA/C52%12%21%15%

Choi PM. Gastroenterology 1993;104:666 Summary of 5 Studies

Outcome of 42 LGD Patients

- 81% *did not progress*, avg f/u 5 y (1-13 y)
 - 7 (17%) LGD
 - 27 (64%) indef, neg
- 19% progressed
 - 6 HGD (avg 1.5 yr)

Only outcome study in literature with *adequate* bx sampling

- 2 cancer (lost to fu)
- ≥3 biopsies with LGD: 5.8x ↑ progression

Zisman, Bronner, et al. Inflamm Bowel Dis, 2012

Dysplasia in UC vs. Adenoma

No clinical features

No pathologic features

No molecular tests

HOWEVER

- If the lesion demonstrably completely resected, and
- If no dysplasia elsewhere, and
- If LGD
- Careful follow-up may be considered

UC Dysplasia Management

Continue Surveillance with adequate sampling:

- Single site LGD while in surveillance
- Indefinite for dysplasia
- Negative

UC Dysplasia Management

- **Consider Colectomy:**
 - Multiple LGD sites
 - LGD on more than one endoscopy
 - LGD at initial colonoscopy
 - Excessive inflammatory polyps

Inflammatory Polyps

UC Dysplasia Management

Colectomy Indicated:

• HGD

 Endoscopically unresectable dysplastic lesion

Summary: IIBD Dysplasia

- Nomenclature: No CIS or IMC in colon
- Huge surface area: 33 bxs
- Natural history: limited to one study of 42 pts with LGD: minority progress (>3 LGD bxs)
- Adenoma-like dysplasia: follow but many caveats

Case 3

Gastric Dysplasia in Multifocal Intestinalized Pangastritis (MIP)

Gastric Dysplasia

- 3 kinds of gastritis
- 1 with gastric CA risk
 - Multifocal Intestinalized Pangastritis
 - Diagnosed by IM of gastric <u>BODY</u>
 - Type of HP gastritis
 - Linked to ethnicity: Asian, Hispanic
 - 10% risk of dysplasia/CA
 - Same pathology as BE neoplasia

Summary: Gastric Dysplasia

- MIP essentially
 - IM of gastric BODY
 - Caused by HP
 - 2nd most common CA worldwide
- Caveat: Gastric IM mimics dysplasia more due to adjacent totally bland gastric mucosa: DON'T OVER DX: Use surface maturation

Case 4

Carcinoma Arising in an Adenoma: Diagnosis and Management

Management of Carcinoma in Adenomas

1) Establish diagnosis 2) Depth of invasion 3) Histologic grade 4) Angiolymphatic invasion 5) Completeness of resection 6) Metastatic risk

Misplaced Epithelium In Colonic Adenomas

- Low power contour rounded
 Glands invested by lamina propria
- Large, pedunculated adenomas
- Most often sigmoid
- Hemosiderin & dense fibrosis

Cancer or Misplaced?

- Inevitable inscrutable cases
- Diagnosis :

"Adenoma with neoplastic submucosal glands of unknown significance"

• Treatment is the same: Complete endoscopic excision
Nomenclature of Colorectal Carcinoma

CARCINOMA-IN-SITU

- High grade neoplastic epithelium confined within basement membrane
- Synonymous with high grade dysplasia
- Cannot metastasize
- Avoid this term for GI neoplasms!

INTRAMUCOSAL CARCINOMA

- Neoplastic epithelium invading through basement membrane into lamina propria but not through muscularis mucosae
- Metastasis not reported for colon
- Avoid this term for colonic neoplasms!

Diagnosis of Invasive Colorectal Carcinoma

"Invasive carcinoma should only be reported when spread through the muscularis mucosae into the submucosa has been demonstrated. To prevent potential confusion, the term 'intramucosal carcinoma' is best avoided in the large bowel."

From: WHO International Typing of Intestinal Tumors

COLORECTAL ADENOCARCINOMA

- Neoplastic epithelium has invaded through muscularis mucosae into submucosa
- Virtually always desmoplastic stromal reaction
- Capable of metastasis

Recommendations for Management??

A. Do nothing. Patient is cured.

- B. Laparotomy with resection of the polypectomy site.
- C. Laparotomy with wide resection containing polypectomy site and regional lymph nodes.
- D. Follow up periodic colonoscopy.

Steps in Management

- 2) Determine depth of invasion
- Submucosa polyp head or stalk
- Submucosa bowel wall proper
- Sessile or pedunculated polyp

Level of Invasion & Nodal Metastases

Level of	Positive Nodes	Dead of
Invasion	(44 resections)	Disease
0	0/18	0/65
1-3	0/13	0/36
4	3/13	4/28
	(23%)	(14%)
Includes only we lymphatic invasion 1985:89:328	ell or moderately differentiation. Haggitt RC, et al. Gas	ated tumors withou troenterology

It

Depth of Invasion vs. Positive Nodes

	% Positive Lymph Nodes		
Depth of Invasion	Morson (2084)	Minsky (168)	Grigo (268)
Submucosa	11	0	6.5
M. propria	12	28	-
Thru m.p.	58	39	-
All rectal cancers; all resected by LAR or APR			

Steps in Management

3) Assign histologic grade of carcinoma

- Well or Moderately Differentiated
- Poorly Differentiated

Prognostic Significance of Poor Differentiation

Senior	Poorly	Adverse	Confounding
Author	Differentiated	Outcome	Factors?
Fenglio	2	2	YES
Colacchio	2	1	NS
Cooper	3	2	NS
Morson	3	1	YES
Haggitt	2	1	YES
Cranley	4	3	YES
TOTALS	16	10 (63	3%)

Steps in Management

4) Angiolymphatic invasion

Prognostic Significance of Lymphatic Invasion

Senior Author	Lymphatic Invasion	Adverse Outcome	Confounding Factors?
Fenoglio	2	2	Yes
Colacchio	4	2	NS
Cooper	6	6	NS
Morson	10	5	Yes
Haggitt	2	1	Yes
Cranley	4	1	Yes
TOTALS	28	12 (43%	b)

Steps in Management

5) Assess completeness of excision

Completeness of Excision

- Endoscopist's opinion is most important
 - Assesses gross in 3-dimensions
 - Cauterizes base: addn 3-5mm destroyed
 - If endoscopist thinks excision complete, almost always true
 - Addn bxs or EUS for clinical uncertainty

Completeness of Excision

Pathologist's view is limited

- 5 um slice in 2-dimensions
- Histologic distance to margin is arbitrary
- 3 assessments
 - Appears completely excised <u>OR</u>
 - Completeness of excision cannot be assessed histologically
 - Neoplasm involved margin

Steps in Management

6) Estimate risk of metastasis

Factors Increasing the Probability of Positive Nodes

- Invasion into submucosa of bowel wall
- Poorly differentiated
- Vascular invasion
- Incomplete resection

Risk of death from cancer if no further Rx

Risk of death from operation <u>and</u> cancer in spite of Rx

Surgical Mortality

- Nationwide Survey colorectal CA surgery in 1997 (N=20,862)
- Mortality increase with low-volumes & older age
- Dimick JB, et al. J Surg Res 2003

AGE	MORTALITY
<50	0.8%
50-65	1.3%
66-80	2.9%
>80	6.9%

Cancer in Pedunculated Adenoma

- Risk of nodal metastasis < 1%
- Mortality segmental resection ~ 5%
- Uniform agreement: Polypectomy
 <u>ALONE</u> is adequate treatment

Cancer in Sessile Adenoma

- Risk of LN metastasis ~ 5%
- Mortality at 5 years for Dukes' C>50%
- Mortality for segmental resection~5%
- Polypectomy alone is <u>PROBABLY STILL</u> adequate treatment, but risk is higher & decisions individual

CAUTION!

All parties, including the patient, must understand the 95% chance or greater of finding nothing in resections done for submucosal invasion in a complete polypectomy

Reporting Cancer in Polyps

- Differentiation: well-mod vs. poor
- Invasion depth: submucosa of polyp head/stalk vs. bowel wall (sessile or pedunculated)
- Angiolymphatic invasion
- Completeness of resection

Summary: BE Neoplasia

- Intestinal vs gastric foveolar types
- Sampling, observer variation, nat hx
- Over diagnosis of HGD
 - Baseline atypia, cardia atypia, inflammation, nuclear polarity
- HGD options: surveillance, ablation, CBE-EMR, surgery
- Duplicated MM: don't overstage

Summary: IIBD Dysplasia

- Nomenclature: No CIS or IMC in colon
- Huge surface area: 33 bxs
- Natural history: limited to one study of 42 pts with LGD: minority progress (>3 LGD bxs)
- Adenoma-like dysplasia: follow but many caveats

Summary: Gastric Dysplasia

- MIP essentially
 - IM of gastric BODY
 - Caused by HP
 - 2nd most common CA worldwide
- Caveat: Gastric IM mimics dysplasia more due to adjacent totally bland gastric mucosa: DON'T OVER DX: Use surface maturation

Summary: Cancer in Pedunculated Adenoma

- Risk of nodal metastasis < 1%
- Mortality segmental resection ~ 5%
- Uniform agreement: Polypectomy
 <u>ALONE</u> is adequate treatment

Summary: Cancer in Sessile Adenoma

- Risk of LN metastasis ~ 5%
- Mortality at 5 years for Dukes' C>50%
- Mortality for segmental resection~5%
- Polypectomy alone is <u>PROBABLY STILL</u> adequate treatment, but risk is higher & decisions individual

Summary: Reporting Cancer in Polyps

- Differentiation: well-mod vs. poor
- Invasion depth: submucosa of polyp head/stalk vs. bowel wall (sessile or pedunculated)
- Angiolymphatic invasion
- Completeness of resection