# Kidney Stones: Diagnosis, Treatment, & Future Prevention

Jessica Corean, MD

PGY 3

Anatomic and Clinical Pathology Resident





#### University of Utah CME statement

- The University of Utah School of Medicine adheres to ACCME Standards regarding industry support of continuing medical education.
- Speakers are also expected to openly disclose intent to discuss any off-label, experimental, or investigational use of drugs, devices, or equipment in their presentations.
- The speaker has nothing to disclose.

#### Learning Objectives

- Describe the clinical presentation, laboratory, and radiographic findings of an individual affected by a kidney stone.
- 2. Compare 3 composition types of kidney stones and their clinical management.
- Differentiate spontaneous and familial risk factors for kidney stone development.

#### Outline

- Case-based Approach:
  - Diagnosis of a Kidney Stone
  - Epidemiology
  - Pathogenesis
  - Risk Factors
  - Management
  - Further Work-up
  - Prevention
  - Complications

## Case #1:38 year old male

- Flank pain
  - Acute, colicky
  - Radiating to pelvis and genitalia
- Nausea and vomiting
- Urinary urgency, frequency, and dysuria
- This has happened once before...



#### Differential Diagnosis

- Urinary tract infection
- Musculoskeletal pain
- Groin hernia
- Acute pyelonephritis
- Prostatitis

- Women:
  - Ectopic Pregnancy
  - Ovarian torsion
  - Ovarian cyst rupture

#### Indications for testing:

#### Flank pain, Nausea & vomiting, and/or symptoms of a stone



Order: Urinalysis



Hematuria



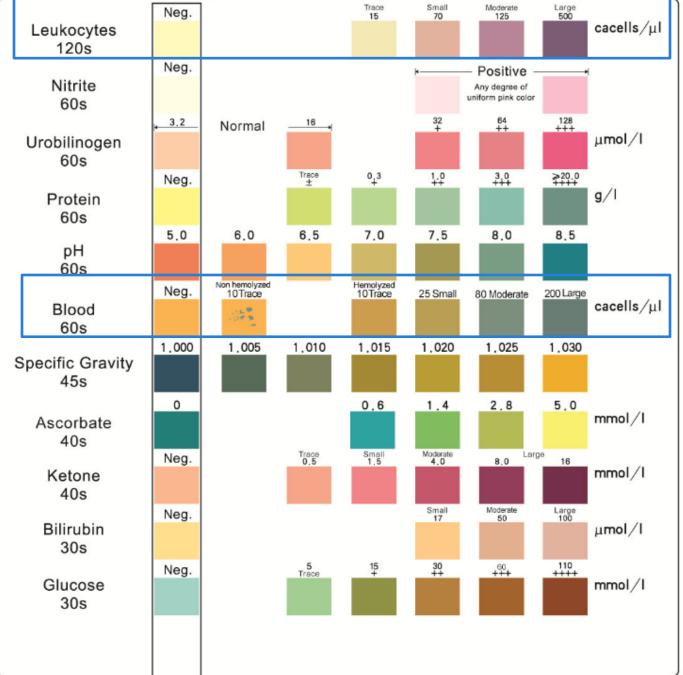
**Imaging** 



Strain urine and stone analysis

If second stone, consider 24 hour urine

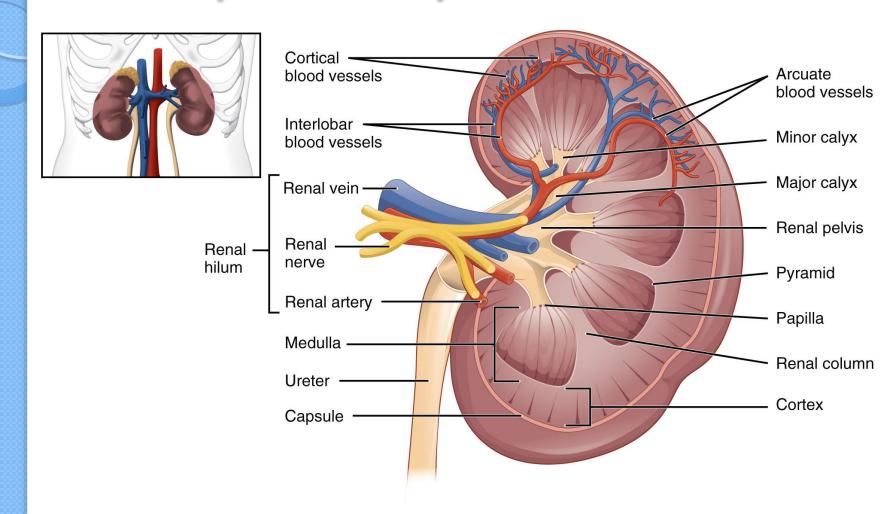
## **Emergency Department Work-Up**


- Complete blood count
- Comprehensive metabolic panel
- Urinalysis
- Imaging

#### CBC Normal Values for Adult Male

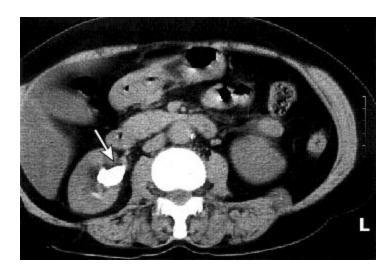
| RBC         | 4.7-6.4 M/uL |
|-------------|--------------|
| WBC         | 4.5-11K/uL   |
| Hgb         | 14-18 g/dL   |
| Hct         | 40-50%       |
| MCV         | 78-98 fL     |
| MCH         | 27-35pg      |
| MCHC        | 31-37%       |
| Neutrophils | 50-81%       |
| Bands       | I-5%         |
| Lymphocytes | 14-44%       |
| Monocytes   | 2-6%         |
| Eosinophils | I-5%         |
| Basophils   | 0-1%         |

| Comprehensive Metabolic Panel |                 |  |  |
|-------------------------------|-----------------|--|--|
| Glucose                       | 65-100 mg/dL    |  |  |
| BUN                           | 8-25 mg/dL      |  |  |
| Creatinine                    | 0.6-1.3 mg/dL   |  |  |
| EGFR                          | >60 ml/min/1.73 |  |  |
| Sodium                        | 133-146 mmol/L  |  |  |
| Potassium                     | 3.5-5.3 mmol/L  |  |  |
| Chloride                      | 97-110 mmol/L   |  |  |
| Carbon dioxide                | 18-30 mmol/L    |  |  |
| Calcium                       | 8.5-10.5 mg/dL  |  |  |
| Protein, total                | 6.0-8.4 g/dL    |  |  |
| Albumin                       | 2.9-5.0 g/dL    |  |  |
| Bilirubin, total              | 0.1-1.3 mg/dL   |  |  |
| Alkaline phosphatase          | 30-132 U/L      |  |  |
| AST                           | 5-35 U/L        |  |  |
| ALT                           | 7-56 U/L        |  |  |






#### **UA** Findings


- Hematuria, microscopic
  - Small amount of blood in urine
    - Still yellow in color
  - Single, most discriminating predictor of kidney stone if patient presents with unilateral flank pain
    - Present in 95% of patients on Day #1
    - Present in 65-68% of patients on Day #3 or #4

#### Kidney Anatomy



#### **Imaging**

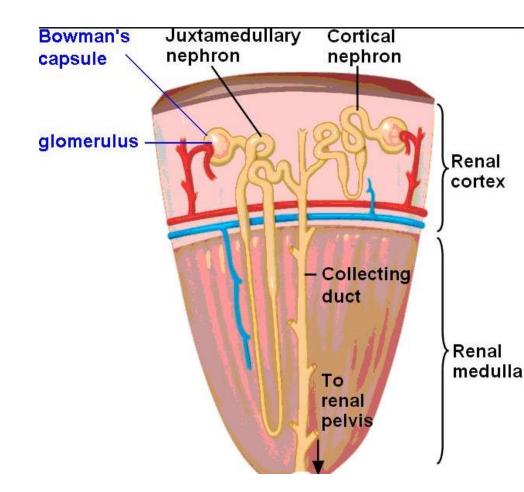
- Non-contrast helical CT
  - More sensitive (88%)
  - Radiation exposure, cumulative
- Ultrasonography
  - At bedside (54-57%)
  - No radiation





## **Epidemiology**

- 1-5/1000 incidence
  - Approximately I/II affected in lifetime
  - Increased from 3.8% in 1970s to 8.8% in 2000s
- Peak incidence in 20s
  - Caucasian men
- Male > Female (2-3:1)
- Geography:
  - Hotter and drier climates

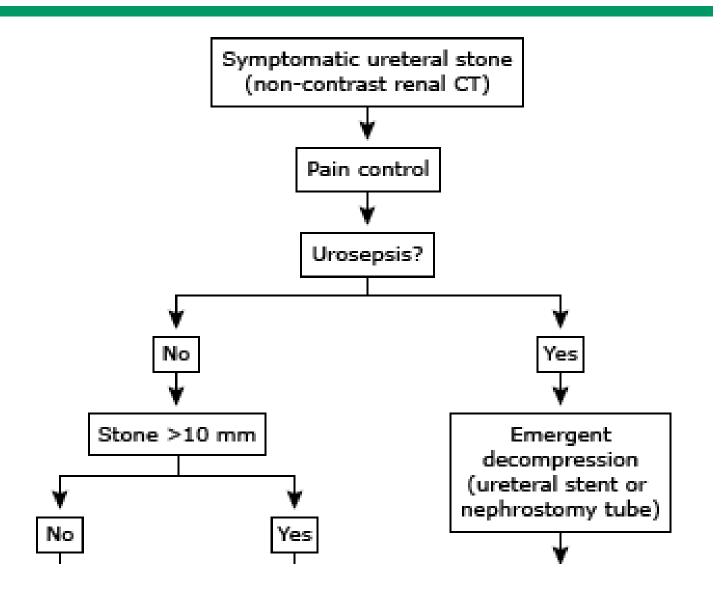

## Pathogenesis Theory #1

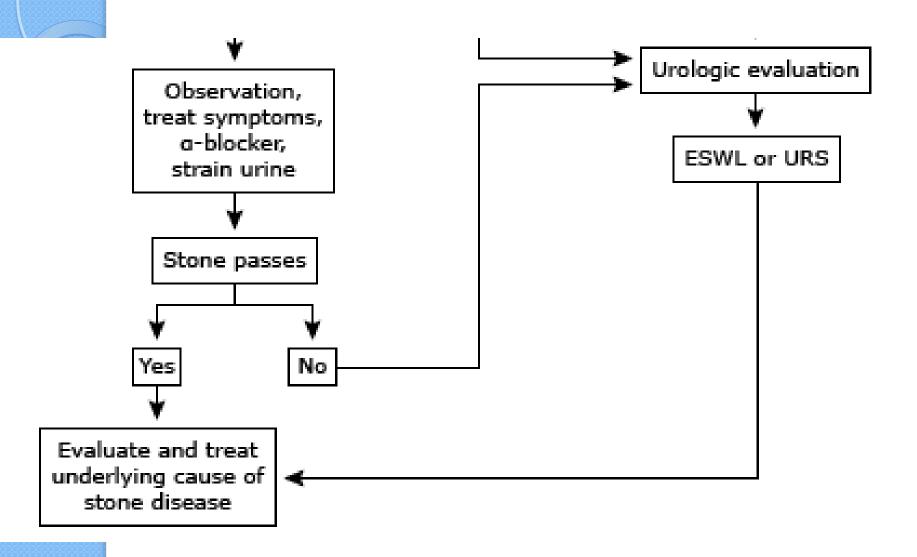
- Normally soluble material supersaturates within the urine and begins process of crystal formation.
- Becomes anchored at damaged epithelial cells.



# Pathogenesis Theory #2

- Initiated in renal medullary then extruded into renal papilla.
- Acts as a nidus for further deposition.





#### Risk Factors

- Urine composition
- Prior kidney stones
- Family history of kidney stones
- Enhanced enteric oxalate absorption
- Frequent upper urinary tract infections
- Hypertension
- Low fluid intake
- Acidic urine

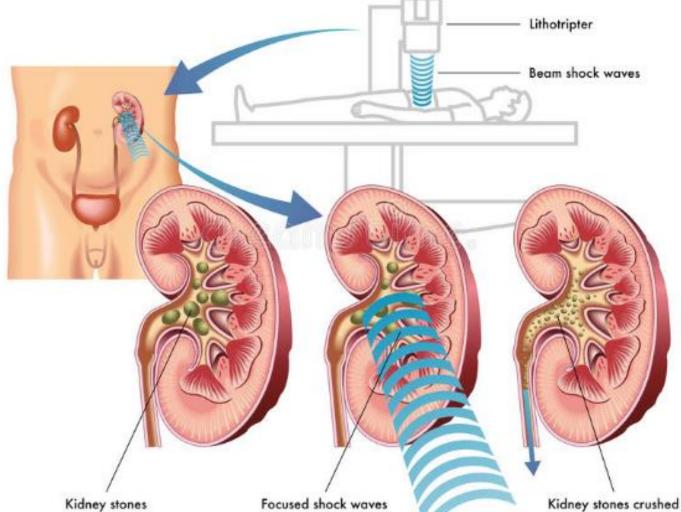
#### Management and Treatment

#### Management of acute symptomatic nephrolithiasis





#### Conservative Management


- Hydration
- Pain management
- Alpha blockers
- Strain/filter urine

#### Aggressive Management

- Extracorpreal shock wave lithotripsy
- Ureterorendoscopic manipulation
- Open or laparoscopic surgery
- Decompression
  - Ureteral stent
  - Nephrostomy tube

#### Aggressive Management

(ESWL)
Extracorporeal Shock Wave Lithotripsy



https://www.dreamstime.com/stock-photo-extracorporeal-shock-wave-lithotripsy-medical-illustration-treatment-kidney-stones-image46835340

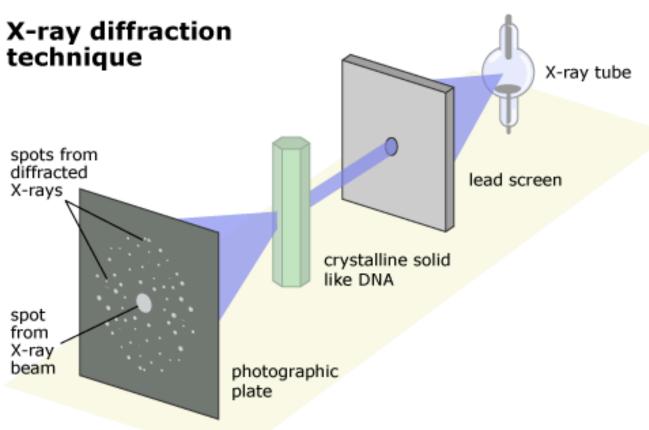
#### Further Work-up

- Chemistry panel
  - If serum calcium high-normal, then test parathyroid hormone concentration
- Stone analysis
- 24 hour urine
  - Measured 2-3 times
  - Wait I-3 months after acute episode

#### Stone analysis

- Collect information from the stone to establish cause(s) of stone formation and growth
- Identify possible underlying metabolic disorders
- Guide preventative therapy

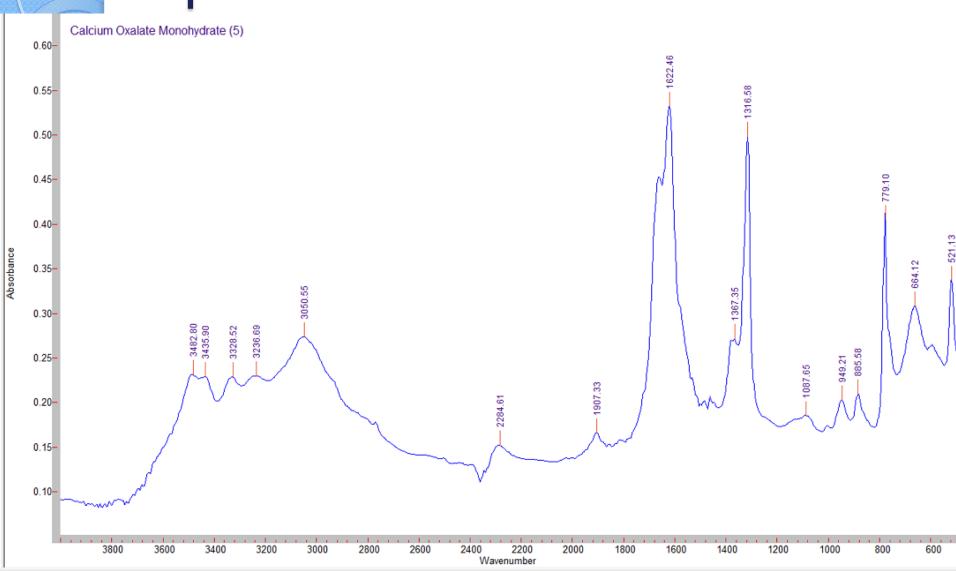
#### Types of Stones


- Calcium stones
  - Calcium oxalate (~80%)
  - Calcium phosphate (~5-10%)
- Struvite stones (~10-15%)
  - Magnesium ammonium phosphate hexahydrate
- Uric acid stones (~5-10%)
- Cystine stones (~I-2%)
- Combination

## Stone Analysis Testing Methods

- Chemical methods
  - Destructive and need several mg of sample
  - Cannot distinguish mineral constituents (with similar chemical composition)
- Physical methods
  - Need less sample
  - Distinguish different minerals within one stone

#### Physical methods


- X-ray diffraction (XRD)
- Fourier transform infrared spectroscopy



# Fourier Transform Infrared Spectroscopy

- I. Crush into a powder
- 2. Infrared beam passes through powder
- 3. Molecular bonds within powder absorb portion of radiation giving a unique spectra

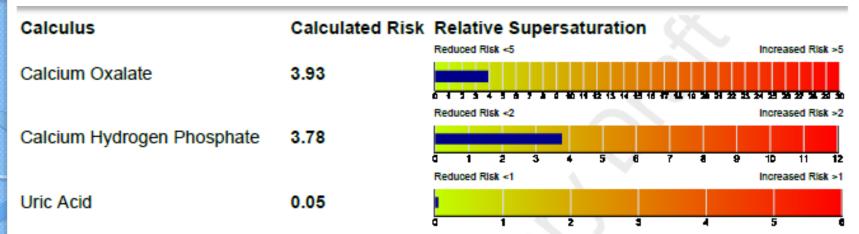
# Spectrum



## Stone Analysis

- Calcium oxalate monohydrate
  - Ca(COO)<sub>2</sub>·H<sub>2</sub>O (Whewellite)

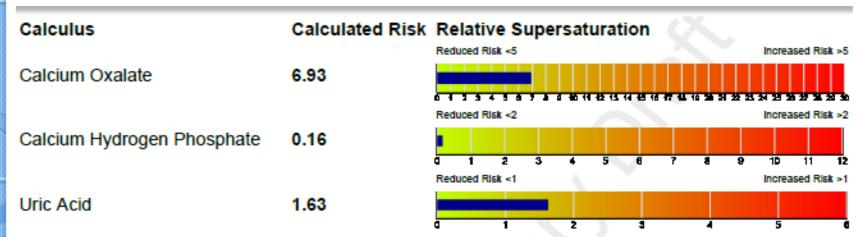



#### 24 Hour urine collection

- Measure:
  - Volume
  - pH
  - Calcium
  - Uric acid
  - Citrate
  - Oxalate
  - Sodium
  - Creatinine



#### What is a supersaturation profile?


- Urine frequently supersaturated, favoring precipitation of crystals
  - Balanced by crystallization inhibitors: ions (citrate) and macromolecules
- Measure ion concentration
- Computer program can calculate theoretical supersaturation risk with respect to specific crystalline phases



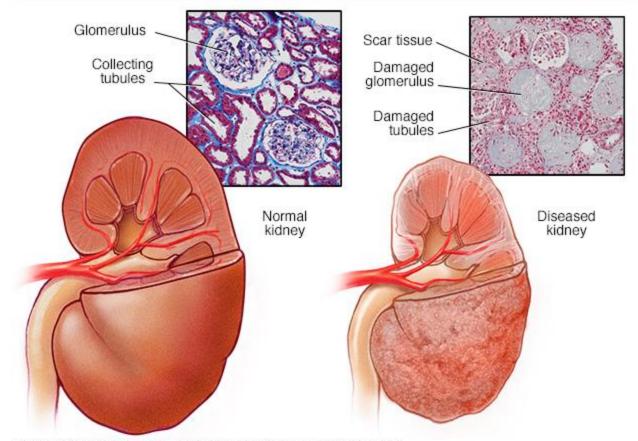
Calculated risk is derived by a computer program that models the thermodynamics of calculi formation using measured urine components.

| Com | ponent | Results |
|-----|--------|---------|
|-----|--------|---------|

| Analyte      | Result | Units  | Reference Interval | Effect                                                                                                            |
|--------------|--------|--------|--------------------|-------------------------------------------------------------------------------------------------------------------|
| Total Volume | 3600   | mL     |                    | Low urine volume (<1L/24h) promotes calculi formation.                                                            |
| рН           | 6.94   |        | 5.00-7.50          | Acidic urine (pH<5.5) promotes precipitation of UrA. Alkaline urine (pH>7.2) promotes formation of CaHPO4 stones. |
| Calcium      | 457    | mg/d   |                    | Hypercalciuria (>200 mg/d) promotes formation of CaOx and CaHPO4 stones.                                          |
| Oxalate      | 43     | mg/d   | 16-49              | Hyperoxaluria (>40 mg/d) promotes formation of CaOx stones.                                                       |
| Phosphorus   | 1152   | mg/d   | 400-1300           | Forms insoluble complexes with calcium.                                                                           |
| Sodium       | 306    | mmol/d | 51-286             | Increased sodium promotes formation of CaOx and CaHPO4 stones.                                                    |
| Sulfate      | 32     | mmol/d | 6-30               | Normal to high sulfate promotes precipitation of CaOx and CaHPO4 stones.                                          |
| Urate        | 839    | mg/d   | 250-750            | Hyperuricosuria (>600 mg/d) promotes formation of UrA stones.                                                     |
| Citrate      | 1109   | mg/d   | 320-1240           | High citrate inhibits formation of CaOx and CaHPO4 stones.                                                        |
| Magnesium    | 238    | mg/d   | 12-199             | High magnesium inhibits foration of CaOx and CaHPO4 stones.                                                       |
| Potassium    | 140    | mmol/d | 25-125             | Forms soluble complexes and inhibits stone formation.                                                             |
| Chloride     | 238    | mmol/d | 140-250            | Forms soluble complexes and inhibits stone formation.                                                             |
| Creatinine   | 1548   | mg/d   | 800-2100           | Excretion provides a measure of completeness of 24h urine collection.                                             |



Calculated risk is derived by a computer program that models the thermodynamics of calculi formation using measured urine components.


| Component Results |        |         |                    |                                                                                                                      |
|-------------------|--------|---------|--------------------|----------------------------------------------------------------------------------------------------------------------|
| Analyte           | Result | t Units | Reference Interval | Effect                                                                                                               |
| Total Volume      | 881    | mL      |                    | Low urine volume (<1L/24h) promotes calculi formation.                                                               |
| рН                | 5.17   |         | 5.00-7.50          | Acidic urine (pH<5.5) promotes precipitation of UrA. Alkaline urine (pH>7.2)<br>promotes formation of CaHPO4 stones. |
| Calcium           | 67     | mg/d    |                    | Hypercalciuria (>200 mg/d) promotes formation of CaOx and CaHPO4 stones.                                             |
| Oxalate           | 27     | mg/d    | 16-49              | Hyperoxaluria (>40 mg/d) promotes formation of CaOx stones.                                                          |
| Phosphorus        | 335    | mg/d    | 400-1300           | Forms insoluble complexes with calcium.                                                                              |
| Sodium            | 59     | mmol/d  | 51-286             | Increased sodium promotes formation of CaOx and CaHPO4 stones.                                                       |
| Sulfate           | 7      | mmol/d  | 6-30               | Normal to high sulfate promotes precipitation of CaOx and CaHPO4 stones.                                             |
| Urate             | 263    | mg/d    | 250-750            | Hyperuricosuria (>600 mg/d) promotes formation of UrA stones.                                                        |
| Citrate           | 309    | mg/d    | 320-1240           | High citrate inhibits formation of CaOx and CaHPO4 stones.                                                           |
| Magnesium         | 50     | mg/d    | 12-199             | High magnesium inhibits fomation of CaOx and CaHPO4 stones.                                                          |
| Potassium         | 22     | mmol/d  | 25-125             | Forms soluble complexes and inhibits stone formation.                                                                |
| Chloride          | 51     | mmol/d  | 140-250            | Forms soluble complexes and inhibits stone formation.                                                                |
| Creatinine        | 722    | mg/d    | 800-2100           | Excretion provides a measure of completeness of 24h urine collection.                                                |

#### Case Wrap-Up and Prevention

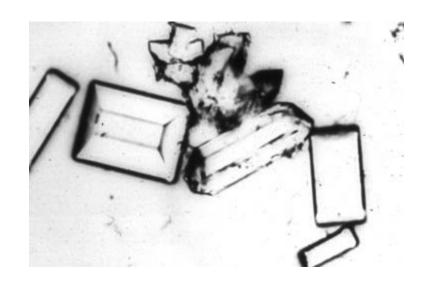
- All stones: maintain urine volume >2.5L/day
- Our patient had a calcium oxalate stone
- Recommendations:
  - Reduce soft drink intake
  - Thiazide diuretics
  - Citrate pharmacotherapy (lower urinary citrate)
  - Reduce sodium and animal protein
  - Limit oxalate and eat more dairy (if oxalate high)

### Complications

- Can lead to persistent renal obstruction
  - Permanent renal damage or renal failure



#### Case #2: 27 year old female


- Mild dysuria for a few weeks
- Mild flank pain, which has intensified over the last 24 hours

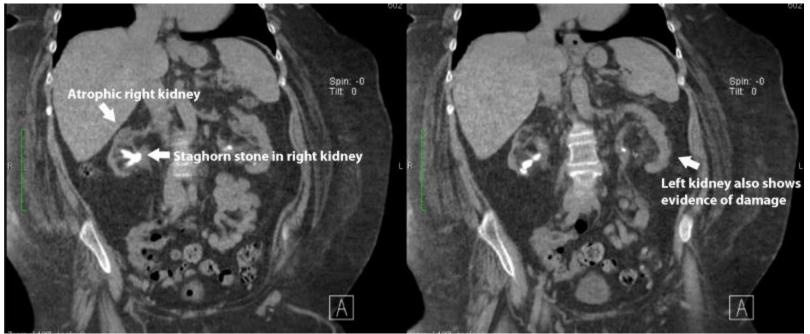
- Emergency Department Work-up:
  - Complete Blood Count
  - Complete Metabolic Panel
  - Urinalysis with Culture
  - Imaging

| Female Complete Blood Count |              |
|-----------------------------|--------------|
| RBC                         | 4.2-5.7 M/uL |
| WBC                         | 4.5-11K/uL   |
| Hgb                         | 12-16 g/dL   |
| Hct                         | 37-47%       |
| MCV                         | 78-98 fL     |
| MCH                         | 27-35pg      |
| MCHC                        | 31-37%       |
| Neutrophils                 | 50-81%       |
| Bands                       | I-5%         |
| Lymphocytes                 | 14-44%       |
| Monocytes                   | 2-6%         |
| Eosinophils                 | I-5%         |
| Basophils                   | 0-1%         |

## Urinalysis findings: Struvite

- Microscopic hematuria
- Elevated:
  - Leukocyte esterase
  - White blood cells
  - Bacteria
- Crystals
  - Coffin lid appearance
  - Typically in alkaline urine



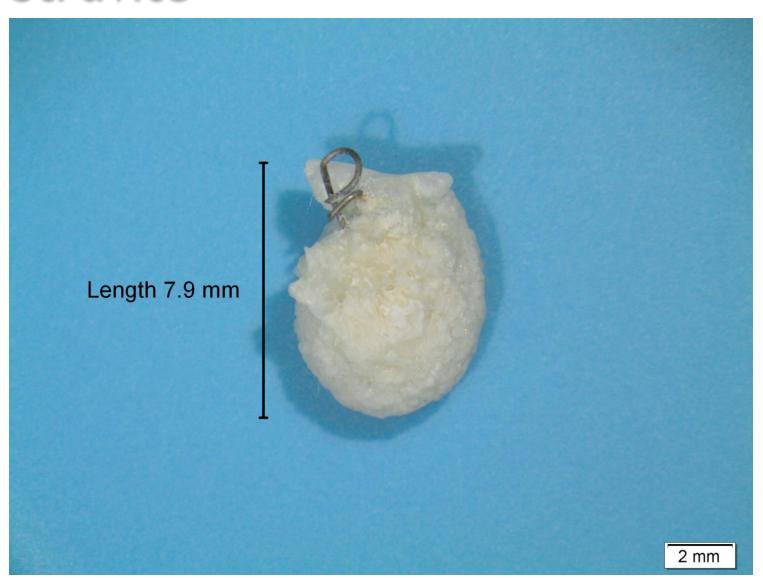





#### **Imaging**

- Very dramatic
- Can block entire renal calyces






UpToDate.com

#### Spectrum MAP(11) 0.95-0.90-0.85 -0.80-890.43 0.75-0.70-0.65-0.60-0.55-0.50 -0.45-0.40 0.35-3800 3600 3200 3000 2800 2600 2400 2200 3400 Wavenumber

#### **ARUP**

#### Struvite



## **Epidemiology**

- Approximately 10-15% of kidney stones
- Typically women (3:1)
  - Higher rates of urinary tract infections

#### **Pathogenesis**

- Formation occurs only when ammonia production increased and urine pH is elevated, i.e. by urease-producing organisms:
  - Proteus or Klebsiella



#### Risk Factors

- Urinary tract infections
  - Female
  - Neurogenic bladder
  - Urinary diversion

#### Management

- Most large staghorn calculi require surgical treatment
- Options:
  - Medical therapy alone
  - Open or laparoscopic surgery
  - Percutaneous nephrolithotomy
  - Shock-wave lithotripsy

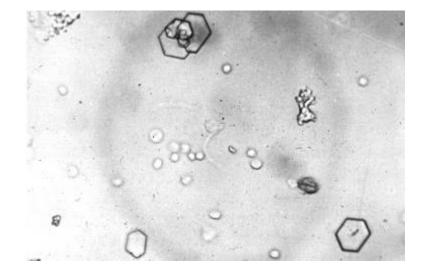
#### Prevention

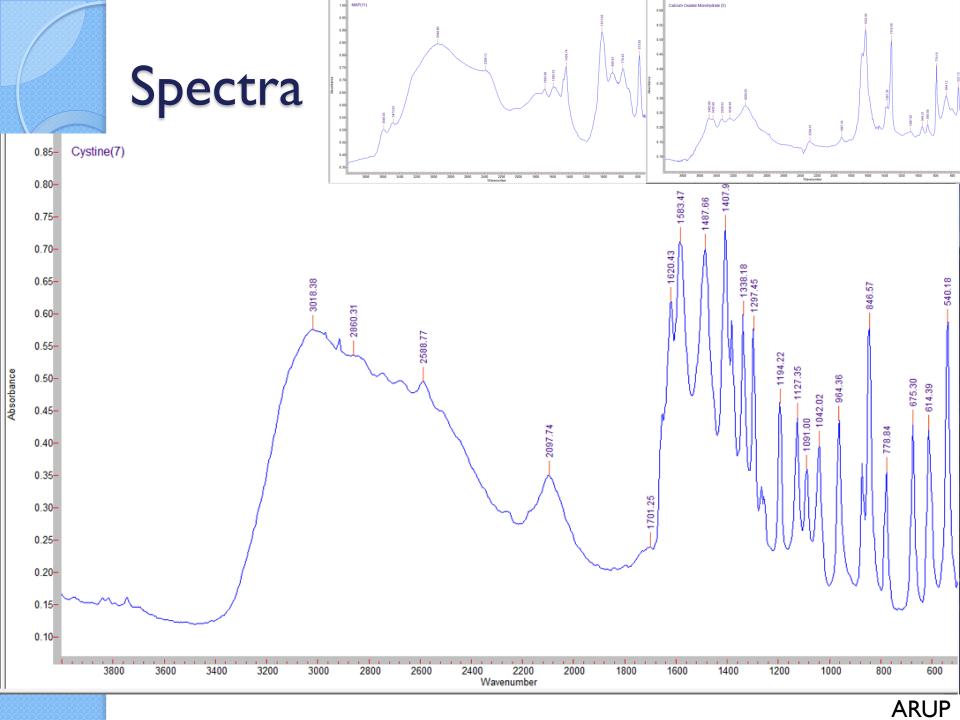
- Metabolic evaluation
  - Similar to other types of kidney stone formers
- Treat underlying medical issue
  - Urinary tract and/or kidney infection

## Case #3: 7 year old girl

- Flank pain
- Abdominal pain




- Complete Blood Count
- Complete Metabolic Panel
- Urinalysis with culture
- Imaging




| Child Complete Blood Count |              |
|----------------------------|--------------|
| RBC                        | 3.5-5.0 M/uL |
| WBC                        | 4.5-11K/uL   |
| Hgb                        | 10-14 g/dL   |
| Hct                        | 30-42%       |
| MCV                        | 78-98 fL     |
| MCH                        | 27-35pg      |
| MCHC                       | 31-37%       |
| Neutrophils                | 50-81%       |
| Bands                      | I-5%         |
| Lymphocytes                | 14-44%       |
| Monocytes                  | 2-6%         |
| Eosinophils                | I-5%         |
| Basophils                  | 0-1%         |

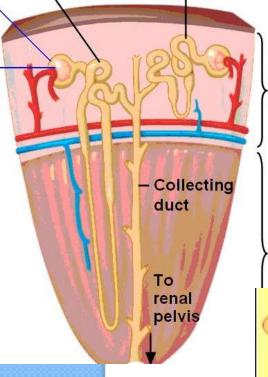
## **UA Findings**

- Microscopic hematuria
- Crystals
  - Hexagonal crystals





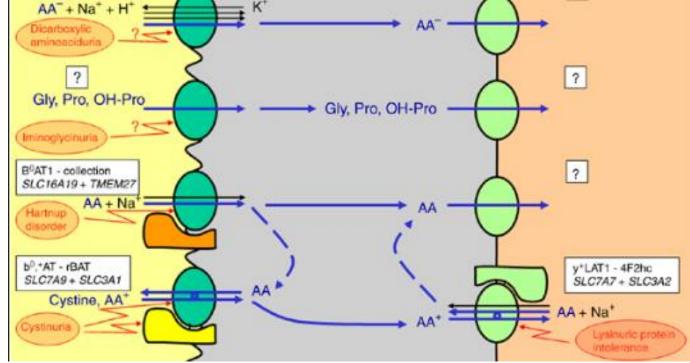
# Cystine




#### Pediatric Kidney Stones

 In a child or adolescent (<12 years old) with first stone, clinician should suspect cystinuria

### Epidemiology of Cystinuria


- Cystine stones represent I-2% of total kidney stones
  - In children, up to 5% of total kidney stones
- Cystinuria:
  - Autosomal recessive
  - Due to an inherited impairment of renal cystine transport
  - Males more severely affected than females

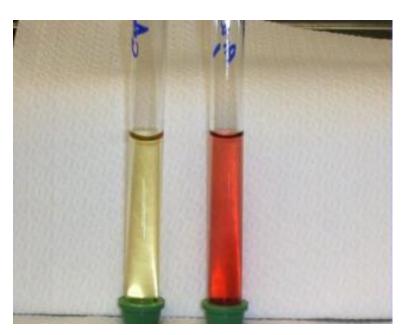


Renal cortex

#### **Pathogenesis**

Renal medulla




#### Diagnosis

One or more of the following are required to diagnosis cystinuria:

- Stone analysis showing cystine
- 2. Positive family history of cystinuria
- 3. Hexagonal cystine crystals on urinalysis (about 25% of patients)

#### Further Work-up

- Cyanide-nitroprusside screen
- Urinary cystine excretion (amino acid panel)



#### Management & Prevention

- Acute management
- Prevention:
  - Increase fluid intake
  - Reduce sodium and protein intake
  - Urinary alkalization
  - Medications

## Management Monitoring

- 24 hour urine evaluation
  - Assess response (and adherence) to treatment
  - Measure urine volume, cystine, pH, creatinine, sodium, and calcium
  - Measure supersaturation risk of cystine

### Retention Questions

I. Which type of kidney stone is the most common?



- \*\* a) Calcium
  - b) Uric acid
  - c) Cystine
  - d) Cholesterol

- 2. Which of the following options outline conservative prevention strategies?
  - a) Surgery
  - b) Alpha blocker medication



- c) Increase fluid intake
  - d) Increase sodium and animal protein intake

#### 3. Which of the following is true?

- a) All adults should have a full metabolic workup with their first kidney stone.
- All children should have a full metabolic work-up with their first kidney stone.
  - c) Struvite stone formers do not need antibiotic treatment.
  - d) Kidney stones larger than 10mm usually pass spontaneously.

#### References

- ARUPConsult.com
- UpToDate.com
- Coe F, Parks J, Asplin J. The pathogenesis and treatment of kidney stones. New Eng J Med 1992;327:1141-1151
- Daudon M, Marfisi C, Lacour B, Bader C. Investigation of urinary crystals by Fourier Transform Infrared Microscopy. Clin Chem 1991; 37:83.87.
- Jager P. Genetic versus environmental factors in renal stone disease. Curr opinn Nephrol Hyperten. 1996: 5342-46.
- Modlin M, Davies PJ. The composition of renal stones analyzed by infrared spectroscopy. S Afr Med J 1981; 7:337.341.
- Pichette V, Bonnardeaux A, Cardinal J, Houde M, Nolin L, Boucher A, Ouimet D. Ammonium Acid Urate Crystal Formation in Adult North American Stone-Formers. American Journal of Kidney Diseases 1997; 30, 2: 237-242.
- Vergauwe DA, Verbeeck RM, Oosterlinck W. Analysis of urinary calculi. Acta Urol Belg. 1994 Jun; 62(2):5-13.
- UpToDate.com.Accessed June 20, 2017. Topics: Nephrolithiasis, Staghorn Calculi Management, Cystinuria.