Cost Effectiveness Analysis for Diagnostic Testing

Robert Schmidt MD, PhD, MBA Director, Center for Effective Medical Testing University of Utah School of Medicine, Department of Pathology and ARUP Laboratories

Objectives

- <u>Review the basic types of analyses</u> that support cost-effectiveness analysis
- <u>Describe the opportunities and challenges</u> in applying costeffectiveness analysis to diagnostic tests
- <u>Examples</u> of how lab data is being used to determine if certain lab testing strategies are cost effective

Hierarchy of Effectiveness

Societal Impact

Is society better off with this test?

Cost-Effectiveness

Can we afford it?

Clinical Efficacy and Effectiveness

Does it affect outcomes?

Clinical Performance

Can it discriminate patient groups (sensitivity, specificity)

Analytical Performance

LOD, precision, linearity, interferences

What is the goal of cost effectiveness analysis?

- <u>Economic Perspective</u>: Maximize overall welfare of society
 - education vs roads vs healthcare
- <u>Clinical Perspective</u>: Maximize welfare of an individual patient

Cost Evaluation Basics

Evaluating Costs: Choice of Perspective

Item	Perspective			
	Societal	Healthcare Agency	Provider	
Productivity losses	х			
Patient time	х			
Family time	х			
Medications	х	x		
Physician Time	х	x	х	

Impact of perspective MSS vs NIFT for Down Syndrome

Walker BS, et al. 2014 PMID: 25273838

Impact of perspective on decision limits Contingent use of NIPT for Down Syndrome

	RISK DY IVISS
Optimal Cutoff	NIFT Referral rate
1:1515	24%
1:420	9%
1:350	7%
	Optimal Cutoff Image: Cutoff 1:1515 1 1:420 1 1:350 1

Walker BS, et al. 2015

Threshold optimization

Optimal decision limit = f(FPR, TPR, FNR, TNR)

False Positive Rate

Other costing issues

- Costs vs charges
- Discounting
- Capital charges
- Overhead allocation

Valuing Outcomes

How to Handle Outcomes

- Three Choices
 - 1. Ignore outcomes (cost minimization)
 - 2. Don't value outcomes, use natural units (cost-effectiveness analysis)
 - 3. Value outcomes
 - a) Utility (cost-utility analysis)
 - b) Money value (cost-benefit analysis)

Ignore outcomes (cost minimization)

Example: Rapid onsite-evaluation (ROSE) for fine needle aspiration biopsy

	FNA + ROSE	FNA without ROSE
Description	Pathologist inspects each biopsy for adequacy. Procedure is stopped when adequate sample is obtained	Clinician takes n samples. Repeat procedure if no sample is adequate
Outcome	Adequate sample of solid pancreatic lesion	Adequate sample of solid pancreatic lesion
Procedure time	45 min	30 min
Risk of repeat	1%	10-20%
Pathologist cost	\$100	0
Total cost per adequate sample	\$1700	\$2000

Schmidt RL, et al. 2015 PMID 26317785

Don't value outcomes (cost effectiveness analysis)

	Alternative 1	Alternative 2
Costs	C ₁	C ₂
Savings	S ₁	S ₂
Value	V_1	V ₂
Outcome	0 ₁	0 ₂

Incremental Cost Effectiveness Ratio (ICER) = $\frac{\Delta Cost}{\Delta Effectiveness} = \frac{(C_2 - S_2 - V_2) - (C_1 - S_1 - V_1)}{(O_2 - O_1)}$

Examples:

- Cost per life saved
- Cost per episode prevented
- Cost per correct diagnosis

Cost-effectiveness analysis

- Comparisons are limited to alternatives that affect the same outcome
 - Hospital infections due to a *specific* organism
 - Readmission prevented for CHF
 - Death averted
 - Diagnosis of a *specific* disease
 - Days in ICU

 $Incremental \ Cost \ Effectiveness = \frac{\$}{Outcome \ measure} = \frac{\$}{death \ averted}$

Example: Traditional Maternal Serum Screening (integrated test) vs Noninvasive Fetal Testing (cfDNA)

	Integrated	cfDNA
Outcomes		
Cases detected	1474	1915°
Cases diagnosed	1047	1360°
Down syndrome live births	1221	1039
Unnecessary invasive testing	11 972	687
Unaffected procedure-related miscarriages	91	5
Costs		
Screening costs	\$160 544 21 1	\$324 298 422
Diagnostic testing costs	\$14411432	\$3 053 5 16
Termination cost	\$1 294 473	\$796064
Lifetime medical costs	\$220 832 869	\$188006605
Lifetime educational costs	\$301 942 088	\$256 940 831
Lifetime indirect costs	\$1 324 181 252	\$1 127 532 667
Total costs	\$2 023 206 325	\$1 900 628 105

Walker BS, et al. 2015 PMID: 25273838

Valuing Health Outcomes

Health Dimension	Outcome 1	Outcome 2
Pain	No Problem	Problem
Mobility	Problem	Major Problem
Self-care	Major Problem	Major Problem
Usual Activities	Problem	Some Problem
Anxiety/Depression	Some Problem	No Problem

Standard Gamble

Expected Utility = U(Dialysis) = $p^*U(perfect health) + (1-p)^*U(dead) = p$

Time Tradeoff

Dialysis (10 yrs)

Perfect Health (? yrs)

Utility = yrs perfect health / yrs dialysis

Utility

- Measure of relative preference for health states
- Preference for whom?

Quality Adjusted Life Years

1 yr of perfect health = 1 QALY

1 yr on dialysis = 0.7 QALY

Total = 3 + 5.6 = 8.6 QALY

Cost utility analysis

Item	Alternative 1	Alternative 2
Resource Consumption	C ₁	C ₂
Resource Savings	S ₁	S ₂
Other Value	V ₁	V ₂
Health Outcomes (Utility)	U(O ₁)	U(O ₂)

$$ICER = \frac{(C_2 - S_2 - V_2) - (C_1 - S_1 - V_1)}{U(O_2) - U(O_1)} = \frac{\$}{QALY}$$

Cost-effectiveness plane

Cost-effectiveness plane

Cost-effectiveness plane

Cost benefit analysis (value outcomes in dollars)

Item	Alternative 1	Alternative 2
Resource Consumption	C ₁	C ₂
Resource Savings	S ₁	S ₂
Other Value	V ₁	V ₂
Health Outcomes (Willingness to pay)	W(O ₁)	W(O ₂)

Net Benefit = $W[O_2 - O_1] - [(C_2 - S_2 - V_2) - (C_1 - S_1 - V_1)] =$ \$

Comparison of outcome evaluation methods

	Characteristics of Outcomes		omes		
Method	More than One?	Different Types?	Different Magnitude?	Example Evaluation (outcomes)	
Cost Minimization	No	No	No	FNA sampling protocols (adequate biopsy sample for solid pancreatic lesion)	
Cost Effectiveness	No	No	Yes	Diagnostic tests for TB (cases of TB detected)	
Cost Utility	Yes	Yes (restricted)	Yes	Diagnostic test for kidney failure vs infection (mobility, self care, anxiety/depression, pain)	
Cost Benefit	Yes	Yes (unrestricted)	Yes	Education vs healthcare (diagnostic test) (net benefit in dollars)	

Converting Resources to Outcomes

Converting Resources to Outcomes

Decision Analytic Model

Bilir SP, et al. 2015

Disease model (Markov chain)

Models require many inputs

- Costs
- Probabilities
 - Test performance
 - Disease model (transition probabilities)
- Outcomes

Table 1. Model probabilities and costs.

Probabilities	Mean	95th% CI
MSS uptake, U _{MSS}	69%	64%-74%
Increase in contingent NIPT uptake over MSS, ΔU_{CNIPT}	8.2%	4.6%-12.6%
Increase in universal NIPT uptake over MSS, ΔU_{uNIPT}	13.5%	7.6%-20.8%
Diagnostic testing uptake	66%	61%-71%
Procedure-related fetal loss	0.22%	0%-1.16%
Termination rate of trisomy 21	80%	74%-86%
Termination rate of trisomy 18	80%	73%-87%
Termination rate of trisomy 13	92%	85%-97%
NIPT detection rate of trisomy 21	99%	98.3%-99.5%
NIPT detection rate of trisomy 18	96.8%	95%-98.2%
NIPT detection rate of trisomy 13	92.1%	86.9%-96.1%
NIPT false positive rate	0.41%	0.29%-0.55%
NIPT failure rate due to low fetal fraction	2.8%	1.2%-5.1%
Costs	Mean	95th% CI
Combined screen	\$166	\$95-\$257
Cost of NIPT	\$400	\$229-\$619
Cost of CVS	\$1,010	\$577-\$1,562
Cost of genetic counseling	\$160	\$91-\$247
Termination of pregnancy	\$581	\$332-\$898
Direct lifetime costs of trisomy 21	\$427,577	\$244,397-\$661,147
Indirect lifetime costs of trisomy 21	\$1,069,195	\$611,137-\$1,653,257
Direct lifetime costs of trisomies 13 and 18	\$37,971	\$21,704-\$58,713
Indirect lifetime costs of trisomies 13 and 18	\$1,363,877	\$779,574-\$2,108,913,

Walker BS, et al. 2015

All models are wrong, but some are useful

- Examples of wrong but useful models
 - Ideal gases
 - Point masses
 - Competitive market
 - Newtonian fluid
 - First order kinetics
 - Fickian diffusion

One way sensitivity analysis

Cost of NIPT	ICER	
200	-398,000	
300	-300,000	
400	-200,000	
500	-100,000	
600	125,000	
700	150,000	
800	175,000	

Probabilistic Sensitivity Analysis

trial	NIPT Cost	Lifetime Cost	Uptake of NIPT	Uptake of Diagnostic Testing	ICER
1	642	1200000	72	75	-1074
2	660	1900000	75	76	-1395
3	567	1200000	69	68	-1660
4	212	1800000	78	56	-1563
	649	1000000	71	76	-1594
	691	2100000	79	66	-1790
	687	2900000	79	64	-2000
1,000,000	293	2700000	80	59	-1289

Probabilistic Sensitivity Analysis MSS (integrated test) vs NIFT

Walker BS, et al. 2015 PMID: 25273838

Opportunities

- CEA is theoretically correct way to evaluate tests
- Modeling provides insight

Barriers

- Clinical trials are expensive
- Modeling
 - Data collection is time consuming
 - Provide evidence for distribution of each input
 - Meta analysis
 - Evidence base is poor (reporting, bias, few studies on patient outcomes)
 - Requires many skills
 - Clinical knowledge
 - Modeling/analysis
 - Laboratory
 - Review process
 - Many targets

Conclusions

- CEA is time consuming
- CEA can provide insight into important questions about lab testing
- CEA can be cost-effective for *selected* problems
 - Not all problems required CEA
- There is a gap between what is needed and what is being produced

Objectives

- <u>Review the basic types of analyses</u> that support cost-effectiveness analysis
- <u>Describe the opportunities and challenges</u> in applying costeffectiveness analysis to diagnostic tests
- <u>Real-world examples</u> of how lab data is being used to determine if certain lab testing strategies are cost effective

References

- Horvath AR, et al. From biomarkers to medical tests: the changing landscape of test evaluation. Clin Chim Acta 2014;427:49-57.
- Bilir SP, et al. The economic impact of rapid Candida species identification by T2Candida among high-risk patients. *Future Microbiology* 2015; 10(7):1133-1144.
- Schmidt RL, Walker BS, Cohen MB. When is rapid on-site evaluation costeffective for fine-needle aspiration biopsy? PLoS ONE. 10(8) : e0135466
- Walker BS, Jackson BR, Grenache DN, Ashwood ER, Schmidt RL. Costeffectiveness of the contingent use of cfDNA for screening for Down syndrome. *PLoS ONE*. 2015; 10(7):e0131402.
- Walker BS, Jackson BR, LaGrange D, Ashwood ER, Schmidt RL. A cost effectiveness analysis of cell free DNA as a replacement for serum screening for Down syndrome. *Prenatal Diagnosis*. 2015; 35(5):440-446.