Molecular Diagnosis of Gastroenteritis/Acute Diarrhea

Marc Roger Couturier, Ph.D., D(ABMM)
Assistant Professor of Pathology
ARUP Medical Director:
Microbial Immunology
Parasitology & Fecal Testing
Infectious Disease Rapid Testing
Relevant Disclosures

- Biofire Diagnostics Inc.
Objectives

1. Discuss the epidemiology of acute diarrheal illness & approach to testing
2. Explore the new molecular panel-based methods and their potential role
3. Consider the incorporation of new diagnostic methods in clinical practice

DISCLAIMER This talk is meant to be provocative and empower the audience to consider various viewpoints and approaches to the diagnosis of acute diarrhea in the setting of molecular multiplex methodologies… There is no “right answer” at this time
Acute diarrhea

What do we routinely test for?

- Bacteria
- Parasites
- Viruses
Acute diarrhea

What is the actual prevalence

– Viruses

– Bacteria

– Parasites
Acute Diarrheal illness

• Most acute GI infections are not reported or intervened medically in the USA\(^1\)
 – Cause significant morbidity and mortality
 • More significant in developing nations
 • Prevent dehydration, provide rehydration
 – CDC estimates >350 million acute diarrheal illnesses annually\(^2\)
 – FoodNet reports 48 million are foodborne
 – Comprehensive U.S. epidemiological reports are lacking

Consider some facts

1. Viruses - most prevalent; least tested
 - Norovirus is #1 GI infection in the USA
 - Rotavirus declined 67% since vaccine introduction in USA

2. Bacteria - stool Cx are most common test
 - only positive 1-5% of cases

3. Parasites - domestically acquired infections typically associated with defined exposure risks

\(^1\)Guerrant et al. Clin Infect Dis 2001; 32:337-338
GI pathogens in community onset/primary care setting

• **Viral** - #1 cause of acute diarrhea
 – norovirus

• **Bacterial** – outbreak/cluster related
 – *Clostridium difficile* is growing

• **Parasitic** – sporadic, low incidence

GI pathogens in hospitalized patients

• Common HAI in acute care & ICU
 – Viral – norovirus, rotavirus
 • Rare/emerging – sapovirus, adenovirus, astrovirus
 – Bacterial – *Clostridium difficile*
 • Rare – *Salmonella*
 – Parasitic – very rare

Bobo and Dubberke. *Crit Care Med.* 2010 August; 38(8)
In Practice

What is a common stool test ordering pattern for acute diarrhea?

- Stool Cx
- Single O&P
- No viral tests***

*** (based on composite ordering pattern data from ARUP and other large academic medical centers)
Viral testing

- Antigen detection EIA
 - Standard for rotavirus & adenovirus 40/41
 - Sensitivity and specificity are good vs electron microscopy
 - **Underutilized**

- PCR: available for norovirus
 - Better sensitivity and specificity than EIA¹
 - The way of the future for others

- No testing available for sapovirus & astrovirus

¹Fisman et al. J Transl Med 2009
Bacterial testing

• Culture
 – Sensitivity: highly variable / excellent specificity
 – TAT: 24-96+ hours
 – Many labs use different combinations of media…can become costly

• *Clostridium difficile* real-time PCR
 – Multiple FDA approved methods
 – Fast, sensitive, and specific
 – Expensive, but most robust method
Protozoal testing

- **Overutilized O&P exams**
 - Highly variable sensitivity

- Standard O&P does **NOT** readily detect:
 - *Cryptosporidium* spp.
 - *Cyclospora* spp.
 - *Cystoisospora* spp.
 - Microsporidia

- **3+ specimens recommended/patient**
 - Rarely received
DFA or Antigen detection

- **Giardia and Cryptosporidium**
 - Recommended for initial screen
 - Rapid TAT and good sensitivity and specificity

- **Underutilized** when indicated in documented outbreaks\(^1\)

\(^1\)Polage *J Clin Micro* 2011
The answer to **ALL** our diarrheal testing needs…or not?

MULTIPLEX MOLECULAR DIAGNOSTICS
Why do we need multiplex detection?

- Syndromes too similar to separate clinically

- Lack of standardized/differential driven ordering for all appropriate diarrheal agents
 - Cx, too many O&P’s, & **no viral tests**
Molecular testing considerations

• Abundant organisms
 – less focus on analytical sensitivity
 • Are these significantly better than what we have?

• Not appropriate in every patient
 – TAT fast enough to influence care decisions?
 – Will having these results influence clinical care?
 • Most viral/bacterial infections are self-limiting & supportive care is key
Molecular testing considerations

• Cost may be significant limiting factor
 – Who pays for this (outpatients)?
 – How do we bill for this?
 • Per target? No CPT codes yet…

• Should large panels be standard?
 – Use mini-panels based on prevalence?
 • Viral first to cover the majority
FDA cleared testing approaches**

- Prodesse® Progastro™ SSCS
- BD Max™ Enteric Bacterial Panel
- Nanosphere Inc. Verigene® Enteric Pathogen test
- Luminex™ xTAG Gastrointestinal Pathogen Panel (GPP)
- Biofire Diagnostics Inc. FilmArray® GI panel

**Other products in clinical trials or submitted to FDA
Tests for bacteria only

- Salmonella
- Shigella
- Campylobacter
- Shiga-like Toxin producing *E. coli* (STEC) stx1/stx2
Verigene® Enteric Pathogens

Bacteria
- *Campylobacter* spp.
- *Salmonella* spp.
- *Shigella* spp.
- *Vibrio* spp.
- *Yersinia enterocolitica*
- Shiga toxin 1 and 2

Viruses
- Norovirus
- Adenovirus
- Rotavirus

http://www.nanosphere.us/product/enteric-pathogens
<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Viruses</th>
<th>Parasites</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Salmonella</td>
<td>• Rotavirus A</td>
<td>• Giardia</td>
</tr>
<tr>
<td>• Shigella</td>
<td>• Norovirus GI/GII</td>
<td>• Cryptosporidium</td>
</tr>
<tr>
<td>• Campylobacter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Clostridium difficile Toxin A/B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Enterotoxigenic E. coli (ETEC) LT/ST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• E. coli O157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Shiga-like Toxin producing E. coli (STEC) stx1/stx2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bacteria
- ETEC
- EPEC
- STEC/EHEC
- STEC 0157 serotype
- EIEC
- EAEC
- Vibrio spp.
- V. cholerae
- Shigella spp.
- S. dysenteriae
- Salmonella spp.
- Campylobacter spp.
- Yersinia enterocolitica
- Clostridium difficile
- Aeromonas spp.
- Plesiomonas shigelloides

Viruses
- Norovirus (GI, GII & GIV)
- Adenovirus F 40/41
- Rotavirus (A, B, C)
- Astrovirus
- Sapovirus

Parasites
- Cryptosporidium spp.
- Giardia lamblia
- Entamoeba histolytica
- Cyclospora cayetanensis

http://www.idahotech.com/FilmArray/FutureApplications.html
But do we really need **ALL** of this on each patient?

CONSIDER YOUR HOST
Hospitalized patients…maybe not

- Do you need to test for everything?
 - norovirus PCR
 - *C. difficile* PCR

- No FDA cleared norovirus PCR
 - LDTs – reference lab or PHL lab support
 - EIA is FDA cleared: not recommended for routine testing (50% sensitivity) → reflex to PCR
Return traveler...maybe so

• Chronic diarrhea
 – Parasites likely depending on exposures; therapy likely indicated\(^1\)
 – Also consider O&P’s for helminths or other protozoa
 • *e.g.* *Balantidium coli, Dientamoeba fragilis, Cystoisospora, Cyclospora*
 • Molecular doesn’t cover everything!

• Bacterial causes are highly variable
 – *Vibrio, Campylobacter, Shigella dysenteriae, Salmonella typhi, ETEC, EA\text{gge}C*
 • If ongoing symptoms, treatment may be considered
 • Empiric therapy for ETEC is standard\(^1\)

\(^1\)Guerrant. *Clin Infect Dis* 2001
Immunocompromised hosts...maybe so

• Pathogens not consistent in each group
• Patients typically receive extensive work-up
 ➢ More likely to have interventions in care

- HIV+
- Primary immunodeficiency
- Solid organ transplant
- Stem cell transplant

Viruses, C. diff, Campy, Shigella, Salmonella, E. coli, Giardia, Crypto, Microsporidia

Most diarrhea is NOT infectious
Viruses (norovirus), C. diff, Microsporidia

Healthy pediatric patients...maybe so

- Viral is most common\(^1\)
 - Norovirus rising, rotavirus declining (in vaccinated countries)
 - Adenovirus, sapovirus, astrovirus also significant
- *C. difficile* on the rise in non-infants\(^2\)
- Exposures that adults don’t typically have
 - excessive fecal-oral exposures (daycares)\(^3\)
- Likely actionable changes to management based on severity\(^3,4\)
 - Guidelines do not recommend treating all pediatric gastrointestinal infections with antibiotics

\(^1\)Anderson. *Expert Rev Anti Infect Ther* 2010
\(^2\)Sammons and Toltzis. *Curr Opin Pediatr* 2013
\(^3\)Guerrant. *Clin Infect Dis* 2001 *Opin Gastroenterol* 2010
\(^4\)Szajewska and Dziechiarz. *Curr*
Primary care/community...maybe not

• Lower potential for intervention in care
 – Most will not require treatment

• Long TAT due to transport to central lab/reference lab
 – Utility is lost after several days *(see Cx & O&P)*\(^1\)
 • Viral is #1…symptoms will likely resolve
 • Resolved symptoms but outstanding bill

• **Should you even test?**

\(^1\)Guerrant. *Clin Infect Dis* 2001
Complicated outpatient...maybe so

- Advanced age >65
 - *Salmonella* & *Campylobacter* likely treated\(^1\)
- Comorbidities
 - *e.g.* Heart disease, aortic graft, diabetes, chronic kidney disease
- Dysentery or blood in stool
 - Knowing STEC can be critical (no Abx)
 vs invasive *Salmonella/Shigella/Campy* (+/- Abx)
- Duration of illness
 - >14 days = persistent...more likely parasitic or Microsporidia
 - Treatment often indicated

\(^1\)Guerrant. *Clin Infect Dis* 2001
Outpatient use & outbreak identification?

• Observed cluster/suspected outbreak of unknown/unpredictable origin
 – *Cyclospora* with imported produce (2013 & 2014)\(^1\)
 – *Campylobacter* in Alaskan snow peas (2011)\(^2\)
 – STEC in cookie dough (2009)\(^3\)
 – Sapovirus (2002-2009) \(^4\)

• Once N=? cases confirmed, perform directed testing with classical methods first?
 – Cost containment
 – Are the previous methods good enough here?

\(^1\)CDC MMWR 2013
\(^2\)Gardner et al. *Clin Infect Dis* 2011
\(^3\)Neil et al. *Clin Infect Dis* 2012
\(^4\)Lee et al. *EID* 2012
Implementation

• Assays are expensive; cost effective implementation often involves cessation of Cx
 – Will the lab maintain selective media for specific isolation of pathogens?
 – No Cx = No AST capabilities when needed

• But…smaller laboratories may replace Cx completely
 – FDA cleared molecular assay performed according to package insert is better than a poorly performed classical test
 • Campylobacter Cx – variability nationwide: Cx time, transport conditions, atmosphere, plated media1,2
 • …performing O&P for Cryptosporidium, Cyclospora

1Hurd et al. \textit{Clin infect Dis} 2012
2M’ikanatha et al. \textit{EID} 2012
Public Health Concerns

• Culture independent assays = ↑ positives
 – Are PHLs ready?
 – Who does the culture (who pays)?
 • What if we have no isolates…
 – Can you EVEN culture the specimens?
 • Luminex – No
 • BD Max & Prodesse – Maybe
 • Biofire, Verigene - Yes
Timeline of an STEC outbreak investigation

Day 0: STEC isolate identified at (3-10 days post ingestion)
Day 1-7: PHL receives strain and performs typing & fingerprinting
Day 8-12: PHL reports case with appropriate outbreak information
Total time: 2-3 weeks from exposure…WITH an isolate

What happens without isolates…
Bigger outbreaks? Incomplete reporting?
Underestimates of outbreak sizes?
Alternatively, panel tests may identify outbreaks better upfront…and direct culturing efforts

Conversations with PHL are imperative BEFORE implementation

http://www.cdc.gov/ecoli/reporting-timeline.html
Coming full circle

• Panel-based GI testing is here to stay
• Not all patients likely need this testing
• Consider:
 – Cost
 – Influence (if any) on care decisions
 – Adequacy of prior methods
 – Pre-test probability of a pathogen
• Cost-effectiveness studies are needed to guide us!
• Talk to your PHL sooner than later