Genetics Susceptibility to Infectious Diseases

Attila Kumánovics, MD University of Utah

Learning Objectives

- Define and classify primary immunodeficiency diseases
- Review the role of clinical laboratory in the diagnosis of primary immunodeficiency diseases
- Demonstrate the utility of molecular diagnosis in primary immunodeficiency diseases
- Review the genetics of
 - (1) Mendelian susceptibility to chronic mucocutaneous candidiasis

(2) Mendelian susceptibility to mycobacterial infections

(3) Herpes simples encephalitis

Definitions

• Primary immunodeficiency (PID): genetic

(Secondary immunodeficiency: infection, malignancy, iatrogenic)

• PID - changing definition:

from very severe Mendelian traits to varying degree of susceptibility to infections

- Diagnosis of PIDs requires integration of data from clinical findings with laboratory immunological analyses and genetic testing
 - \rightarrow Infections
 - recurrent
 - life-threatening
 - unusual
 - \rightarrow Autoimmune diseases
 - → Malignancies

PIDs are like other genetic diseases, but

- Diagnosis:
 - secondary causes of ID are more common than primary (esp. in adults)
 - manifestations (infections) can be the same in both
 primary and secondary ID as well in "healthy" individuals
- Therapy(!):
 - Hematopoietic Stem Cell Transplantation (HSCT) (gene therapy)
 - Replacement, anti-microbials

Diagnosis of PIDs

Clinical and family history-based diagnostic approach

Diagnostic immunology lab supports, refine phenotype

Diagnosis of PIDs

Clinical and family history-based diagnostic approach

Diagnostic immunology lab supports, refine phenotype

Molecular lab

Mutation analysis in PIDs

- Definitive diagnosis (atypical presentations)
- Presymptomatic identification
- Carrier identification, genetic counseling, prenatal diagnosis
- Prognosis (strong genotype-phenotype correlation)
- Technical considerations (DNA stability vs. live cells)

- ~200 recognized PIDs, >250 genes (growing fast ~1/month)
 - candidate genes
 - mapping studies
 - novel technologies (genome/exome)
- Pathways not genes Mendelian susceptibility to:
 - chronic mucocutaneous candidiasis
 - mycobacterial infections
 - herpes simplex encephalitis
- Normal vs. immune deficient (not all-or-nothing)
 - quantitative traits/pathways

- Candida albicans is present in GI flora and and reproductive mucosa of healthy subjects
- Immunocompromised patients C albicans can cause systemic or mucosal disease
- <u>Systemic candidiasis</u> is an acute, disseminated, and invasive

- Candidemia is one of the most prevalent bloodstream infections in hospital settings and is associated with significant morbidity and mortality

<u>CMC</u> is localized to the skin, nails, and mucous membranes (no predisposition to invasive disease, such as sepsis or pneumonia)

- Impaired T cell immunity: HIV/AIDS, SCID, DiGeorge syndrome, DOCK8 deficiency, etc.
- Congenital neutropenias or secondary neutropenia (e.g. after chemotherapy)
- Recognition:
 - mannans (outer portion of the cell wall)
 →TLR4, Mannose Receptor, DC-SIGN, and Dectin2
 - β -glucans (inner portion of the fungal cell wall) \rightarrow Dectin1, and MINCLE

Genetics of CMC

- Dectin-1 deficiency (AR)
- CARD-9 deficiency (AR)
- AD Hyper IgE syndrome or Job syndrome: STAT3 deficiency
- AR Hyper IgE syndrome: DOCK8 deficiency
- STAT1 mutations (AD)
- IL-17F deficiency (AR)
- IL-17RA deficiency (AR)
- APECED (or APS type I): AIRE deficiency (AR)

Molecular testing \rightarrow diagnosis, prognosis, inheritance

Immune response: receptors \rightarrow signaling \rightarrow effector functions

- Gain-of-function STAT1 mutations:
 - → dimorphic fungi: coccidioidomycosis
 histoplasmosis
- CARD9 deficiency:

→ increased risk of invasive candidiasis
 (Candida dubliniensis meningoencephalitis)

(Sampaio EP et al. JACI 2013; Drewniak A et al. Blood 2013)

Mendelian susceptibility to mycobacterial disease

- Predisposition of otherwise apparently healthy individuals to infections caused by weakly virulent mycobacteria Bacille Calmette Guerin (BCG) and atypical (or nontuberculous) mycobacteria, M. tuberculosis and Salmonella
- Genes:
 - IFNGR1 (AR/AD)
 - IFNGR2 (AR)
 - STAT1 (AD)
 - IL12B (AR)
 - IL12RB1 (AR)*
 - NEMO (IKBKG) (XL)
 - CYBB (XL)
 - IRF8 (AR/AD)
 - ISG15 (AR)
 - TYK2 (AR)

 \rightarrow Impaired IFN- γ -mediated immunity (~50 % have unknown genetics)

- HSE is the most common cause of sporadic fatal encephalitis worldwide (70% mortality if untreated)
- Acyclovir
- Lifelong neurological sequelae of varying severity in survivors is common (>30%)
- Genes:
 - TLR3 (AR/AD)
 - UNC-93B (AR)
 - TRIF (AR/AD)
 - TRAF3 (AD)
 - TBK1 (AD)
 - NEMO (XR)
 - STAT1 (AR)
 - TYK2 (AR)

- CMC:
 - IL-17RA, IL-17F, STAT1, DECTIN1, CARD9, STAT3, DOCK8, AIRE
- MSMD:

- IFNGR1, IFNGR2, STAT1, IL12B, IL12RB1, NEMO, CYBB, IRF8, ISG15, TYK2

• HSE:

-TLR3, UNC-93B, TRIF, TRAF3, TBK1, NEMO, STAT1

→ Molecular networks/pathways, not genes

 \rightarrow Single gene testing vs. gene panels

- AD STAT1 deficiency: dominant negative mutations
 → susceptibility to mycobacterial and salmonella infections
- AD STAT1 deficiency: gain-of-function mutations

 \rightarrow chronic mucocutaneous candidiasis

• AR STAT1 deficiency: loss-of-function mutations

ightarrow susceptibility to severe viral and mycobacterial disease

- Monogenic primary immunodeficiency diseases
 - Classic PIDs: opportunistic infections
 - Novel PIDs: restricted susceptibility/single organisms (e.g. HSE is genetic)

 \rightarrow rare

- Immune response is a complex trait
 - complex traits (such as height and weight), arise from the combination of large number of (hundreds/thousands) of individual small genetic effects across the genome
 - Genome Wide Association Studies
 - (GWAS) Increasing knowledge
 - → Common (everybody!)

- Candida infections (Smeekens et al. 2013):
 - Dectin1 \rightarrow Candida colonization
 - TLR1/2/3/4 \rightarrow Susceptibility candidemia
 - IL4/MBL2/NLPR3 \rightarrow Recurrent vulvo-vaginal candidiasis
- Tuberculosis susceptibility (Barreiro et al. 2012; Qu et al. 2011):
 - MSMD and TB: monozygotic/dizygotic twin studies
 - DUSP14 \rightarrow pulmonary TB
 - HLA/NRAMP1/IFNG/IL12B/NOS2A
- Susceptibility to HSV encephalitis:
 - HSE (de Diego et al. 2013)
 - TLR3 variants \rightarrow Resistance to HSV2 (Svensson et al. 2012)

\rightarrow Pathways

- Candida infections (Smeekens et al. 2013):
 - Dectin1 \rightarrow Candida colonization
 - TLR1/2/3/4 \rightarrow Susceptibility candidemia
 - IL4/MBL2/NLPR3 \rightarrow Recurrent vulvo-vaginal candidiasis
- Tuberculosis susceptibility (Barreiro et al. 2012; Qu et al. 2011):
 - MSMD and TB: monozygotic/dizygotic twin studies
 - DUSP14 \rightarrow pulmonary TB
 - HLA/NRAMP1/IFNG/IL12B/NOS2A
- Susceptibility to HSV encephalitis:
 - HSE (de Diego et al. 2013)
 - TLR3 variants \rightarrow Resistance to HSV2 (Svensson et al. 2012)

\rightarrow Pathways

Genetic susceptibility - Environment

- Genetic variants: 'pathogenic', 'neutral', 'beneficial'
- HbS, HbC, and α -thalassemia \rightarrow protection from malaria
- CCR5∆32
 - \rightarrow Protection against HIV infection (Liu et al. 1996)
 - → Increases risk of symptomatic West Nile virus infection (Glass et al. 2006)

→Europe 3-16% allele frequencies (south to north)

References

- Primary Immunodeficiencies
 - Chapel H. Clin Exp Immunol 168: 58-9, 2012
 - de Vries E et al. Clin Exp Immunol 167: 108-19, 2012
- Chronic Mucocutaneous Candidiasis
 - Engelhardt KR et al. J Allergy Clin Immunol 129:294-305, 2012
 - Smeekens SP et al. EMBO Mol Medicine 5:805-13, 2013
- Mendelian susceptibility to mycobacterial disease
 - Qu HQ et al. Int J Infect Dis 15:e305-13, 2011
 - de Beaucoudrey L et al. Medicine 89:381-402, 2010
- Genetic susceptibility to herpes simplex encephalitis
 - Sancho-Shimizu V et al. Curr Opin Allergy Immunol 2007
 - Herman M et al. J Exp Med 2012