Updates in Mastocytosis

Tracy I. George, M.D. Professor of Pathology

Disclosure: *Tracy George*, M.D.

Research Support / Grants

Stock/Equity (any amount)

Consulting

Employment

Speakers Bureau / Honoraria

Other

None

None

Blueprint Medicines

Novartis

ARUP Laboratories

None

None

Outline

- Classification
- Advanced mastocytosis
- A case report
- Clinical trials
- Other potential therapies

Outline

- Classification
- Advanced mastocytosis
- A case report
- Clinical trials
- Other potential therapies

Mastocytosis symposium and consensus meeting on classification and diagnostic criteria for mastocytosis Boston, October 25-28, 2012

2008 WHO Classification Scheme for Myeloid Neoplasms

2017 WHO Classification Scheme for Myeloid Neoplasms

	1	Chronic Myelomonocytic Leukemia
Acute Myeloid Leukemia		Atypical Chronic Myeloid Leukemia
	1	Juvenile Myelomonocytic Leukemia
Myelodysplastic Syndromes		MDS/MPN with ring sideroblasts and thrombocytosis
wyelouysplastic synulonies		MDS/MPN, unclassifiable
	l –	
MDS/MPN		Chronic Myeloid Leukemia
		Polycythemia Vera
		Essential Thrombocythemia
		Primary Myelofibrosis
Myeloproliferative Neoplasms		
	' I	Chronic Neutrophilic Leukemia
		Chronic Eosinophilic Leukemia, NOS
Mastocytosis		MPN, unclassifiable
		Myeloid/lymphoid neoplasms with PDGFRA
Muclaid / lumphaid papplasms		rearrangement
Myeloid/ lymphoid neoplasms		Myeloid/lymphoid neoplasms with PDGFRB
with eosinophilia and gene	\rightarrow	rearrangement
rearrangement		Myeloid/lymphoid neoplasms with FGFR1
	1	rearrangement
		Myeloid/lymphoid neoplasms with PCM1-IAK2

WHO 2008 definition of systemic mastocytosis

Major: Multifocal dense infiltrates of mast cells *Minor:*

- >25% of mast cells with atypical morphology
- D816V KIT mutation
- CD25 and/or CD2
- Serum total tryptase >20 ng/mL(unless associated myeloid disorder)

Morgado JM, Sánchez-Muñoz L, Teodósio CG, Jara-Acevedo M, Alvarez-Twose I, Matito A, Fernández-Nuñez E, García-Montero A, Orfao A, Escribano L. Immunophenotyping in systemic mastocytosis diagnosis: 'CD25 positive' alone is more informative than the 'CD25 and/or CD2' WHO criterion. *Mod Pathol*. 2012;25:516-21.

WHO 2008 definition of systemic mastocytosis

Major: Multifocal dense infiltrates of mast cells *Minor:*

- >25% of mast cells with atypical morphology
- D816V KIT mutation
- CD25 abio r CD2
- Serum total tryptase >20 ng/mL
 (unless associated myeloid disorder)

Morgado JM, Sánchez-Muñoz L, Teodósio CG, Jara-Acevedo M, Alvarez-Twose I, Matito A, Fernández-Nuñez E, García-Montero A, Orfao A, Escribano L. Immunophenotyping in systemic mastocytosis diagnosis: 'CD25 positive' alone is more informative than the 'CD25 and/or CD2' WHO criterion. *Mod Pathol*. 2012;25:516-21.

WHO 2017 definition of systemic mastocytosis

Major: Multifocal dense infiltrates of mast cells *Minor:*

- >25% of mast cells with atypical morphology
- D816V KIT mutation
- CD25 with or without CD2
- Serum total tryptase >20 ng/mL(unless associated myeloid disorder)

Horny H-P et al. Mastocytosis. In: Swerdlow SH et al (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th Edition. IARC Press, Lyon, 2017

WHO 2008 Classification of Mastocytosis

- Cutaneous mastocytosis
- Systemic mastocytosis
 - Indolent systemic mastocytosis
 - Systemic mastocytosis with associated clonal, hematologic non-mast cell lineage disease
 - Aggressive systemic mastocytosis
 - Mast cell leukemia
- Mast cell sarcoma
- Extracutaneous mastocytoma

WHO 2017 Classification of Mastocytosis

- Cutaneous mastocytosis
- Systemic mastocytosis
 - Indolent systemic mastocytosis
 - Smoldering systemic mastocytosis
 - Systemic mastocytosis with *associated hematologic neoplasm*

acute

chronic

- Aggressive systemic mastocytosis
- Mast cell leukemia
- Mast cell sarcoma

• Extractor and a second

P Valent et al. Refined diagnostic criteria and classification of mast cell leukemia and myelomastocytic leukemia: a consensus proposal. *Ann Oncol* 2014;24(9):1691-1700.

What is mastocytosis?

- Clonal, neoplastic proliferation of mast cells
- Heterogeneous disorder:
 - Skin lesions that spontaneously regress to highly aggressive leukemias with short survival and multiorgan failure
- Subtypes determined by distribution and clinical manifestations

?Diagnosis

Telangiectasia macularis eruptiva perstans (TMEP)

Adults with cutaneous mastocytosis lesions -Urticaria pigmentosa -TMEP

Work up:

- 1. Skin biopsy
- 2. Serum tryptase (basal and event-related)
- 3. Bone marrow biopsy with appropriate ancillary studies

Berezowska S, Flaig MJ, Rueff F, et al. Adult-onset mastocytosis in the skin is highly suggestive of systemic mastocytosis. *Mod Pathol* 2014;27:19.

Clinically Relevant Mediators Released from Mast Cells and Putative Effects.

Pathogenesis of SM

- Somatic KIT point mutations in neoplastic mast cells
- Constitutive activation of the receptor tyrosine kinase KIT
- Induces increased mast cell proliferation and motility, resulting in infiltration of neoplastic mast cells into various organs

Classification of Mastocytosis

Cutaneous mastocytosis (CM) Systemic mastocytosis (SM)

Classification of Mastocytosis

Systemic mastocytosis (SM) Indolent SM **Smoldering SM** SM with an associated hematologic neoplasm (SM-AHN) **Aggressive SM** Mast cell leukemia

Mast cell sarcoma

Classification of Mastocytosis

CM	
CIVI	Systemic mastocytosis (SM)
More indolent SM	Indolent SM
	Smoldering SM
"Advanced" SM	SM with an associated hematologic
	neoplasm (SM-AHN)
	Aggressive SM
	Mast cell leukemia
	Mast cell sarcoma

Advanced Systemic Mastocytosis

ASM (1+ "C"=cytoreductive requiring findings)

- BM dysfunction \rightarrow cytopenias
- Palpable hepatomegaly with impaired liver function, ascites, +/- portal hypertension
- Skeletal involvement → large osteolytic lesions, and/or pathological fractures
- Palpable splenomegaly w/ hypersplenism
- Malabsorption, weight loss due to GI mast cell infiltrates, hypoalbuminemia

Mast cell leukemia

≥20% mast cells on aspirate/PB

SM + AHN

-meet WHO criteria for an associated hematological neoplasm

-meet SM criteria

Cytology of mast cells

Normal/reactive/well-differentiated <u>Atypical type I</u>

Atypical type II

Metachromatic blast

George and Horny. Systemic mastocytosis. *Hematol Oncol N Am* 25 (2011): 1067.

Cytology of mast cells

Normal/reactive/well-differentiated <u>Atypical type I</u>

Atypical type II

Metachromatic blast

George and Horny. Systemic mastocytosis. *Hematol Oncol N Am* 25 (2011): 1067.

Indolent systemic mastocytosis

tryptase

ASM-AHN

Mast cell leukemia

Bone marrow aspirate

Blood smear

Laboratory values: Hb: 8.8 g/dL WBC, PLT: Normal Serum tryptase: 763

Bone marrow biopsy

Tryptase IHC positive KIT D816V positive MAST CELL ANALYSIS

Overall Survival

Years From Diagnosis

 Kaplan–Meier survival for SM patients classified by WHO disease type compared with the expected age and sex-matched US population's survival for the entire cohort Lim, KH. Blood. 2009 Jun 4;113(23):5727.

KIT Mutations: Implications for TK Inhibitors

GIST: Gastrointestinal stromal tumors; SM: Systemic Mastocytosis; AML: acute myelogenous leukemia; NK/T-CL: Natural killer/T-cell lymphoma

Treatment

- Challenging due to the diversity and complexity of disease and the lack of a standard and highly effective therapy
- Current therapies include:
 - Observation
 - Topical therapies for cutaneous disease
 - Symptomatic noncytoreductive therapies
 - Cytoreductive therapy
 - Indicated by the presence of organ dysfunction
 - Used to reduce mast cell burden

Akin C, et al. *Exp Hematol*. 2003;31:686-692; Douglass JA, et al. *Allergy*. 2010; 65:924-932; Pardanani A, et al. *Curr Opin Hematology*. 2010;17:125-132; Imatinib package insert.

Sensitivity of c-KIT D816V-Transformed Ba/F3 Cell Lines to Midostaurin and Imatinib

- Midostaurin inhibited growth of all c-KIT-transformed Ba/F3 cell lines
- Cell lines resistant to imatinib due to expression of c-KIT D816V are inhibited by midostaurin
- Results have been confirmed in additional cell lines

 IC_{50} for midostaurin: 44 nM IC_{50} for imatinib: > 1 uM

Growney JD, et al. *Blood*. 2005;106:721-724; Gotlib J, et al. *Blood*. 2005;106:2865-2870.

Midostaurin

- Potent inhibitor of all common mutant forms of c-KIT, including D816V,D816Y
- May preferentially inhibit cells expressing mutant c-KIT compared to wildtype c-KIT
- Counteracts anti-IgE-induced release of histamine in blood basophils and cultured cord blood cell-derived mast cells
 - Effects were dose-dependent; occurred at pharmacologic concentrations

Growney JD, et al. *Blood*. 2005;106:721-724. Krauth M-T, et al. *Clin Exp Allergy*. 2009; 39:1711-1720

Brief report

Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation

Jason Gotlib, Caroline Berubé, Joseph D. Growney, Ching-Cheng Chen, Tracy I. George, Christopher Williams, Tomohiro Kajiguchi, Jia Ruan, Stan L. Lilleberg, Jeffrey A. Durocher, Jack H. Lichy, Yanfeng Wang, Pamela S. Cohen, Daniel A. Arber, Michael C. Heinrich, Len Neckers, Stephen J. Galli, Galliand, and Steven E. Coutré

The majority of patients with systemic mast cell disease express the imatinibresistant Asp816Val (D816V) mutation in the KIT receptor tyrosine kinase. Limited treatment options exist for aggressive systemic mastocytosis (ASM) and mast cell leukemia (MCL). We evaluated whether PKC412, a small-molecule inhibitor of KIT with a different chemical structure from imatinib, may have therapeutic use in advanced SM with the D816V *KIT* mutation. We treated a patient with MCL (with an associated myelodysplastic syndrome (MDS)/myeloproliferative disorder [MPD]) based on in vitro studies demonstrating that PKC412 could inhibit D816V KIT-transformed Ba/F3 cell growth with a 50% inhibitory concentration (IC₂₀) of 30 nM to 40 nM. The patient exhibited a partial response with significant resolution of liver function abnormalities. In addition, PKC412 treatment resulted in a significant decline in the percentage of peripheral blood mast cells and serum histamine level and was associated with a decrease in KIT phosphorylation and

D816V KI tient died progressi myeloid la cates that is a feasit agent clin clonal eve mic phase 106:2865-

© 2005 by

The NEW ENGLAND JOURNAL of MEDICINE

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Efficacy and Safety of Midostaurin in Advanced Systemic Mastocytosis

Jason Gotlib, M.D., Hanneke C. Kluin-Nelemans, M.D., Ph.D., Tracy I. George, M.D., Cem Akin, M.D., Ph.D., Karl Sotlar, M.D., Olivier Hermine, M.D., Ph.D., Farrukh T. Awan, M.D., Elizabeth Hexner, M.D., Michael J. Mauro, M.D., David W. Sternberg, M.D., Ph.D., Matthieu Villeneuve, M.Sc., Alice Huntsman Labed, Ph.D., Eric J. Stanek, Pharm.D., Karin Hartmann, M.D., Hans-Peter Horny, M.D., Peter Valent, M.D., and Andreas Reiter, M.D.

ABSTRACT

June 30. 2016:374:2530-2541

Baseline Patient and Disease Characteristics

- * Data on additional baseline characteristics are provided in Table S6 in the Supplementary Appendix. AHN denotes associated hematologic neoplasm, and ND not determined.
- † Values for the Eastern Cooperative Oncology Group (ECOG) performance status range from 0 to 5, with 0 indicating no symptoms and higher numbers indicating increasing tumor-associated disability.
- In some patients with SM-AHN, therapy was directed toward the associated hematologic neoplasm.
- § A total of 73 patients were positive for the *KIT* D816V mutation, 3 were positive for the *KIT* D816Y mutation, and 1 was positive for the *KIT* D816L mutation.
- ¶ Clinical findings that are related to organ damage from infiltrating mast cells are referred to as C-findings.^{4,5} Only measurable C-findings were eligible for this study: transfusion-independent and transfusion-dependent anemia and thrombocytopenia, neutropenia, liver-function abnormalities (increased levels of alanine aminotransferase, aspartate aminotransferase, or total bilirubin), hypoalbuminemia, and medically documented loss of at least 10% of body weight within 6 months before study entry.

Table 1. Baseline Patient and Disease Characteristics.* Intention-to-Treat Primary Efficacy Population Population Characteristic (N = 116)(N = 89)Age — yr Median 63 64 25 - 8225-82 Range Male sex - no. (%) 76 (66) 57 (64) ECOG performance status - no. (%)† 0 or 1 77 (66) 57 (64) 2 or 3 39 (34) 32 (36) No. of previous therapies no. of patients (%) 0 52 (58) 64 (55) 29 (25) 21 (24) 2 15 (13) 12 (13) ≥3± 8 (7) 4 (4) Subtype of advanced systemic mastocytosis - no. (%) Aggressive systemic mastocytosis 16 (18) ND Systemic mastocytosis with an AHN ND 57 (64) Mast-cell leukemia 21 (18) 16 (18) KIT D816 mutation status - no. (%) 98 (84) 77 (87) Positive Negative 13 (11) 10 (11) Unknown 5 (4) 2 (2) Bone marrow mast-cell burden - % Median 40 50 3-98 8-98 Range Serum tryptase level — µg/liter 200 236 Median 27-12,069 Range 2-12,069 No. of C-findings per patient no. of patients (%) ¶ 1 31 (27) 31 (35) 2 20 (17) 20 (22) ≥3 38 (33) 38 (43)

Gotlib J et al. N Engl J Med 2016;374:2530-2541.

	Any Subtype of	Aggressive	Systemic	
Variable	Advanced Systemic Mastocytosis (N=89)	Systemic Mastocytosis (N=16)	Mastocytosis with an AHN (N=57)	Mast-Cell Leukemia (N = 16)
Major or partial response as best overall response				
Patients with response — no.	53	12	33	8
Overall response rate (95% CI) — %	60 (49–70)	75 (48–93)	58 (44–71)	50 (25–75)
Duration of response — mo				
Median	24.1	NR	12.7	NR
95% CI	10.8-NE	24.1-NE	7.4-31.4	3.6–NE
Best overall response — no. (%)				
Major response	40 (45)	10 (62)	23 (40)	7 (44)
Complete remission	0	0	0	0
Incomplete remission	19 (21)	6 (38)	9 (16)	4 (25)
Pure clinical response	15 (17)	4 (25)	9 (16)	2 (12)
Unspecified	6 (7)	0	5 (9)	1 (6)
Partial response	13 (15)	2 (12)	10 (18)	1 (6)
Good partial response	11 (12)	1 (6)	10 (18)	0
Minor partial response	2 (2)	1 (6)	0	1 (6)
Stable disease	11 (12)	1 (6)	7 (12)	3 (19)
Progressive disease	10 (11)	1 (6)	6 (11)	3 (19)
Patient could not be evaluated for response†	15 (17)	2 (12)	11 (19)	2 (12)

Overall Survival

Kaplan-Meier Estimates (95% Cl), %

SM Subgroup	Median DOR (95% CI), months	1-Year DOR	2-Year DOR	3-Year DOR
	NR (24.1-NE)	91 (51-99)	91 (51-99)	68 (16-92)
-A-SM-AHN (n = 33)	12.7 (7.4-31.4)	52 (32-69)	38 (17-56)	24 (6-49)
	NR (3.6-NE)	70 (22-92)	71 (6-49)	70 (22-92)

Response over Time

Overall Response Rate by Subgroups

Overall Survival by Response in Mast Cell Leukemia

Clinicopathological Measures of Response

Bone marrow mast cell burden

Serum tryptase

Spleen volume

Gotlib J et al. N Engl J Med 2016;374:2530-2541.

Histologic Regression in ASM patient

Improvements in Alkaline Phosphatase, Eosinophil, and Monocyte Levels

Improvements in Quality of Life

Study Conclusions

- *Midostaurin can*:
 - Reverse organ damage
 - Decrease splenomegaly
 - Decrease BM mast cells
 - Improve patient-reported symptoms and quality of life

Midostaurin in advanced SM, 10 year follow-up

St	Study status/reason for discontinuation (# of patients)			
ş	Continuing treatment (n=2)			
*	Adverse event: Grade 3 or 4 thrombocytopenia (n=2)			
	Serious adverse event: sepsis (n=3), inflammatory mixed neuropathy/myopathy and altered			

verse event. Orace 5 of 4 monoocytopena (n=2)		treatment (months)		
ious adverse event: sepsis (n=3), inflammatory mixed neuropathy/myopathy and altered mental status (n=1)	median	19		

Median duration of

range

2-132

- Withdrew consent (n=1)
- Unsatisfactory therapeutic effect; discontinued per investigator discretion (n=5)
- Disease progression (n=4)

¹ Data through 3/1/2017; best response at any time on therapy

Solid bars are KIT D816 mutation-positive, two patterned bars are KIT D816 mutation-negative

DeAngelo DJ, George TI, Linder A, Langford C, Perkins C, Ma J, Westervelt P, Merker JD, Berube C, Coutre S, Liedtke M, Medeiros B, Sternberg D, Dutriex C, Ruffie PA, Corless C, Graubert TJ, Gotlib J (2018). Leukemia, 32(2), 470-478.

10.00	
 n#	74
1.144	2.4
 <i>111</i>	**

ID# 07

^b Responder with best value of 0% change in bone marrow mast cells vs baseline

Midostaurin treatment is associated with a significant decrease in CD25 expression on neoplastic mast cells

CD25 expression on neoplastic mast cells by flow cytometry in patients #1, #2, and #3 before (A-C) and on day 28 (patient #1, D), day 89 (patient #2, E), and day 336 (patient #3, F) of midostaurin therapy.

Midostaurin therapy is associated with sustained decreases in CD25 expression

CD25 expression on neoplastic mast cells by mean fluorescence intensity (MFI; A, C, E) and percent of mast cells positive for CD25 (B, D, F) over time in patient #1 (A-B), patient #2 (C-D), and patient #3 (E-F). The shaded area indicates time on midostaurin therapy.

Proposed mechanism for midostaurin-induced CD25 downregulation

Changes in the intracellular localization of STAT5 with midostaurin

Outline

- Updates on classification
- Advanced mastocytosis
- A case report
- Clinical trials
- Other potential therapies

CD30 expression in systemic mastocytosis

JM Morgado, O Perbellini,RC Johnson, C Teodosio, A Matito, I Alvarez-Twose, P Bonadonna, A Zamo M Jara-Acevedo, A Mayado, A Garcia-Montero, M Mollejo, TI George, R Zanotti, A Orfao, L Escribano, L Sanchez-Munoz. CD30 expression by bone marrow mast cells from different diagnostic variants of systemic mastocytosis. *Histopathology* 2013;63(6):780-7.

CD30 expression in systemic mastocytosis

JM Morgado, O Perbellini, RC Johnson, C Teodosio, A Matito, I Alvarez-Twose, P Bonadonna, A Zamo M Jara-Acevedo, A Mayado, A Garcia-Montero, M Mollejo, TI George, R Zanotti, A Orfao, L Escribano, L Sanchez-Munoz. CD30 expression by bone marrow mast cells from different diagnostic variants of systemic mastocytosis. *Histopathology* 2013;63(6):780-7.

Clinical trial with anti-CD30 drug does *not* demonstrative clinical activity in advanced systemic mastocytosis

ADC = antibody-drug conjugate; MAB = monoclonal antibody; MMAE = monomethyl auristatin E (microtubule-disrupting agent) 10 patients:

- -8 stable disease
- -1 progressive disease
- -1 not evaluable due to early death unrelated to study

Baird JH, Verstovsek S, George TI, Reyes I, Abuel J, Perkins C, Langford C, Schroeder K, Gotlib J. Phase 2 study of Brentuximab Vedotin in patients with advanced systemic mastocytosis. ASH 2017.

Hatch EW, Geeze MB, Martin C, Salama ME, Hartmann K, Eisenwort G, Blatt K, Valent P, Gotlib J, Lee JH, Chen L, Ward HH, Lidke DS, George TI (2018). Variability of PD-L1 expression in mastocytosis. Blood Adv 2(3), 189-199.

Immunohistochemistry

Smoldering systemic mastocytosis

Mast cell leukemia

M Geeze, E Hatch, C Martin, S Perkins, K Hartmann, P Valent, J Gotlib, D Lidke. USCAP 2016

Flow cytometry

Multiplex immunohistofluorescence

Mast cell leukemia, spleen

Tryptase (red), PDL1 (green)

Tryptase (red) PDL1 (green)

Mast cell

leukemia,

spleen

Tryptase PD-L1 Overlay 20 µm

Cutaneous mastocytosis

PD-1/PD-L1 are novel therapeutic targets for mastocytosis

Diagnosis	PD-L1 expression	PD-1 expression
SM	17/22 (77%)	0/25
CM	23/25 (92%)	4/27 (15%)
MML	1/2	0/2
MMAS	0/3	0/3
MPN	0/16	0/17
MDS	0/18	0/18
MDS/MPN	0/5	0/5
Healthy/ reactive BM	0/15	0/21

PD-1/PD-L1 are novel therapeutic

targets for mastocy sis

Diagnosis	PD-L1 expres	PD-1 expression		
SM	17/22 (77%)	0/25	MCI	2/2/100%
СМ	23/25 (92%)	4/27 (15%)	MCL	3/3 (100%)
MML	1/2	0/2	ASM	2/2 (100%)
MMAS	0/3	0/3	SM-AHN	9/12 (75%)
MPN	0/16	0/17	SSM	1/2 (50%)
MDS	0/18	0/18	ISM	3/4 (75%)
MDS/MPN	0/5	0/5		
Healthy/ reactive BM	0/15	0/21		

Conclusions

- Updates on classification
- Advanced mastocytosis
- A case report
- Clinical trials
- Other potential therapies

Thank you collaborators!

REMA (Spanish Network on Mastocytosis)

Jason Gotlib Dan Arber Susan Atwater **Bruno Medeiros** Athena Cherry

Natasha Savage Farrukh Awan

Georgia Health Sciences University

Chris Corless Ilana Kepten Jeffrey Tyner

Peter Valent

Hans-Peter Horny Karl Sotlar

Timothy Graubert

Dan Deangelo

