

The Lewis System Justin R. Rhees, M.S., MLS(ASCP)^{CM}SBB^{CM} University of Utah

- Discuss the genetic interactions of *Le* genes with *ABH* and *Se* genes.
- Describe the formation and secretion of Lewis antigens and their adsorption onto the red cell membrane.
- Describe the clinical significance of anti-Le^a and anti-Le^b

Objectives

- Describe in detail the phenotypes capable of forming Anti-Le^a and Anti-Le^b.
- Define the term *transitional phenotype* as it relates to the age of the patient.
- Describe the changes in Lewis phenotypes and presence of Lewis antibodies during pregnancy and clinical significance.
- Given results of a secretor inhibition study, correctly interpret whether substances are present or not present. Based on these results, apply your knowledge of gene interaction to identify the likely *Le*, *Se*, and *ABH* genes present.

Objectives

The Lewis system is unique.

Lewis system—the liquid antigen system

- 1. Lea and Leb are NOT alleles of a blood group system.
- 2. Genes *Le* and *le* (amorph)
- 3. The *Le* gene must be present for a precursor substance to be converted to Le^a.
- 4. But, the Se gene must be present for conversion to Le^{b} .

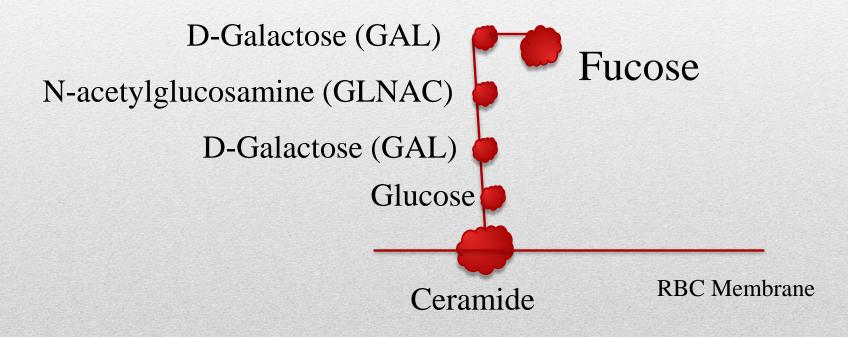
The most important items

	Gene	Locus
ABO	ABO	9q

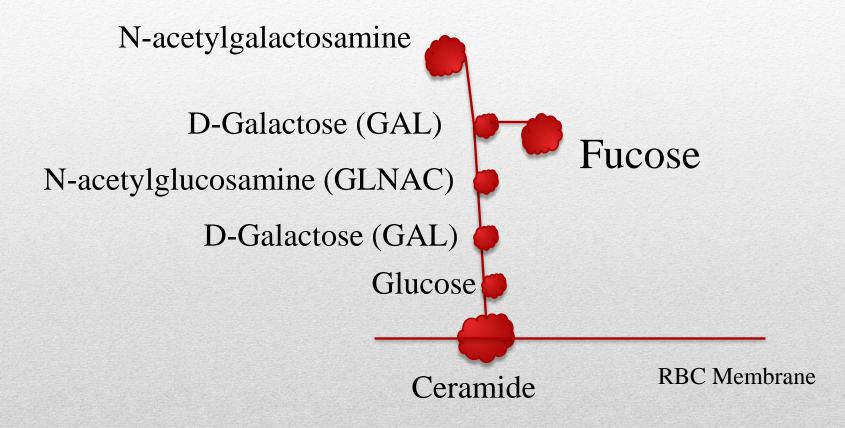
	Gene	Locus
ABO	ABO	9q
Η	FUT1	19q

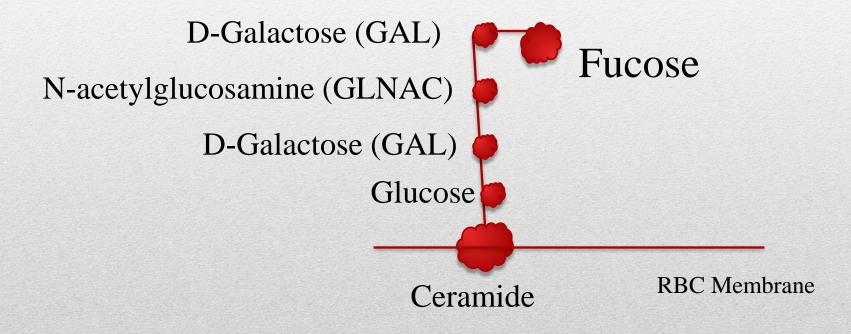
	Gene	Locus
ABO	ABO	9q
Η	FUT1	19q
Se	FUT2	19q

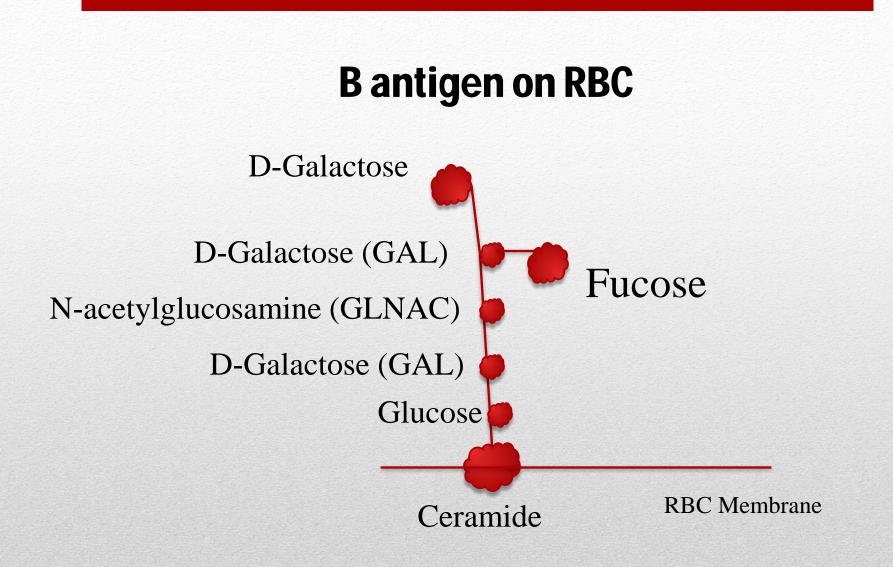
99.99% inherit *H* (*FUT1*) gene ~80% inherit *Se* (*FUT2*) gene

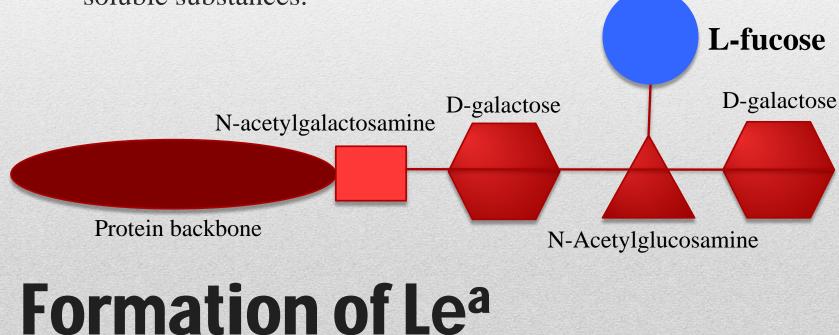

Secretors in U.S. populations

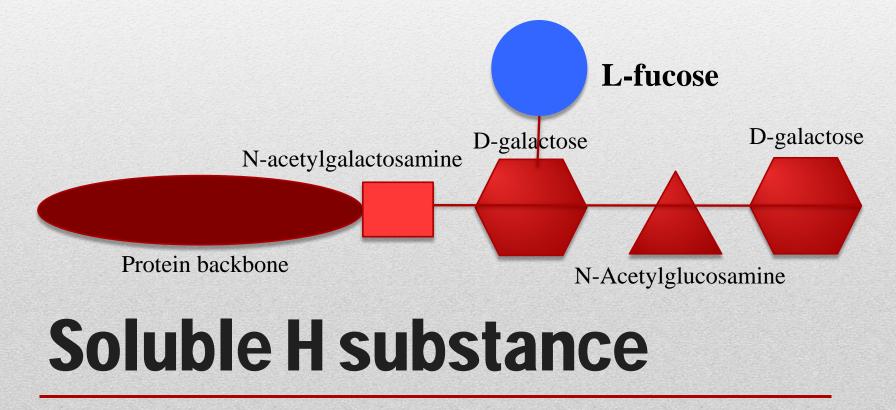
	Gene	Locus
ABO	ABO	9q
Η	FUT1	19q
Se	FUT2	19q
Le	FUT3	19p

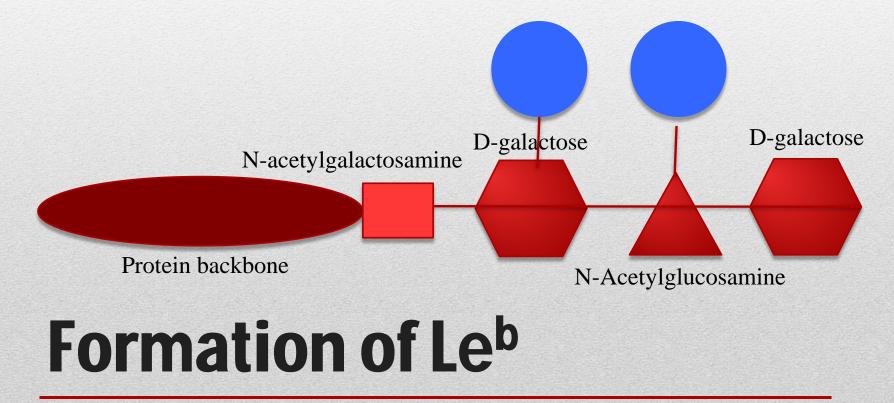

~90% inherit *Le* (*FUT3*) gene*


*Lewis gene in U.S. Caucasians


Hantigen on RBC


A antigen on RBC




- Formation of Lewis and ABO antigens is similar:
 - The *Le* gene produces L-fucosyltransferase to add **L-fucose** to the basic precursor substance.
 - This acts in competition with ABO, as L-fucose is added to soluble substances.

• A person who has inherited the *H* gene and the *Se* gene will have the following in secretions (soluble H):

• When both *Le* and *Se* genes are inherited, the structure is further modified, producing Le^b antigen:

- *Adult* with RBC phenotype: Le(a-b-)
 - Lack *Le* gene.
 - le/le

le/le

- *Either* secretors (*Se*) or non secretors (*se/se*).
- 6% Caucasians, 22% African Americans
- Can form antibodies to Le^a and/or Le^b without RBC stimulus.
 - What do we call this type of antibody?

- *Le* gene present, non-secretor (*se/se*):
 - Le^a antigen produced, present in secretions
 - Le^a antigen adsorbs onto RBC membrane
 - *Adult* RBC phenotype:
 - Le(a+b-)

Leand se/se

- *Le* gene present, secretor (*Se/se*):
 - Le^a antigen produced, present in secretions
 - Le^a antigen further modified by secretor gene to also produce Le^b antigen (in higher concentrations)
 - RBC membrane absorption: Le^b antigen competes with Le^a and WINS!!!
 - *Adult* RBC phenotype:
 - Le(a-b+)

Leand Se/se

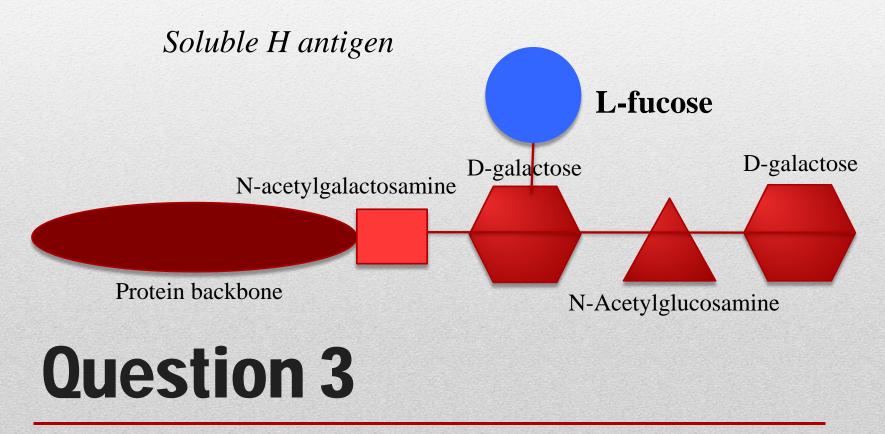
- The formation of Le^b substances is only possible with the inheritance and genetic interaction of both *Le and Se* genes.
- Both Le^a and Le^b substances occur in secretions
- Only Le^b substance is absorbed onto the RBC membrane, Le(a-b+)

Remember!

And now a quiz!

• *Lele, Sese, A/B/H* genes results in what in secretions, and what on the RBCs?


Secretions: Le^a, Le^b, A, B, and H RBC antigens: A, B, H, Le(a-b+)


Question 1

• *Lele, sese, O/O/H* genes results in what in secretions, and what on the RBCs?

Secretions: Le^a RBC antigens: H, Le(a+b-)

Question 2

- Can a person with the RBC phenotype Le(a-b+) make anti-Le^a?
- No. Le(a-b+) is the result of Le^a substance being further modified to Le^b by the action of the Se gene. Both Le^a and Le^b antigens are present in secretions. Therefore, the individual does not *normally* form anti-Le^a.

Question 4

- Regardless of inheritance, "all" neonates type as Le(a-b-)
- If a person has inherited *Le* and *Se*, they will eventually end up typing as Le(a-b+).
- But, this is a process:
 - Neonate begins as Le(a-b-)
 - RBCs can then transform to Le(a+b-) after 10 days
 - Le(a+b+) *transitional* phenotype.
 - Finally, Le(a-b+) phenotype is expressed as the true phenotype after 6-7 years.

Phenotype development

Le(a-b-)

Neonate

Le(a+b-)

After 10 days

Le(a+b+)

"Transitional phenotype"

Le(a-b+)

After 6-7 years

- The Lewis system is *not* implicated in hemolytic disease of the fetus and newborn (HDFN) *Why*?
 - Regardless of inheritance, fetal blood is Le(a-b-)

More strange stuff about the Lewis system...

- Phenotype can change.
- Lewis antigens can disappear during pregnancy:
 - Le(a-b-) phenotype during gestation.
 - Anti-Le^a and/or anti-Le^b present in serum.
- Lack of Lewis antigen expression on RBCs can also occur in patients with:
 - cancer
 - alcoholic cirrhosis
 - viral and parasitic infections

Changes in Lewis phenotype

- The Le(a+b+) phenotype in adults is rare in Caucasians and African Americans
- Asians: 10-40%
 - Weaker *Se* gene, more common in Asia, produces a fucosyltransferase that competes less effectively with the *Le* fucosyltransferase.
 - Both Le^a and Le^b are adsorbed onto the RBC membrane.

Lewis Antibodies

- Non-RBC Immune (naturally occurring)
 - Produced without exposure to foreign RBCs
 - Generally IgM, cold reactive
 - *Generally* produced by patients with Le(a-b-) phenotype.
 - Anti-Le^a can be stronger than anti-Le^b
 - Can cause in vitro/ in vivo hemolysis (rare)

anti-Le^a

Hemolysis observed

_	_				-		-			_	-			1		T	-	 -
11			Du	ıffy	Ki	dd	Le	wis	P		М	N		Lut		Xg		
p⁵	Jsª*	Js⁵	Fyª	Fy⁵	Jkª	Jk	Leª	Le⁵	P ₁	м	N	s	s	Luª	Lu ^s	Xg ^{*a}		
	0	+	+	+	+	d	+	0	w	0	+	+	0	0	+	0		
	0	+	+	0	+	+	0	+	0	+	0	0	+	0	+	0		
1	0	+	0	+	0	+	+	0	+	+	0	+	0	0	+	+		

Ficin (fig) Papain (papaya) Trypsin (pig stomach) Bromelin (pineapple)

Effect of enzyme treatment?

- Anti-Le^a is more commonly encountered than anti-Le^b.
- It is produced in approximately 20% of individuals of the Le(a-b-) phenotype.
- Primarily of IgM class, but some may have IgG components or be entirely IgG.
- Anti-Le^a is frequently detected with saline suspended red cells at room temperature. However, it sometimes reacts at 37°C and AHG and is capable of causing hemolytic transfusion reactions.

anti-Le^a

- Anti-Le^b is not as common, and generally does not act as strongly as anti-Le^a.
- Like anti-Le^a, it is produced by individuals with Le(a-b-) phenotype.
- However, it can be produced by Le(a+b-) individuals. (Remember *Le*, *sese* inheritors have no Le^b present in secretions, only Le^a substance.)

anti-Le^b

- Anti-Le^a is capable of causing HTR (rare).
- If detected at 37°C or AHG phase, it is considered to be *clinically significant*
 - Only crossmatch compatible blood should be transfused.

Clinical significance of Lewis antibodies

- Lewis antibodies are *generally* considered **insignificant** in blood transfusion practices because:
- 1. Neutralized by soluble Lewis Ag in secretions
- 2. Ag positive donor cells can become Ag negative in recipient
- 3. IgM= do not cross placenta, also Ag not formed on fetal cells (no HDFN)

Clinical significance of Lewis antibodies

- Anti-Le^{ab} reacts with:
 - Le(a+b-)
 - Le(a-b+)
 - ~90% of cord blood cells, serologically Le(a-b-)

Additional Antibodies

- Anti-Le^{bH} reacts with:
 - Group O Le(b+)
 - Group A_2 Le(b+)

Additional Antibodies

- Anti-ALe^b reacts with:
 - Group A_1 Le(b+)
 - Group A_1B Le(b+)
- Anti-BLe^b reacts with:
 - Group B Le(b+)
 - Group A_1B Le(b+)

Additional Antibodies

Problem Solving: Secretor Inhibition Studies

- We can use the Secretor Inhibition Test to determine if Lewis, H, and ABO soluble antigens are present in saliva.
- How the test works:
 - Antibody of a known specificity is added to the person's prepared saliva specimen.
 - If soluble antigen is present in the saliva, it will neutralize the antibody.

Secretor Inhibition

- Red blood cells with the corresponding antigen are then added to the test.
 - If "+" reaction, the antibody was NOT neutralized (soluble antigen NOT present in saliva).
 - If "0" reaction, the antibody WAS neutralized (soluble antigen IS present in saliva).

Secretor Inhibition

	A ₁ Cells	B Cells	O Cells Le(a+)	O Cells Le(a-) (Control)
Saliva + Anti-A				
Saliva+ Anti-B				
Saliva + Anti-Lea				
Saliva + Anti-H				

For this test, assume NO individuals are O_h Bombay phenotype h/h

	A ₁ Cells	B Cells	O Cells Le(a+)	O Cells Le(a-) (Control)
Saliva + Anti-A				
Saliva+ Anti-B				
Saliva + Anti-Lea				
Saliva + Anti-H				

	A ₁ Cells	B Cells	O Cells Le(a+)	O Cells Le(a-) (Control)
Saliva + Anti-A	+			
Saliva+ Anti-B				
Saliva + Anti-Lea				
Saliva + Anti-H				

Saliva + Anti-A + A1 Cells = Positive Reaction This means the Anti-A in the tube was NOT neutralized Therefore, the saliva does NOT have A substance

	A ₁ Cells	B Cells	O Cells Le(a+)	O Cells Le(a-) (Control)		
Saliva + Anti-A	+					
Saliva+ Anti-B		+				
Saliva + Anti-Lea			+	0		
Saliva + Anti-H			0	0		
B Substance NOT present						
Lea Substance NOT present H substance is present						
		; O cells are RIC				

	A ₁ Cells	B Cells	O Cells Le(a+)	O Cells Le(a-) (Control)			
Saliva + Anti-A	+						
Saliva+ Anti-B		+					
Saliva + Anti-Lea			+	0			
Saliva + Anti-H			0	0			
No A, B, or Lea, in saliva, but the person secretes H substance. Which genes are present?							
<i>H</i> gene, <i>Se</i> gene, <i>le/le</i> And, we know the person is <i>O/O</i>							
If they		substance, but no		st be type O			

	A ₁ Cells	B Cells	O Cells Le(a+)	O Cells Le(a-) (Control)			
Saliva + Anti-A	+						
Saliva+ Anti-B		0					
Saliva + Anti-Lea			0	0			
Saliva + Anti-H			0	0			
No A substance in saliva Have B substance, Lea substance, and H substance in Saliva							
Genes present?							
		<i>H</i> , <i>B</i> , <i>Le</i> , and	Se				

	A ₁ Cells	B Cells	O Cells Le(a+)	O Cells Le(a-) (Control)			
Saliva + Anti-A	+						
Saliva+ Anti-B		+					
Saliva + Anti-Lea			+	0			
Saliva + Anti-H			+	+			
No A, B, Lea, or H in saliva							
Negative Control Anti-Lea with Le(a-) cells produced no reaction							
No <i>Le</i> , No <i>Se</i> . Be	cause this person	Genes presen		sumptions about			

	A ₁ Cells	B Cells	O Cells Le(a+)	O Cells Le(a-) (Control)
Saliva + Anti-A	0			
Saliva+ Anti-B		0		
Saliva + Anti-Lea			0	0
Saliva + Anti-H			0	0

Practice Problem: What substances are present in saliva? Based on this information, what gene(s) might be present?

- Substances present: A, B, Le^a, and H
- Genes present: Se, Le, H, A/B

Answer

- Based upon this information, can you make assumptions about what antigen(s) is/are present on the person's RBCs?
- *H*, and *A*/*B* genes: Person's RBC type is AB
- Le and Se genes: Person's RBC type is likely Le(a-b+)

Thank you!

Follow-up Question

- 1. Reid ME, Lomas-Francis C. Blood Group Antigens and Antibodies. SBB Books. New York. 2007.
- Harmening DM, Ed. Modern Blood Banking and Transfusion Practices, 5th and 6th Editions. F.A. Davis Company. Philadelphia. 2005, 2012.
- 3. Roback, JD, Ed. AABB Technical Manual, 17th Edition
- Nosferatu (1922) FW Murnau, starring Max Schreck, Greta Schröder. Images lovingly downloaded from Flickr Creative Commons.

References