Multiplex/molecular testing for gastrointestinal infections

Microbial Immunology, Parasitology & Fecal Testing Infectious Disease Rapid Testing marc.couturier@aruplab.com

Objectives

- 1. Understand the traditional approaches to gastroenteritis testing (Parasitology skew)
- 2. Compare and contrast the available multiplex molecular diagnostic assays for gastroenteritis
- 3. Discuss test utilization of multiplex molecular diagnostics for gastroenteritis

Disclosures

- Research reagents
 - BioFire® Diagnostics (respiratory panel)
 - BioGX (GI PCR reagents)
 - Apacor (ova & parasite exam reagents)
 - Diasorin (serological test reagents)

Acute Diarrhea

What do we routinely test for?

- Bacteria
- Parasites
- Viruses

Acute Diarrhea

What is the actual prevalence

- Viruses
- Bacteria
- Parasites

Acute Diarrheal Illness

- Significant morbidity and mortality
 - More significant in developing nations
 - Prevent dehydration, provide rehydration
- Most acute GI infections are not reported or intervened medically in the USA¹
- CDC estimates >350 million acute diarrheal illnesses annually²
- FoodNet reports 48 million are foodborne

Facts About GI Pathogens

- 1. Viruses most prevalent; least tested¹
 - Norovirus is #1 GI infection in the USA
 - Rotavirus declined 67% since vaccine introduction in USA
- 2. Bacteria stool Cx are most common test
 - only positive 1-5% of cases²
- Parasites domestically acquired infections typically associated with defined exposure risks

Community Onset/Primary Care Setting

- Viral #1 cause of acute diarrhea
 - norovirus
- Bacterial outbreak/cluster related
 - Clostridium difficile is growing

Hospitalized Patients

- HAI in acute care & ICU
 - Viral norovirus, rotavirus
 - Emerging sapovirus, adenovirus, astrovirus
 - Bacterial Clostridium difficile
 - Parasitic extremely rare

In Practice

What is a common stool test ordering pattern for acute diarrhea?

- No viral tests****
- Stool Culture
- Single O&P

*** (based on composite ordering pattern data from ARUP and other large academic medical centers)

Viral Testing

- Antigen detection EIA
 - Rotavirus & adenovirus 40/41
 - Sensitivity and specificity are good vs electron microscopy
 - Poor vs. PCR
 - Underutilized
- RT-PCR
 - Better sensitivity and specificity than EIA¹
 - Norovirus: highly utilized
- No testing available for sapovirus & astrovirus

Bacterial Testing

- Culture
 - Variable sensitivity
 - Variable TAT (24-96+ hours)
 - Can become costly (multiple plates); highly utilized
- Antigen testing for shiga-like toxin
- Clostridium difficile real-time PCR
 - Multiple FDA approved methods
 - Fast, sensitive, & specific
 - Expensive, but most robust method

Parasite Testing

- Overutilized Ova & Parasite microscopic exam
 - Highly variable sensitivity (lab dependent)
 - Highly variable specificity (lab dependent)
- Stool collected in fixative (preserve morphology)
 - PVA &10% Formalin
 - Single vial collection
 - Sodium Acetate Formalin (SAF)

Ova and Parasite exam

- Concentrated wet mount preparation
 - Chemical or physical
- Permanent smeared trichrome stain

- Technologist manually exams both preparations for parasites
 - Time consuming
 - Low yield
 - Primary expense = SWAB
- Labs HATE this test...physicians love it!

O&P Issues

- Standard O&P does NOT readily detect:
 - Cryptosporidium spp. ¬
 - Cyclospora spp.
 - Cystoisospora spp.
 - Microsporidia
 Modified trichrome

Modified acid fast

+/- Modified Safranin

+/- UV microscopy

- Cannot easily differentiate E. histolytica from E. dispar
- 3+ specimens recommended/patient (span 5-7 days)
 - Rarely received

O&P Considerations

- <u>Typically</u> restricted to patients with high/reasonable pre-test probability
 - Immunocompromised patients
 - Pertinent exposure history (immigrants, hikers, splash parks, daycares)
 - Pertinent travel history
 - Having eaten at a commercial restaurant...
- Institutions may require prescreening for Giardia, Cryptosporidium first

Alternative Protozoal Testing

- DFA
 - Giardia, Cryptosporidium
- Antigen detection ELISA or immunochromatographic assay
 - Giardia, Cryptosporidium, E. histolytica
 - Most assays cannot differentiate E. histolytica/E. dispar
- Recommended for initial screen
 - Rapid TAT, sensitive, specific

Alternative Testing Issues

- Antigen detection ELISA or immunochromatographic assay
 - Giardia may require multiple specimens if first specimen is negative
 - Periodic shedding of cysts
- Antigen / stain+
 - No test is perfect
- DFA very laborious, low throughput
- Underutilized when indicated in documented outbreaks¹
 - Cryptosporidium SLC, 2007

GI Protozoa Revisited

Giardia lamblia/intestinalis/duodenalis

- Binucleated, flagellated, highly pathogenic protozoa
- Endemic where there is water and beavers... and deer, dogs, cats, humans, sheep, birds...
- Fecal oral transmission including:

Giardia

Trophozoite (10-20µm)

Cyst (10-14µm)

Giardia - symptoms

- Asymptomatic → Mild →
 Severe symptoms
- Diarrhea
 Malabsorption
 Abdominal pain
 Bloating
 Nausea
 Vomiting
 - 1-3 weeks
- Can become chronic

Cryptosporidium spp.

- Coccidian protozoa, stained with modified acid fast
- Transmitted fecal/oral via contaminated water
- Associated with large outbreaks
 - 2007 SLC splash-parks/pools (5,700 cases)
 - 1993 Milwaukee PWS (403,000 cases)
 - Daycares (intermittent)
- Oocysts resistant to chlorine at normal pool concentrations

Cryptosporidium spp.

- Watery diarrhea
 (1-2 weeks); shed 2 weeks
- Cramps

 Nausea
 Dehydration
 Weight loss
 Vomiting
 Fever
 OR Asymptomatic
- Immunocompromised can shed for > month (can be chronic)
- Oocysts immediately infective when shed

Entamoeba histolytica

- Worldwide distribution; fecal-oral
- Common in developing nations or areas of poor sanitation
- Can disseminate to liver
- Nearly indistinguishable from non-pathogenic *E. dispar* by microscopy

Trophozoite 15-20 μm

Cyst 10-15 μm

Entamoeba histolytica

- Diarrhea in most cases with cramping
 OR asymptomatic
- Amoebic dysentery:
 - Fever
 - Bloody stool
 - Severe stomach pain
- Amoebic liver abscess

Cyclospora cayetanensis

- Coccidian protozoa (similar to Cryptosporidium)
 - Stained with modified AF or safranin
 - Autofluorescence by UV light
- Infected humans are vector
- Tropical/subtropical regions
- 4 major recent outbreaks
 - Associated w/ bagged produce and cilantro
 - Iowa & Nebraska July/August 2013
 - Texas August 2013 & August 2014
 - Multistate May August 2015

8-10 μm

Cyclospora cayetanensis

- Watery diarrhea
 (can last months if untreated)
- Cramping
 Nausea
 Weight loss
 Loss of appetite
 Gas/bloating
 Fatigue
 OR Asymptomatic
- Vomiting & low fever (rarely)
- Oocysts <u>not infective</u> when shed

Protozoal Diarrhea

- Acute symptoms can mimic bacterial & viral diarrhea
- More predictive if symptoms are persistent
 - >15 days from onset
- Very predictive if chronic
 - >30 days from onset
- When to test for parasites becomes a challenge
 - Even a persistent or chronic infection starts as an acute infection

Classical GI Pathogen Testing

- Requires many different tests
- Variable sensitivity & specificity
 - Antigen especially
- Poor ordering practices or understanding of test limitations
 - Parasites especially
- Test results often not available in meaningful time
- What is the answer?

MULTIPLEX MOLECULAR DIAGNOSTICS

Rapidly evolving...the field circa November 10th, 2015

Why Multiplex Detection?

- Syndromes may be too similar to separate clinically
- Lack of standardized/differential driven ordering ++Cx, too many O&P's, & no viral tests

Molecular Testing Considerations

- Not appropriate in every patient
- TAT fast enough to influence care decisions?
- Will results influence clinical care?
 - Most viral/bacterial infections are self-limiting
- Positive result = stop testing = save healthcare spending?
- A test = "Excellent Patient Experience"?
 - Depends on the cost...

Molecular Testing Considerations

- Cost may be <u>significant</u> limiting factor
 - Who pays for this (outpatients)?
 - CPT codes released 2015

• 87505 3-5 targets

• 87506 6-11 targets

87507 12-25 targets

Should broad/syndromic panels be SOP?

FDA Cleared Testing Approaches

- Prodesse® ProgastroTM SSCS
- BD Max[™] Enteric Bacterial Panel & Enteric Parasite Panel
- Nanosphere Inc. Verigene® Enteric Pathogen test
- LuminexTM xTAG Gastrointestinal Pathogen Panel (GPP)
- Biofire Diagnostics Inc. FilmArray[®] GI panel

Prodesse® ProgastroTM SSCS

- Open platform, bacteria only
- Real-time PCR
- Extraction: Biomerieux NucliSENS easyMAG system
- Amplification: Cepheid Smart Cycler II

- ✓ Campylobacter
- Shiga-like Toxin producing E. coli (STEC) stx1/stx2

ProgastroTM

Pros

- Can replace stool culture
- Mirrors CAP criteria for enteric pathogen detection
- Can fit low/medium throughput volumes
- Can be performed on frozen or Cary-Blair preserved stool

Cons

- Open platform, requires molecular expertise
- Very hands on
- Batching
- May not allow for culture

ProgastroTM Performance

- 4 center study, 1244 specimens
- 100% sensitivity after molecular resolution for discrepancy
- Excellent specificity
 - Campy
 - 7 false positive: prospective
 - 5 false positive: retrospective
 - Shiga-like toxin (1 false positive)

BD MaxTM Enteric Bacterial Panel

- All-in-one platform
 - Bacterial panel
- "Walkaway" PCR
- Integrated extraction and amplification

- √ Salmonella
- √ Shigella/EIEC
- ✓ Campylobacter
- ✓ Shiga-like Toxin producing E. coli (STEC) stx1/stx2

BD MaxTM

Pros

- Can replace stool culture
- Mirrors CAP criteria for enteric pathogen detection
- Can fit low/medium throughput volumes
- Can be performed on frozen or Cary-Blair preserved stool
- Limited hands on time

Cons

- Requires molecular expertise/facilities
- Batching; semi-random access (1-24)
- May not allow for culture

BD MaxTM Performance

- Large multicenter evaluation (USA & Canada)
 - 4242 specimens
- Negative agreement values for all targets >98% vs Cx and/or antigen
 - Function of large study size with many negative specimens
- Positive agreement after resolution ranged 91-100%
 - Campy FN (5) & FP (31)
 - Salmonella FN (6) & FP (8)
 - Shiga-like toxin FP (8)

BD MaxTM & ProgastroTM

- Replace cumbersome cultures
 - Can smaller labs handle a SmartCycler?
- Increase sensitivity for challenging organisms
 - Campylobacter
 - STEC

BD MaxTM Enteric Parasite Panel

- Parasite panel FDA cleared (8/31/2015)
- Great opportunity to augment parasite specific testing
- No peer reviewed publications to date
- Stay tuned...
 - √ Giardia
 - √ Cryptosporidium
 - ✓ Entamoeba histolytica

Verigene® Enteric Pathogens

Bacteria

- Campylobacter spp.
- Salmonella spp.
- Shigella spp.
- Vibrio spp.
- Yersinia enterocolitica
- Shiga toxin 1 and 2

Viruses

- Norovirus
- Rotavirus

Verigene® Enteric Pathogens

- Cartridge format
- Real-time PCR
- Hybridization to array
- Hybridization to oligonucleotide + gold particles
- Signal amplification with silver particles
- Detection by light scattering on array

Verigene® Enteric Pathogens

- ✓ Most infections are viral
- ✓ Most testing is for bacteria

- Sweet spot?
- Broad panel in development (+ parasites)
- Option to bill by reportable? ("Flex" model)
 - Only pay for what you test

Verigene® Enteric Pathogens

Pros

- Scalable (up to 32 analyzers/reader base unit)
- Targets the most common GI pathogens in the USA
- Limited hands on time
- Does not require molecular expertise
- Samples can be cultured
- Random access

Cons

- Targets comparatively not broad
- Modules require significant bench space
- No published performance studies to date

LuminexTM xTAG GPP

Bacteria

- Salmonella
- Shigella/EIEC
- Campylobacter
- Clostridium difficile Toxin A/B
- Enterotoxigenic E. coli (ETEC) LT/ST
- E. coli O157
- Shiga-like Toxin producing E. coli (STEC) stx1/stx2

Viruses

- Rotavirus A
- Norovirus GI/GI
- Adenovirus 40/41

Parasites

- Giardia
- Cryptosporidium
- Entamoeba histolytica

LuminexTM xTAG GPP

LuminexTM xTAG GPP

Pros

- Detects wide panel of pathogens (bacterial, viral, protozoa)
- Readily detects coinfections
- Good for moderate/high volume laboratories
- Specimens may be cultured
- Can be performed on frozen or Cary-Blair preserved stool

Cons

- Requires molecular expertise/facilities
- May not allow for culture
- Long TAT
- Requires batching
- Contains C. difficile (Pro/Con?)

xTAG GPP Performance

- First to market, several studies
- Claas et al. 901 stools, 4 sites
- Sensitivity vs routine PCR:
 - Rotavirus (9/9), Norovirus (18/18), Giardia (22/22), E. histolytica (6/6)
 - Adenovirus (4/20), Cryptosporidium (21/23)
- Sensitivity vs culture:
 - Campylobacter (111/114)
 - Shiga-toxin producing *E. coli* (15/16)
 - Salmonella (62/75)
 - Shigella (40/40)
- Specificity all >96%

FilmArray® GI Panel

Bacteria

- ETEC
- EPEC
- STEC/EHEC
- STEC 0157 serotype
- EAggEC
- Vibrio spp.
- Shigella spp./EIEC
- Salmonella spp.
- Campylobacter spp.
- Yersinia enterocolitica
- Clostridium difficile
- Plesiomonas shigelloides

Viruses

- Norovirus (GI, GII & GIV)
- Adenovirus F 40/41
- Rotavirus (A, B, C)
- Astrovirus
- Sapovirus

Parasites

- Cryptosporidium spp.
- Giardia lamblia
- Entamoeba histolytica
- Cyclospora cayetanensis

FilmArray® GI Panel

Pros

- Detects wide panel of pathogens
- Readily detects coinfections
- Good for low volume laboratories
- Little hands on time, very simple
- Specimens can be cultured

Cons

- Requires multiple analyzers to accommodate higher volume testing
- Targets with poorly understood clinical correlation (EPEC)
- Contains C. difficile (Pro/Con?)
- Crossreactivity for E. histolytica & E. dispar

FilmArray® GI Panel Performance

- 4 center study, 1556 specimens¹
- Comparators: culture or PCR
- Sensitivity all >97% except:
 - Norovirus (94.5%, 52/55), Adenovirus (95.5%, 42/44), Shigella (95.9%, 47/49)
- Specificity all >98%
- 262 multiple-pathogen samples identified
- Giardia, Cryptosporidium, Cyclospora 100% sensitive
 - >99.5% specific
 - E. histolytica none identified, 100% specific.
- 2013 Cyclospora outbreak "identified" at trial site using molecular²

Truly Syndromic Approach

- Luminex & BioFire are very comprehensive!
- Easier for ordering purposes
 - Fewer "misses"
 - More identifications
- Great for learning your true epidemiology
 - Perceptions may not reflect realities
- Parasite testing on long-term inpatients?!?

More, Concerning Parasites?

- Clinical trials for parasites have low N=
- What is the "realistic" clinical performance versus "the old ways"?
- Will more than one sample need to be tested for periodic shedding?
- Will this solve our plights of experienced parasitologists?
- Will O&P volumes finally drop?
 - Will people forget O&P when they SHOULD order it
 - e.g. helminths or protozoa not targeted

ARUP's Molecular Parasitology Experience

- LDT GI Parasite PCR
 - Giardia
 - Cryptosporidium
 - Entamoeba histolytica
 - Dientamoeba fragilis
 - Cyclospora cayetanensis

Parasite Testing at 1 Year

- Cyclospora = 12
- *Cryptosporidium* = 5
- Dientamoeba fragilis = 3
- Giardia = 1
- E. histolytica = 1

- N = 287Utah = 194 (68%)
- Positivity = 8.0%– 17% in first 3 months
- Inhibited = 7(2.4%)

Case 1

26 yo female with vague gastrointestinal symptoms; mild persistent diarrhea

- O&P positive: E. histolytica/dispar
- E. histolytica IgG Serology: Positive
- E. histolytica Antigen EIA: Negative
- Patient from highly endemic country, definite past infections, O&P not useful, antigen test lacks sensitivity but specific for *E. histolytica*
- (After consult) PCR ordered: Positive, E. histolytica!

Case 2

56 yo male with recent onset, persistent diarrhea.

Uncontrolled HIV → AIDS, off HAART, critically low CD4 count, critically high viral load

- O&P: Negative
- Cryptosporidium antigen: Negative
- Modified Acid Fast stain: Negative
- PCR: Positive, Cryptosporidium!
- Patient transferred from GI service to ID, started on HAART and Nitazoxinide. Followed in clinic

Case 3

- 72 y.o. Female w/pmh colon Ca.
- Several weeks of diarrhea, typically after eating, 2-3 loose stools/day (5/2015 - 6/2015)
 - Concerned for relapse of colon Ca.
- Explosive, loose, voluminous stool preceded by intense cramps
 - Yellow, no blood
- Chills and sweats, no fevers.
- From UT; no travel Hx, no Abx use
- Concern for salads she began eating regularly in recent weeks

Case 4

- 69 yo male w/pmh IBS (x26 yrs)
- 6-7 week h/o diarrhea, 3-4 watery stools/day (5/2015-6/2015)
 - Patient noted "different than IBS"
- No recent travel (lives in UT) or Abx use
- Fecal lactoferrin (+) (consistent w/IBS)
- Fecal occult blood (-)
- C. difficile PCR (-)

Case 4 & 5

- Cyclospora!
- Neither had specific suspicion of *Cyclospora* BUT suspicion of endemic parasites prompted Parasite PCR

What Do We Know?

- Performance for various assays generally comparable
 - All tests detect more positives than conventional testing
 - Caveat: targets are not the same between assays
- Multiple infections can and will be detected
 - FilmArray® may be most robust¹
- Asymptomatic patients, if tested, will be positive on occasion
 - C. difficile, rotavirus, astrovirus, adenovirus, Salmonella, EPEC, ETEC, EAggEC

What Do We Know?

- Each test/system has advantages/disadvantages
 - Test may have to fit the lab
- Cultures may not go away
 - Public Health
 - AST
- Outcomes/cost effectiveness studies are needed!
 - Test utilization guidance will likely be needed

Conclusions

- Molecular GI testing will detect more positives than conventional testing
- Most commercial assays are comparable
- Parasitology stands to gain from the easy/streamline of testing
 - Increased sensitivity + convenience = better detection
- Utilization management will be critical
- Molecular GI Testing is here to stay!

Thank You