Genetics of Primary Immunodeficiencies

Attila Kumánovics, MD University of Utah

- Define and classify primary immunodeficiency diseases

 changing definition
- Review the role of clinical laboratory in the diagnosis of primary immunodeficiency diseases
- Demonstrate the utility of molecular diagnosis in primary immunodeficiency diseases
 - \rightarrow changing methodology
- Review examples of genetic susceptibility to bacterial, fungal and viral infections:
 - Mendelian suscept. to chronic mucocutaneous candidiasis
 - Mendelian susceptibility to mycobacterial infections
 - Genetic susceptibility to herpes simplex encephalitis

Definitions

- Primary immunodeficiency (PID): genetic
- Secondary immunodeficiency: infection, malignancy, iatrogenic

Primary Immunodeficiencies

Maternal Immunity Immunosenescence

Primary antibody deficiencies are the most common PIDs

European ESID patient registry 2010

<u>Antibody deficiencies:</u> Diagnosis ≥16yo = 86% Diagnosis ≤15yo = 46%

Gathmann et al. Clin Exp Immunol 2009

http://www.esid.org/statistics

- Prevalence: 86.2/100,000
- Incidence: 10.3/100,000
 (Joshi et al. 2009; Boyle and Buckley 2007)

- Prevalence: 86.2/100,000
- Incidence: 10.3/100,000

(Joshi et al. 2009; Boyle and Buckley 2007)

Leukemias

- Prevalence: 81.6/100,000
- Incidence: 12.5/100,000

(http://seer.cancer.gov/statfacts/html/leuks.html)

- Diagnosis of PIDs requires integration of data from clinical findings with laboratory immunological analyses and genetic testing
 - \rightarrow Infections
 - recurrent
 - life-threatening
 - unusual
 - \rightarrow Autoimmune diseases
 - → Malignancies

Diagnosis of PIDs

Clinical and family history-based diagnostic approach

Diagnostic immunology lab supports, refine phenotype

Molecular lab: diagnosis, genotype-phenotype, etc

Clinical and family history-based approach

Clinical and family history-based approach

Mutation analysis in PIDs

- Definitive diagnosis (atypical presentations)
- Presymptomatic identification
- Carrier identification, genetic counseling, prenatal diagnosis
- Prognosis (strong genotype-phenotype correlation)
- Technical considerations (DNA stability vs. live cells)

PIDs are like other genetic diseases, but

- secondary causes of ID are more common than primary (esp. in adults)

- manifestations (infections) can be the same in both primary and secondary ID as well in "healthy" individuals

• PID: changing definition

from very severe Mendelian traits to varying degree of susceptibility to infections, including susceptibility to single infectious agents

→not all-or-nothing (normal vs. immune deficient)

- ~150 recognized PIDS
- >200 genes (increasing fast)
 - candidate genes
 - mapping studies
 - novel technologies (genome/exome sequencing)
- Pathways not genes

Mendelian susceptibility to chronic mucocutaneous candidiasis

- Candida albicans is present in GI flora and and reproductive mucosa of healthy subjects
- Immunocompromised patients C albicans can cause systemic or mucosal disease
- <u>Systemic candidiasis</u> is an acute, disseminated, and invasive form mainly in patients with inherited or acquired neutrophil and T cell disorders

- Candidemia is one of the most prevalent bloodstream infections in hospital settings and is associated with significant morbidity and mortality

• <u>CMC</u> is candidiasis localized to the skin, nails, and mucous membranes (no predisposition to invasive disease, such as sepsis or pneumonia)

Predisposition to systemic candidiasis

- invasive surgery
- total parenteral nutrition
- diabetes mellitus
- intensive care conditions
- central lines
- neoplasia
- long-term use of broad-spectrum antibiotics or immunosuppressive agents
- HIV
- any global T-cell deficiency or neutrophil disorders

- Impaired T cell immunity: HIV/AIDS, SCID, DiGeorge syn., DOCK8 deficiency, etc.
- Congenital neutropenias or secondary neutropenia (e.g. after chemotherapy)
- Recognition:
 - mannans (outer portion of the cell wall)
 →TLR4, Mannose Receptor, DC-SIGN, and Dectin2
 - β -glucans (inner portion of the fungal cell wall) \rightarrow Dectin1, and MINCLE

Genetics of CMC

- Dectin-1 deficiency (AR)
- CARD-9 deficiency (AR)
- AD Hyper IgE syndrome or Job syndrome: STAT3 deficiency
- AR Hyper IgE syndrome: DOCK8 deficiency
- STAT1 mutations (AD)
- IL-17F deficiency (AR)
- IL-17RA deficiency (AR)
- APECED (or APS type I): AIRE deficiency (AR)

Molecular testing \rightarrow diagnosis, prognosis, inheritance

Immune response: receptors \rightarrow signaling \rightarrow effector functions

Mendelian susceptibility to mycobacterial disease

- Predisposition of otherwise apparently healthy individuals to infections caused by weakly virulent mycobacteria (BCG) and atypical (or nontuberculous) mycobacteria, *M. tuberculosis* and Salmonella
- Genes:
 - IFNGR1 (AR/AD)
 - IFNGR2 (AR)
 - STAT1 (AD)
 - IL12B (AR)
 - IL12RB1 (AR)*
 - NEMO (IKBKG) (XL)
 - CYBB (XL)
 - IRF8 (AR/AD)
 - ISG15 (AR)
 - (TYK2 AR)

 \rightarrow Impaired IFN- γ -mediated immunity (~50 % have unknown genetics)

- HSE is the most common cause of sporadic fatal encephalitis worldwide (70% mortality if untreated)
- Acyclovir
- Lifelong neurological sequelae of varying severity in survivors is common (>30%)
- Genes:
 - TLR3 (AR/AD)
 - UNC-93B (AR)
 - TRIF (AR/AD)
 - TRAF3 (AD)
 - TBK1 (AD)
 - NEMO (XR)
 - STAT1 (AR)
 - TYK2 (AR)

- CMC:
 - IL-17RA, IL-17F, STAT1, DECTIN1, CARD9, STAT3, DOCK8, AIRE
- MSMD:

- IFNGR1, IFNGR2, STAT1, IL12B, IL12RB1, NEMO, CYBB, IRF8, ISG15, TYK2

• HSE:

-TLR3, UNC-93B, TRIF, TRAF3, TBK1, NEMO, STAT1

→ Molecular networks/pathways, not genes
→ Single gene testing vs. gene panels

- AD STAT1 deficiency: dominant negative mutations
 → susceptibility to mycobacterial and salmonella infections
- AD STAT1 deficiency: gain-of-function mutations

 \rightarrow chronic mucocutaneous candidiasis

• AR STAT1 deficiency: loss-of-function mutations

ightarrow susceptibility to severe viral and mycobacterial disease

Definition of PIDs

- defined based on clinical/immunological phenotype
- defined based on the molecular defect
- \rightarrow none of these definitions are perfect

 Manifestations (infections) can be the same in both primary and secondary ID as well in "healthy" individuals

- Genetics + Environment

- ~150 PIDs, >200 genes (both growing)
 - increasing role for mutation testing (PIDs defined by genes)
 - novel technologies (whole genome/exome)
- One disease multiple genes (overlapping phenotypes)

- CMC, MSMD, HSE

- One gene, multiple diseases
 - STAT1, NEMO
- Inheritance: AR, AD, XL
 - AR/AD IFNGR1
- Molecular networks/pathways, not genes
 - recognition \rightarrow signaling \rightarrow effector function

References

- Primary immunodeficiencies
 - Chapel H. Clin Exp Immunol 168: 58-9, 2012
 - de Vries E et al. Clin Exp Immunol 167: 108-19, 2012
- Chronic mucocutaneous candidiasis
 - Engelhardt KR et al. J Allergy Clin Immunol 129:294-305, 2012
- Mendelian susceptibility to mycobacterial disease
 - Qu HQ et al. Int J Infect Dis 15:e305-13, 2011
 - de Beaucoudrey L et al. Medicine 89:381-402, 2010
- Genetic susceptibility to herpes simplex encephalitis
 - Sancho-Shimizu V et al. Curr Opin Virol 2011
 - Herman M et al. J Exp Med 2012