Gynecologic and Gastrointestinal Pathology: Pitfalls and Pearls in Frozen Section Diagnosis

Johanna Savage, MD University of Utah Health/ARUP Laboratories

32nd Annual Park City Anatomic Pathology Update Deer Valley Resort, Park City, UT February 13, 2019

©UNIVERSITY OF UTAH HEALTH, 2018

Gynecologic Pathology

Johanna M. Savage, M.D. Assistant Professor of Pathology University of Utah Health/ARUP Laboratories

OBJECTIVES

Not an "all inclusive" presentation

- Discuss goals of frozen section analysis in gynecologic pathology
- Discuss common diagnostic difficulties and sources of error in frozen section analysis of ovarian neoplasms
- Discuss diagnostic difficulties and sources of error in frozen section analysis of endometrial lesions

OVARIAN NEOPLASMS

Pearls...

GUIDING PRINCIPALS (<u>before</u> you look at the slides)

1. Know the patient's history

- Age
- Previous history of malignancy

2. Know the clinical presentation

- Radiology (and/or operative findings)
 - Where is the mass arising from?
 - Laterality Unilateral or bilateral?
 - Extraovarian disease?
- Serum tumor markers
 - CA125
 - CEA
 - AFP
 - Etc.

3. Look at the gross specimen

- Size
- Surface growth?
- Cut surface consistency: Solid? Cystic? Papillary excrecences?
- Cyst contents/fluid
- Color

KNOW THE <u>DECISION POINT(S)</u>

How far should I "stick my neck out"? What does the surgeon <u>need</u> to know?

ULTIMATE GOAL:

Facilitate the appropriate selection of women requiring surgical staging

DECISION POINTS

Is the neoplasm a primary ovarian neoplasm or a metastasis?

EPITHELIAL OVARIAN NEOPLASMS

NCCN NCCN NCCN Network[®]

NCCN Guidelines Version 2.2018 Ovarian Cancer NCCN Evidence Blocks™

Serous Tumors Serous cystadenoma Benign Serous adenofibroma Benign Serous surface papilloma Benign Serous borderline tumor/atypical Borderline proliferative serous tumor Serous borderline tumor-Carcinoma in-situ/ micropapillary variant/non-invasive grade III intraepithelial low-grade serous carcinoma neoplasia Low-grade serous Malignant High-grade serous Malignant Mucinous Tumors Mucinous cystadenoma Benign Mucinous adenofibroma Benign Borderline Mucinous borderline tumor/atypical proliferative mucinous tumor Mucinous carcinoma Malignant Endometrioid Tumors Endometriotic cyst Benign · Endometriotic cystadenoma Benian Endometriotic adenofibroma Benign Endometrioid borderline tumor/atypical Borderline proliferative endometrioid tumor Malignant Endometrioid carcinoma **Clear Cell Tumors** Clear cell cystadenoma Benign Clear cell adenofibroma Benian Borderline Clear cell borderline tumor/atypical proliferative clear cell tumor Clear cell carcinoma Malignant

WHO HISTOLOGIC CLASSIFICATION^{1,2}

Brenner Tumors	
Brenner tumor	Benign
 Borderline Brenner tumor/atypical proliferative Brenner tumor 	Borderline
Malignant Brenner tumor	Malignant
Seromucinous Tumors • Seromucinous cystadenoma	Benign
 Seromucinous adenofibroma 	Benign
 Seromucinous borderline tumor/atypical proliferative seromucinous tumor 	Borderline
 Seromucinous carcinoma 	Malignant
Undifferentiated carcinoma	Malignant
Mesenchymal Tumors • Low-grade endometrioid stromal sarcoma • High-grade endometrioid stromal sarcoma	Malignant Malignant
Mixed Epithelial & Mesenchymal Tumors	
Adenosarcoma	Malignant
Carcinosarcoma	Malignant

NCCN: Reproduced with permission from Kurman RJ, Carcangiu ML, Herrington CS, Young RH. World Health Organization Classification of Tumours of the Female Reproductive Organs. IARC. Lyon, 2014.

<u>CRITICAL</u> POINT: ATYPICAL PROLIFERATIVE (BORDERLINE)

Epithelial ovarian neoplasms (serous, mucinous, endometrioid, transitional cell/Brenner) with <u>uncertain biologic behavior</u>

- <u>Most</u> behave in a benign/indolent fashion
- But... a small proportion (predominantly serous) can recur and progress

• Getting to the correct diagnosis

- Under diagnosis
 - Sampling errors
 - Interpretive errors
- Over diagnosis

- Should I completely stage the patient?
- Should I perform some type of modified staging?
 - ✓ Frozen section diagnosis
 - ✓ Age
 - ✓ Fertility desires
 - ✓ Other operative findings

Serous Neoplasms

https://www.humpath.com/spip.php?article6693

Serous cystadenofibroma

Serous cystadenofibroma

.

Serous cystadenofibroma with focal epithelial proliferation (<10% of the tumor demonstrates epithelial proliferation reminiscent of serous borderline tumor)

Serous borderline tumor/atypical proliferative serous tumor

14

30

020

Summer 12 8.23 (PI

C.

C

1.20

China.

20

Serous borderline tumor/atypical proliferative serous tumor

Serous borderline tumor/atypical proliferative serous tumor, micropapillary variant (non-invasive low-grade serous carcinoma)

Serous borderline tumor/atypical proliferative serous tumor, micropapillary variant (non-invasive low-grade serous carcinoma)

15 2 1 - 1 × h-

(non-invasive low-grade serous carcinoma)

Low-grade serous carcinoma

Low-grade serous carcinoma arising in association with serous borderline tumor/atypical proliferative serous tumor, micropapillary variant (non-invasive low-grade serous carcinoma), permanent section

High-grade serous carcinoma

÷.

High-grade serous carcinoma

1000

3

50.3

102.5

High-grade serous carcinoma

U.

Ser Langes

10 Jack 1 61

Pitfalls #1 and #2

SCENARIO:

Woman with a complex ovarian mass is taken to surgery for salpingo-oophorectomy and possible staging. The ovary was sent for frozen section analysis and a diagnosis of "at least atypical proliferative (borderline) serous tumor" was rendered. As the surgery progressed, the surgeon sends down what is labeled "peritoneal lesion" for frozen section.

OR

Woman with a complex ovarian mass is taken to surgery for salpingo-oophorectomy and possible staging. Upon entering the peritoneum, the surgeon notes a peritoneal lesion and sends it down for frozen section analysis.

Well-differentiated papillary mesothelioma (WDPM)

Malpica A, Sant'Abrogio S, Deavers MT, Silva EG. Well-differentiated Papillary Mesothelioma of the Female Peritoneum: A Clinicopathologic Study of 26 Cases. Am J Surg Pathol. 2012;36:117-127.

Low-grade serous carcinoma (invasive implant)

-

Adequate to say: "Atypical serous proliferation with extensive psammomatous calcifications, defer to permanent." (Distinguishing between non-invasive and invasive implants can be difficult on frozen section and won't necessarily change the operative course)

Pitfall #3

SCENARIO:

Postmenopausal woman with a complex cystic ovarian mass undergoing salpingo-oophorectomy. Frozen section requested on the ovary.

High-grade serous carcinoma * Architectural features that are reminiscent of APST or APST micropapillary variant (cribriform pattern) Pitfall #4

SCENARIO:

Postmenopausal woman with a complex cystic ovarian mass undergoing salpingo-oophorectomy. Frozen section requested on the ovary.

Premenopausal female with a history of endometriosis, presents with a unilateral complex ovarian mass.

Seromucinous borderline tumor/ atypical proliferative seromucinous tumor

2.3

0.40 5

F 62

3

11 - a A - 41

Mucinous Neoplasms

Mucinous borderline tumor/atypical proliferative mucinous tumor

1.1.1

Mucinous borderline tumor/atypical proliferative mucinous tumor

Mucinous borderline tumor/atypical proliferative mucinous tumor

* 935 S 125

Mucinous borderline tumor/atypical proliferative mucinous tumor, permanent section

A DECK DECK

REAL PRODUCTION

Mucinous borderline tumor/atypical proliferative mucinous tumor, permanent section

and and

s.,

DOI

1.9

Mucinous borderline tumor/atypical proliferative mucinous tumor, permanent section

Pitfall #6

Metastatic pancreatic adenocarcinoma mimicking a mucinous cystadenoma

1. 1. 1. 1

Metastatic pancreatic adenocarcinoma

FALL IS TO THE ...

Metastatic low-grade appendiceal mucinous neoplasm (LAMN)

Metastatic endocervical adenocarcinoma

MUCINOUS TUMORS

GROSS CHARACTERISTICS

- Laterality of the tumor
- Size of the tumor
- Appearance

TABLE 2. Distribution of primary/metastatic tumors

 based on size of largest ovary and laterality

A	<10 cm	≥10 cm	
Unilateral	13% primary	82% primary	
	87% metastatic	18% metastatic	
Bilateral	5% primary	8% primary	
	95% metastatic	92% metastatic	
В	Primary	Metastatic	
Unilateral ≥10 cm	9	2	
Unilateral <10 cm	1	7	
Bilateral ≥10 cm	1	11	
Bilateral <10 cm	1	18	

Note: The above data do not include two tumors with unknown laterality or unknown size (both metastatic).

Tumor Type	n	Size (cm)			
		Mean	Median	Range	Bilateral (%)
Primary ovarian mucinous tumors (total)	52	21.9	21.0	12.0-36.0	0
Atypical proliferative (borderline) mucinous tumors	31	22.1	22.0	12.0-35.0	0
Mucinous carcinomas	21	21.5	20.0	13.0-36.0	0
Metastatic mucinous tumors (total)	142	13.0	12.0	2.1-45.0	65
Colorectal carcinomas	46	13.6	13.0	2.5-45.0	57
Appendiceal tumors					
Low-grade tumors	28	16.0	18.0	3.0-30.0	75
Carcinomas	20	12.0	10.9	3.5-24.0	90
Pancreaticobiliary tract carcinomas	20	9.8	9.8	2.5-21.0	90
Small intestinal carcinomas	3	15.8	15.0	12.5-20.0	33
Gastric carcinomas	5	9.9	9.0	6.0-15.0	40
Endocervical carcinomas	20	12.2	12.3	2.1-30.0	35

TABLE 4. Primary and Metastatic Mucinous Tumors: Size and Laterality Data (All Cases Combined)

Seidman J, Kurman R, Ronnett B. Primary and Metastatic Mucinous Adenocarcinomas in the Ovaries: Incidence in Routine Practice With a New Approach to Improve Intraoperative Diagnosis. Am J Surg Pathol. 2003;27(7):985-993.

Yemelyanova AV, Vang R, Judson K, Wu L-S-F, Ronnett BM. 2008. Distinction of Primary and Metastatic Mucinous Tumors Involving the Ovary: Analysis of Size and Laterality Data by Primary Site with Reevaluation of an Algorithm for Tumor classification. Am J Surg Pathol. 2008;32:128-138.

METASTASIS

ARCHITECTURAL AND HISTOLOGIC CHARACTERISTICS

- Multinodular growth
- "Hypermucinous", pseudomyxoma ovarii
- Discrepant cytology:architecture
 - i.e. high-grade cytology with well differentiated architecture

Endometrioid Neoplasms

Endometrioid borderline tumor/atypical proliferative endometrioid tumor

1 728765 aut
Endometrioid borderline tumor/atypical proliferative endometrioid tumor

The A REAL PROPERTY OF THE PRO

25

A Contraction of Lat.

Endometrioid carcinoma

borne

Reasonable Approaches to the Diagnostic Line

Don't overcommit, but give the surgeon enough information to proceed

CYST WITHOUT AN EPITHELIAL LINING

- "Denuded simple cyst; no evidence of malignancy on limited sectioning. Defer to permanent section."
- "Denuded hemorrhagic cyst; no evidence of malignancy on limited sectioning. Defer to permanent section."

Not uncommon

- First step: Take a few additional sections for frozen section analysis
 - Often encounter this situation with endometriotic cysts (you may find some additional clues in the stroma that would suggest this diagnosis)
 - May also occur with serous and mucinous cysts
- If, after additional sampling, you still can't classify the lesion ... be descriptive and discuss that there are no overt malignant features in these sections.

BENIGN CYSTS

- Serous neoplasms:
 - "Serous cystadenoma on limited sampling."
- Mucinous neoplasms:
 - "Mucinous cystic neoplasm, consistent with/favor mucinous cystadenoma on limited sampling"
- Endometrial neoplasms:
 - "Endometriotic cyst/endometrioma, on limited sampling."
 - "Hemorrhagic cyst with features suggestive of endometriotic cyst, on limited sampling."

MINIMAL/FOCAL EPITHELIAL PROLIFERATION OR ATYPIA

- "____ (serous/mucinous) cystadenoma with focal epithelial proliferation/atypia, defer to permanent."

Uncommon scenario

- First step: Take a few additional sections for frozen section analysis
- If, after additional sampling, you are still in the same diagnostic category... discuss your findings with the surgeon. You can state that while you favor a benign lesion, you cannot exclude a borderline tumor and that additional sectioning is needed for definitive characterization.

In one study, approximately 25% went from benign to borderline tumor on final diagnosis

UNEQUIVOCAL FEATURES OF A BORDERLINE TUMOR

 "At least _____ (serous/mucinous/endometrioid) borderline tumor, on limited sampling."

Most surgeons will proceed with staging if a frozen section is called "borderline" or "adenocarcinoma".

However, depending on the patient's age, fertility desires, operative findings, etc., some surgeons may chose to do some degree of modified staging.

If you see clear <u>micropapillary architectural features</u>, mentioning this to the surgeon at the time of frozen section can be helpful (especially in younger patients)

MUCINOUS CARCINOMA

- "Adenocarcinoma with mucinous features."
- "Mucinous adenocarcinoma, favor ovarian primary on limited sampling."
- "Mucinous adenocarcinoma, favor metastatic adenocarcinoma on limited sampling."
- "Mucinous adenocarcinoma, defer to permanent section."

Discuss with the surgeon your impression regarding the histologic features that are present and if you can favor a site of origin. Often asking about the appearance of the peritoneum, bowel, appendix, etc. can be helpful to assess the probability of a primary or metastatic lesion.

MULLERIAN CARCINOMA (SEROUS, CLEAR CELL, ENDOMETRIOID)

- "High-grade carcinoma/adenocarcinoma, compatible with ovarian primary on limited sampling."
- "High-grade carcinoma/adenocarcinoma, compatible with ovarian primary with _____ (serous, clear cell, endometrioid) features) on limited sampling."

For operative purposes, the type of carcinoma (serous, clear cell, endometrioid) doesn't make a difference

If you see endometrioid carcinoma, you may or may not be able to determine whether the lesion is primary vs. metastatic (look for precursor lesions in the background)

SENSITIVITY AND SPECIFICITY

Study	TP	βΡ	FN	TN	% Ben study	# DP	% BOT study	% Mal study	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Cross 2012	415	- 5	101	918	54.0	516.0	10.0	36.0	0.80 [0.77, 0.84]	0.99 (0.99, 1.00)	-	•
Stewart 2006	251	- 4	15	644	60.0	266.0	11.0	29.0	0.94 [0.91, 0.97]	0.99 (0.98, 1.00)	•	•
Pavlakis 2009	135	0	19	691	70.0	154.0	11.0	18.0	0.88 [0.81, 0.92]	1.00 [0.99, 1.00]		
Acikalin 2014	132	- 0	6	144	43.0	138.0	9.0	49.0	0.96 [0.91, 0.96]	1.00 [0.97, 1.00]	-	
Fanfani 2007	106	2	-21	182	41.0	127.0	18.0	41.0	0.83 [0.76, 0.89]	0.99 (0.96, 1.00)	-	•
Bige 2011	115	- 6	6	393	71.0	121.0	5.0	23.0	0.95 [0.90, 0.98]	0.99 [0.97, 1.00]	-	•
livan 2005	-104	- 0	16	394	69.0	120.0	8.0	24.0	0.87 [0.79, 0.92]	1.00 (0.99, 1.00)	-	
Rose 1994	111	1	- 9	262	61.0	120.0	8.0	31.0	0.93 [0.86, 0.97]	1.00 (0.98, 1.00)	-	•
Wasinghon 2008	82	8	- 21	266	58.0	103.0	15.0	27.0	0.80 [0.71, 0.87]	0.97 [0.94, 0.99]		•
Taskiran 2008	- 90	0	- 2	112	48.0	92.0	7.0	45.0	0.98 [0.92, 1.00]	1.00 [0.97, 1.00]	-	-
Maheshwari 2006	- 86	- 2	6	116	51.0	92.0	5.0	44.0	0.93 [0.86, 0.98]	0.98 [0.94, 1.00]	-	-
Sukumaran 2014	73	1	15	144	51.0	88.0	11.0	38.0	0.83 [0.73, 0.90]	0.99 [0.96, 1.00]		•
Gorisek 2009	73	0	9	49	2.0	82.0	35.0	63.0	0.89 [0.80, 0.95]	1.00 [0.93, 1.00]		-
Wootipeern 2006	68	- 2	11	132	53.0	79.0	10.0	37.0	0.86 [0.76, 0.93]	0.99 [0.95, 1.00]	-	
Wang 1998	- 69	0	- 4	223	68.0	73.0	8.0	25.0	0.95 [D.87, 0.98]	1.00 (0.98, 1.00)	-	•
Tangitgamol 2004	62	0	10	127	57.0	7.2.0	7.0	36.0	0.86 [0.76, 0.93]	1.00 (0.97, 1.00)		-
Cuello 1999	- 67	- 3	- 4	415	81.0	71.0	5.0	15.0	0.94 [0.86, 0.99]	0.99 (0.98, 1.00)	-	•
Pinto 2001	- 64	1	- 5	173	64.0	69.0	7.0	28.0	0.93 [0.84, 0.98]	0.99 [0.97, 1.00]		•
Rakhshan 2009	60	1	- 5	216	72.0	65.0	5.0	23.0	0.92 [0.83, 0.97]	1.00 [0.97, 1.00]		•
Twaalthoven 1991	-64	0	6	105	65.0	60.0	8.0	36.0	0.90 [0.79, 0.96]	1.00 (0.97, 1.00)		-
Subbian 2013	- 55	1	- 5	-66	35.0	60.0	14.0	51.0	0.92 [0.82, 0.97]	0.98 [0.91, 1.00]	-	-
Harned 1993	- 55	1	0	268	0.08	55.0	3.0	17.0	1.00 [0.94, 1.00]	1.00 [0.98, 1.00]	-	•
Wakahara 2001	- 64	0	0	133	63.0	54.0	0.8	29.0	1.00 [0.93, 1.00]	1.00 [0.97, 1.00]	-	-
Malipatil 2013	- 46	- 0	- 0	166	69.0	-50.0	7.0	24.0	0.85 [0.72, 0.93]	1.00 (0.98, 1.00)		•
Boriboonhirunsam 2004	47	0	- 5	-95	61.0	52.0	4.0	35.0	0.90 [0.79, 0.97]	1.00 (0.96, 1.00)		-
Suprasert 2008	46	0	- 4	62	38.0	50.0	17.0	45.0	0.92 [0.81, 0.98]	1.00 [0.94, 1.00]		-
Yeo 1998	- 40	- 0	6	270	79.0	46.0	6.0	15.0	0.87 [0.74, 0.85]	1.00 (0.99, 1.00)		•
Naik 2008	- 40	1	- 5	-83	57.0	45.0	9.0	35.0	0.89 [0.76, 0.96]	0.99 [0.94, 1.00]		-
Puis 1997	- 27	- 1	-11	255	73.0	38.0	14.0	13.0	0.71 [0.54, 0.85]	1.00 (0.98, 1.00)		•
Bazot 2006	- 29	1	7	114	62.0	36.0	15.0	24.0	0.81 [0.64, 0.92]	0.99 [0.95, 1.00]		•
Torres 1998	- 28	- 2	- 7	86	63.0	35.0	8.0	28.0	0.60 [0.63, 0.92]	0.98 [0.92, 1.00]		-
Lim 1997	- 34	0	1	136	75.0	35.0	5.0	20.0	0.97 [0.85, 1.00]	1.00 [0.97, 1.00]		-
liker 2011	20	0	8	238	86.0	28.0	3.0	11.0	0.71 [0.51, 0.87]	1.00 [0.98, 1.00]		
Toneva 2012	- 26	0	3	- 38	27.0	-28.0	30.0	42.0	0.89 [0.72, 0.98]	1.00 [0.91, 1.00]		-
Yarandi 2008	- 22	3	2	-79	74.0	24.0	4.0	23.0	0.92 [0.73, 0.99]	0.96 (0.90, 0.99)		-
Canis 2004	18	3	- 4	111	64.0	22.0	20.0	16.0	0.82 [0.60, 0.95]	0.97 [0.93, 0.99]		-
Kokka 2009	19	- 0	1	- 30	40.0	20.0	20.0	40.0	0.95 [0.75, 1.00]	1.00 (0.88, 1.00)		-
Garcia 1997	7	0	- 4	19	53.0	11.0	10.0	37.0	0.64 [0.31, 0.89]	1.00 (0.82, 1.00)		

Forest plot: frozen section threshold malignant vs borderline or benign

SENSITIVITY AND SPECIFICITY

Study	TP	- FP	FN	TN	% Ben study	% BOT study	% Mai study	# DN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Cross 2012	497	115	19	808	54.0	10.0	36.0	923.0	0.96 [0.94, 0.96]	0.88 (0.85, 0.90)	•	•
Pavlakis 2009	246	-7	- 5	587	70.0	11.0	18.0	691.D	0.98 [0.95, 0.99]	0.99 [0.98, 1.00]	•	•
Stewart 2006	259	-87	-7	661	0.08	11.0	29.0	648.0	0.97 [0.95, 0.99]	0.87 [0.84, 0.89]	-	-
Cuello 1999	70	-20	1	390	81.0	5.0	15.0	418.0	0.99 [0.92, 1.00]	0.95 (0.93, 0.97)	-	•
Bige 2011	120	-27	1	371	71.0	5.0	23.0	398.0	0.99 [0.95, 1.00]	0.93 (0.90, 0.95)	-	•
Ivan 2005	117	33	- 3	351	69.0	8.0	24.0	384.0	0.97 [0.93, 0.99]	0.91 [0.88, 0.94]	-	•
Wasinghon 2008	100	-44	- 3	229	58.0	15.0	27.0	273.0	0.97 [0.92, 0.99]	0.84 (0.79, 0.88)	•	-
Yeo 1998	43	13	3	257	79.0	6.0	15.0	270.0	0.93 [0.82, 0.99]	0.95 [0.92, 0.97]		•
Harned 1993	- 55	9	0	260	0.08	3.0	17.0	269.0	1.00 [0.94, 1.00]	0.97 [0.94, 0.98]		•
Rose 1994	115	-17	- 6	246	61.0	8.0	31.0	283.0	0.96 [0.91, 0.99]	0.94 (0.90, 0.96)	-	•
Puls 1997	37	-35	1	221	73.0	14.0	13.0	256.0	0.97 [0.86, 1.00]	0.86 (0.82, 0.90)		-
liker 2011	- 24	-7	- 4	231	86.0	3.0	11.0	238.0	0.86 [0.67, 0.96]	0.97 [0.94, 0.99]		•
Wang 1998	72	18	1	205	0.83	8.0	25.0	223.0	0.99 [0.93, 1.00]	0.92 [0.88, 0.95]	-	-
Rakhshan 2009	63	11	- 2	206	72.0	5.0	23.0	217.0	0.97 [0.89, 1.00]	0.95 [0.91, 0.97]	-	
Fanfani 2007	114	-29	13	155	41.0	18.0	41.0	184.0	0.90 [0.83, 0.94]	0.84 [0.78, 0.89]	-	-
Pinto 2001	67	12	- 2	162	64.0	7.0	28.0	174.0	0.97 [0.90, 1.00]	0.93 [0.88, 0.96]		-
Malipatil 2013	- 60	14	- 3	161	69.0	7.0	24.0	165.0	0.94 [0.84, 0.99]	0.92 (0.86, 0.95)		-
Sukumaran 2014	- 87	- 24	1	121	51.0	11.0	38.0	145.0	0.99 [0.94, 1.00]	0.83 (0.76, 0.89)	-	-
Asikalin 2014	135	-26	3	118	43.0	9.0	49.0	144.0	0.98 [0.94, 1.00]	0.82 [0.75, 0.88]	-	
Lim 1997	- 34	8	1	128	75.0	5.0	20.0	136.0	0.97 [0.95, 1.00]	0.94 [0.89, 0.97]		-
Wootipeern 2006	74	15	- 5	119	53.0	10.0	37.0	134.0	0.94 [0.86, 0.96]	0.89 [0.82, 0.94]	-	-
Wakahara 2001	- 54	-11	0	122	63.0	8.0	29.0	133.0	1.00 [0.93, 1.00]	0.92 [0.86, 0.96]	-	-
Tangitgamol 2004	71	8	1	119	67.0	7.0	36.0	127.0	0.99 [0.93, 1.00]	0.94 [0.88, 0.97]	-	-
Maheshwari 2006	- 89	- 7	- 31	111	51.0	5.0	44.0	118.0	0.97 [0.91, 0.99]	0.94 (0.88, 0.98)		-
Bazot 2006	34	15	- 2	100	62.0	15.0	24.0	115.0	0.94 [0.81, 0.99]	0.87 [0.79, 0.93]		
Canis 2004	- 21	25	1	89	64.0	20.0	16.0	114.0	0.95 [0.77, 1.00]	0.78 [0.69, 0.85]		
Taskiran 2008	- 90	12	- 2	100	48.0	7.0	45.0	112.0	0.98 [0.92, 1.00]	0.89 (0.82, 0.94)	-	-
Twaalthoven 1991	- 58	- 9	- 2	- 96	55.0	8.0	36.0	105.0	0.97 [0.88, 1.00]	0.91 (0.84, 0.96)	-	+
Boriboonhirunsam 2004	49	8	3	87	61.0	4.0	35.0	95.0	0.94 [0.84, 0.99]	0.92 [0.84, 0.96]		-
Torres 1998	29	- 2	- 6	86	63.0	8.0	28.0	88.0	0.83 [0.66, 0.93]	0.98 (0.92, 1.00)		-
Naik 2006	43	12	- 2	-72	57.0	9.0	35.0	84.0	0.96 [0.85, 0.99]	0.86 [0.76, 0.92]		
Yarandi 2008	22	- 5	- 2	-77	74.0	4.0	23.0	82.0	0.92 [0.73, 0.99]	0.94 (0.86, 0.98)		-
Suprasert 2008	48	16	- 2	46	38.0	17.0	45.0	62.0	0.96 [0.86, 1.00]	0.74 (0.62, 0.84)		
Subbian 2013	58	9	- 2	48	35.0	14.0	51.0	- 57.0	0.97 [0.88, 1.00]	0.84 [0.72, 0.93]	-	
Gorisek 2009	81	-35	1	- 14	2.0	35.0	63.0	49.0	0.99 [0.93, 1.00]	0.29 [0.17, 0.43]	-	
Toneva 2012	26	16	- 2	-22	27.0	30.0	42.0	38.0	0.93 [0.76, 0.99]	0.58 [0.41, 0.74]		
Kokka 2009	19	-11	1	19	40.0	20.0	40.0	30.0	0.95 [0.75, 1.00]	0.63 (0.44, 0.80)		
Garcia 1997	0	10	- 4	16	53.0	10.0	37.0	19.0	0.00 (0.00, 0.60)	0.62 [0.41, 0.80]		
											io diz di4 di6 di8 1i .	0 0.2 0.4 0.6 0.8 1

Forest plot: frozen section threshold malignant or borderline vs benign

Ratnavelu NDG, Brown AP, Mallett S, Scholten RJPM, Patel A, Founta C, Galaal K, Cross P, Naik R. Intraoperative frozen section analysis for the diagnosis of early stage ovarian cancer in suspicious pelvic masses. Cochrane Database of Systematic Reviews 2016, 3. Art. No.: CD010360. DOI: http://dx.doi.org/10.1002/14651858.CD010360.pub2

FACTORS AFFECTING FS ACCURACY

- Histologic subtype
- Tumor size
 - Various cut-offs
 proposed: 10, 13, 15,
 20 cm
- Expertise of the pathologist?
- Technical limitations
 - Frozen section artifact

Table 1

The relationship between clinicopathological parameters and the concordance of frozen section diagnoses.

Characteristic	Concordance (%)	p Value
Patient age1		0.17
<42 years	82	
>42 years	82	
Tumor histology		< 0.001
Serous	92	
Mucinous	62	
Others	55	
Tumor diameter ¹		0.001
≤100 mm	90	
>100 mm	68	
Ca-125 level ¹		0.19
≤44 IU/mI	75	
>44 IU/ml	85	
Menopausal status		0.50
Premenopausal	82	
Postmenopausal	71	
Laterality of tumor		0.50
Unilateral	75	
Bilateral	85	

¹ Median value.

UTERINE ENDOMETRIAL NEOPLASMS

Pearls...

KNOW THE <u>DECISION POINT</u>

What does the surgeon need to know?

ULTIMATE GOAL:

Facilitate the appropriate selection of women requiring surgical staging

 Principally – which patients need a lymph node dissection?

Incidence of lymph node metastases correlates with the <u>depth of invasion</u> and <u>grade of tumor</u>

DO YOU NEED A FROZEN?

Preoperative biopsy grade:

 Variable correlation between preoperative biopsy/curettage and final pathology

Depth of invasion:

Is a gross assessment adequate?

- In some cases -- Yes
- HOWEVER...
 - Gross assessment of depth of invasion becomes <u>less accurate as the</u> <u>grade of the tumor increases</u>
 - Some patterns of invasion may be difficult to grossly identify
 - i.e. MELF pattern (<u>Microcystic El</u>ongated and <u>Fragmented</u>)
 - Benign mimics of invasion
 - i.e. Adenomyosis (may or may not be involved by tumor)

Intraoperative Gross Examination

Intraoperative Frozen Section

Alcazar JL, Dominguez-Piriz J, Juez L, Caparros M, Jurado M. Intraoperative Gross Examination and Intraoperative Frozen Section in Patients with Endometrial Cancer for Detecting Deep Myometrial Invasion: A Systematic Review and Meta-analysis. Int J Gynecol Cancer 2016;26:407-415.

Figure 2 Assessment of myometrial invasion. (a) Direct invasion from the endometrium is the most recognizable and reproducible form of invasion, particularly when the advancing front is jagged and associated with a stromal response. In this situation, the depth of invasion is measured from the nearest adjacent uninvolved endomyometrial junction to the deepest focus of invasion. (b) Discontinuous myometrial invasion; ensure the discontinuous focus is invasive (illustrated by spiculated contours), not adenomyosis colonized by carcinoma (illustrated by rounded contours in c-e). (c and d) Depth of invasion in these cases is measured from a virtual plane whose location is estimated from the adjacent endomyometrial junction. In c, the invasive focus is represented by a broad, pushing front, a pattern that is difficult to evaluate. Pushing invasion can often be recognized by the presence of a stromal response at the leading edge. In d, the invasive focus is mostly discontinuous; the discontinuous focus of myometrial invasion can be distinguished from adenomyosis because of its spiculated shape. Histologically, the lack of endometrial stroma and the presence of surrounding desmoplasia are the two most helpful features that indicate myometrial invasion is present. (e) Rarely, carcinoma may arise in adenomyosis or invade from a deep focus of adenomyosis. In this situation, the depth of invasion should be measured from the junction of the adenomyosis and myometrium to the deepest area of invasive carcinoma. (This figure was published in Uterine Pathology, Copyright Cambridge University Press, 2012).

Soslow R. Practical issues related to uterine pathology: staging, frozen section, artifacts, and Lynch syndrome. Mod Pathol. 2016;29:S59-S77.

able 1					
Guidelines for surgical management of endometrial cancer at Mayo Clinic, Rochester, Minnesota (2004–2006)					
Bilateral salpingo-oophorectomy					
eritoneal cytology					
Bilateral pelvic and para-aortic lymphadenectomy					
Para-aortic dissection up to renal vessels					
Excision of gonadal vessels at insertions (optional)					
Omit lymphadenectomy if no disease beyond corpus and					
(1) Endometrioid (grade 1 or 2), MI \leq 50%, and PTD \leq 2 cm; or					
(2) Endometrioid and no MI (independent of grade and PTD)					
Imentectomy, staging biopsies, or cytoreduction for nonendometrioid or advanced disease					

Abbreviations: MI, myometrial invasion; PTD, primary tumor diameter. Data from Mariani et al. [28].

Table 1. Description of the risk-stratification models

Criteria	Low-risk	High-risk		
Mayo criteria	 Grade 1 or 2, MMI ≤50%, and PTD ≤2 cm No MMI (independent of grade and PTD) 	 Grade 1 or 2, MMI ≤50%, and PTD >2 cm Grade 3 		
		• MMI ≥50%, any grade or PTD		
Mayo-modified criteria	 Grade 1 or 2, MMI ≤50%, regardless of PTD 	 Grade 2, MMI ≤50%, and PTD ≥3 cm 		
	 Grade 2 tumors with PTD <3 cm and MMI ≤50% 	• Grade 3, MMI ≤50%		
	Grade 3 tumors with no MMI	 MMI ≥50%, any grade or PTD 		
GOG-99 criteria	Grade 1 or 2, ECs confined to the endometrium, stage IA	 Any age ≥3 pathologic risk factors 		
	 Age ≤50 years + ≤2 pathologic risk factors 	 Age 50–69 years + ≥2 pathologic risk factors 		
	 Age 50–69 years + ≤1 pathologic risk factor 	 Age ≥70 years + ≥1 pathologic risk factor 		
	 Age ≥70 years + no pathologic risk factors 	• Risk factors: 1) grade 2 or 3 histology; 2) positive LVSI; and 3		
	 Risk factors: 1) grade 2 or 3 histology; 2) positive LVSI; and 3) MMI to outer 1/3 	MMI to outer 1/3		
ESMO-modified criteria	 Stage IA (grades 1 and 2) with endometrioid type, LVSI negative Stage IB (grades 1 and 2) with endometrioid type, LVSI negative 	 Stage IA, grade 3 (regardless of LVSI) Stage I, grade 1 or 2, LVSI positive (regardless of MMI) Stage IB, grade 3 with endometrioid type (regardless of LVSI) 		

EC, endometrial cancer; ESMO, European Society for Medical Oncology; GOG-99, Gynecologic Oncology Group-99; LVSI, lymphovascular space invasion; MMI, myometrial invasion; PTD, primary tumor diameter.

Mariani A, Dowdy SC, Cliby WA, Gostout BS, Jones MB, Wilson TO, Podratz KC. Prospective assessment of lymphatic dissemination in endometrial cancer: A paradigm shift in surgical staging. Gynecologic Oncology 2008;109:11-18.

Korkmaz V, Meydanli MM, Yalcin I, Sari ME, Sahin H, Kocaman E, Haberal A, Dursun P, Gungor T, Ayhan A. Comparison of three different risk-stratification models for predicting lymph node involvement in endometrial endometrial cancer clinically confined to the uterus. J Gynecol Oncol. 2017;28(6):e78.

CONTROVERSIAL ELEMENTS

- Variability in surgeon request for frozen section
- No consensus on what constitutes an adequate lymph node dissection
 - Number of nodes?
 - Pelvic vs. pelvic and para-aortic?
- Sentinel lymph nodes?

Pitfall #1...

Soslow R. Practical issues related to uterine pathology: staging, frozen section, artifacts, and Lynch syndrome. Mod Pathol. 2016;29:S59-S77.

Pitfall #2...

G

....

Endometrioid carcinoma, FIGO grade 1, with MELF pattern invasion (Microcystic Elongated and Fragmented) Permanent section

1200

the same it is a day

have all

1110000

Pitfall #3...

SCENARIO

Premenopausal woman with an history of abnormal pap smears presents with an "endometrial mass" and vaginal bleeding that required numerous blood transfusions. The clinical team was unable to get a preoperative biopsy due to the bleeding and proceeded with hysterectomy.

Grossly, mass centered at lower uterine segment/upper endocervix with involvement of the endometrial fundus.

Yemelyanova A, Vang R, Seidman J, Gravitt P, Ronnett R. Endocervical Adenocarcinomas With Prominent Endometrial or Endomyometrial Involvement Simulating Primary Endometrial Carcinomas: Utility of HPV DNA Detection and Immunohistochemical Expression of p16 and Hormone Receptors to Confirm the Cervical Origin of the Corpus Tumor. Am J Surg Pathol. 2009;33(6):914-924/

Photo Credit: Johnny Adophson