

Shiga Toxigenic *E. coli*: a fully emerged, still underappreciated pathogen

Marc Roger Couturier, Ph.D., D(ABMM)

Medical Director of Parasitology/Fecal Testing, Infectious Disease Rapid Testing, and Microbial Immunology; ARUP Laboratories
Assistant Professor, Department of Pathology

University of Utah

Disclosures

- Speaking fees/honorarium Meridian Biosciences
- Honorarium Biofire Diagnostics
- Research reagents BioGX
- Research reagents Alere

Objectives

- Summarize the key features of STEC and the illnesses associated with infection
- Evaluate their laboratory methods to determine if their current practice meets the guidelines and recommendations for testing
- Evaluate their laboratory's ability to detect emerging strains of STEC

Pathogenic E. coli

- Enteropathogenic *E. coli* (EPEC)
- Uropathogenic E. coli (UPEC)
- Enterotoxigenic *E. coli* (ETEC)
- Enteroinvasive *E. coli* (EIEC)
- Extraintestinal pathogenic (ExPEC)
- Enteroaggregative E. coli (EAggEC)
- Shigatoxigenic E. coli

What's in a name?

- STEC = shiga toxigenic *E. coli*
 - Toxin name is shiga-like toxin
- VTEC = verotoxigenic E. coli
 - Attributed to early cytotoxic effects seen in Vero cells (antiquated name)
- EHEC = enterohaemorrhagic *E. coli*
 - Attributed to blood loss from the bowel

STEC

- First isolated in 1982
- Infectious dose 10-50 cfu
 - 3-8 day incubation period (dose dependent?)
- Media-worthy: several prominent foodborne disease outbreaks worldwide
 - Multiple deaths, significant healthcare dollars
- Conventionally serotyped by:
 - "O" lipopolysaccharide and "H" flagellar antigens

What is STEC?

- Normal E. coli...
 - Considered of ungulate origin
 - Two phage-encoded shiga-like toxins
 - Stx1 analogous to Shigella dysenteriae shiga toxin
 - Stx2 unique toxin to STEC (~50% similar to Stx1)
 - LEE pathogenicity island
 - eae (Intimin)
 - TIR (transmembrane intimin receptor)
 - Type 3 secretion system
 - Attachment/Effacement lesions

Nature Reviews | Microbiology

Shiga toxin function

- Toxins enter circulation → kidney
- Subunit B binds globotriaosylceramide (Gb₃) receptor
 - Kidney >>> intestinal epithelium
 - Bovine lack vascular receptors
- Subunit A cytotoxic to cells
 - Inactivates ribosomes → renal cell death

Hemolytic Uremic Syndrome (HUS)

- Glomerular endothelial cells swell & detach
- 2º activation of platelet & coagulation cascade initiated
 - Fibrin deposition → narrowing capillaries → RBC shearing
 - = microangiopathic hemolytic anemia
 - Platelet consumption → thrombocytopenia
 - Restricted blood flow → renal failure

Patient symptoms

- Severe acute diarrhea +/- blood
- Afebrile
- ~8% of infections lead to HUS
- More complications in elderly & children
 - 10-15% of Peds develop HUS
 - Majority of patients >65 are hospitalized
- Children often require dialysis
- Early/aggressive IV isotonic volume expansion

Therapy/Managment

- Antibiotic therapy is controversial
- Phage induction by Quinolones, TMP-SXT, β-lactams
 - S.O.S. response induces phage promotor expression= ↑ Stx production
- Antimotility agents may increase disease severity
- Supportive care is the gold standard
- Standard contact precautions

STEC - serotypes

- 150+ disease assoc. serotypes
 - O157:H7 most commonly reported in USA
 - O26:H11 second most
 - Other virulent types also reported
- Typing for outbreak investigations

www.the-scientist.cor

 Testing for toxin is the logical progression toward proper testing & comprehensive reporting

Perceived degree of severity

- O157 Stx2
- O157 Stx1/2
- Non-O157 Stx2
- Non-O157 Stx1/2
- Stx1 any serogroup

- Stx2 +
- Stx 1/2
- Stx1

 Serogroup correlation may still be a biased phenomenon

New guidelines

- 2009 MMWR guidelines: CDC/APHL recommend toxin detection plus culture for O157
 - Adoption has been slow and voluntary
- CAP none
- Dec. 2012: JCAHO mandates shiga toxin detection for all stool specimens submitted for diarrheal illness

EFFECTIVE July 1, 2013

Element of Performance for QSA.04.06.01

A 6. All stool specimens from patients diagnosed with acute community-acquired diarrhea are simultaneously cultured for O157 Shiga toxin-producing Escherichia coli (STEC) on selective and differential agar and assayed for non-O157 STEC with a test that detects Shiga toxins or the genes encoding these toxins.

This is NOT voluntary, and typically CAP follows JCAHO...so stay tuned!

Lab testing

Culture

EIA or Immunochromatographic detection of toxin

PCR for stx1 and stx2 genes

Culture

- Culture conditions select for O157
 - Sorbitol MacConkey +/- cefixime & tellurite (CT-SMAC)
 - CHROMagar® O157
 - Rainbow[®] O157 agar
- Results in <24 hours
- Cannot detect other STEC
- May detect shiga toxin negative O157 E. coli
- Can fail to recover O157 STEC
- Further contribute to a reporting bias when used alone

EIA/Immunochromatography

- Detects toxin in sample
- High sensitivity
- No serogroup bias
- Cross react w/ S.dysenteriae toxin
- May not detect toxin subtypes
 e.g. Stx2_d & Stx2_e*
- Variable specimen type

Test performance

Agreement with reference methods (per package inserts/510(k))

	Immunocard ® STAT! EHEC¹	Duopath [®] Verotoxin ¹	ProSpecT [®] EHEC ²	Premier™ EHEC²	Shiga Toxin Quik Chek ^{®2}
Direct Stool	-	-	87%	78.9/95.8%	98%/99.9%
Broth Enrichment	89.1/99.7%	-	92/100%	100/97.9%	-
Colony testing	100/99.7%	99.5/97.5%	-	-	-

¹ Premier EHEC as reference method

² Cytoxic culture as reference method

EIA vs Immunochromatography

Factors to consider

- Laboratory model
 - Central vs satellite
- Cost
- Test volume
- Specimen preferred (enriched or raw?)

Enriched stool vs raw?

- Quik Chek claims equivalent performance to enriched stool using direct from stool testing on LFA
 - Performed Quik Chek on all Pos. EIA specimens
- N= 5687 EIA performed: June 18, 2013 July 16, 2014
 - 26 EIA positives (0.46% positivity)
 - 19 LFA positives
- 5 discrepant specimens arbitrated by PCR

Discrepant resolution

EIA enriched	Quik Chek	PCR	EIA repeat enriched	Quik Chek enriched	PCR enriched	Final resolution
+	-	-	-	-	-	Negative for Shiga toxin, EIA false Pos
+	-	Stx2	+	Stx2	Stx2	Positive for Stx2, STEC
+	-	-	+	-	Stx2	Positive for Stx2, STEC
+	-	Stx1	-	-	O157+	Positive for Stx1, O157 STEC
+	-	Stx2	-	-	Stx2	Positive for Stx2, STEC

Conclusion

- Stool enrichment with EIA detected 4 additional positive specimens that LFA could not detect
 - EIA detected one false positive, however LFA was not applied to all specimens received
- 25 true STEC positive specimens during our study period were detected by EIA using manufacturer's recommendations, only 21 detected by LFA
- At such a low prevalence (0.46%) this is an unacceptable performance loss; enrichment is recommended

PCR

- Historically non-standardized
- Flexible throughput
- Better performance from enrichment culture
- Can screen single colonies
- Detect and identify each shiga toxin gene
 - Can design to detect stx1/2 subtypes
- Indirect evidence of toxin
 - Expression?

FDA cleared methods for stx1/2

- LuminexTM Gastointestinal Pathogen Panel
- Prodesse® Progastro® SSCS
- BioFire® FilmArrayTM Gastrointestinal Panel
- Nanosphere Verigene® Enteric Pathogens Test
- BD MAXTM Enteric Bacterial Panel

LuminexTM Gastointestinal Pathogen Panel

- Detect 11 GI pathogens
- Frozen stool: samples cannot be cultured
- High throughput, batch runs, complicated assay, 5+ hour TAT

Published studies

- Navidad et al. J Clin Micro 2013.
 - 94% (28/30) sensitivity vs EIA and LDT PCR
- Claas et al. J. Microbiol Biotechnol 2013
 - 901 stools
 - STEC detection
 - 15/16 vs culture for O157
 - 8/8 vs EIA
 - » 1 False positive by Luminex
 - » 5 False negative by Luminex (unresolved)

Prodesse® Progastro® SSCS

- Detect Salmonella, Shigella, Campylobacter, and stx1 & stx2
- Frozen stool or Cary Blair preserved stool (allows for culture)
- High throughput, complicated assay, batch runs, 4 hour TAT

Extraction: Biomerieux NucliSENS easyMAG system

Amplification:
Cepheid Smart Cycler II

Published study

- Buchan et al. J Clin Micro 2013.
 - 100% specificity (17/17), 99.9% specificity
 - 1 false positive stx (initially 9...8 resolved)
 - EIA/Cx only 54% sensitive compared to sequence confirmed specimens

BioFire® FilmArrayTM Gastrointestinal Panel

- Detects 22 pathogens/targets
- Cary Blair stool: can be cultured
- Low throughput, random access, very simple method, ~1 hour TAT

Published study

- Buss et al. J. Clin Micro. 2015. 53(3).
- Detected 38 STEC versus 33 on comparator PCR method
 - "5 false positives" (N=1556 samples total)

BD MAXTM Enteric Bacterial Panel

- Detects Salmonella, Shigella, Campylobacter, and stx1 & stx2
- Fresh unpreserved stool or Cary Blair: can be cultured
- Variable throughput, simple method, ~2.5 hour TAT

Published study

- Harrington et al. J. Clin Micro. 2015. 53(3).
- Detected 85 STEC versus comparator PCR method or EIA/culture
 - 8 false positives after resolution (N=2437 samples total)

Nanosphere Verigene® Enteric Pathogens Test

- Detects 7 pathogens/targets
- Cary Blair stool: can be cultured
- Variable throughput, random access, simple method, ~2 hour TAT
- No publications to date!

So many methods...

How should a lab test for STEC?

Strategies for detecting STEC

Method	Detect all STEC	Detect non- toxigenic O157	Comments
O157 Culture only	NO	YES*	Must reflex to PHL to confirm toxinContributes to biased reporting
O157 culture, toxin detection based on criteria (e.g. – bloody diarrhea, age <5 or >60, summer months, HUS, ruminant/farm exposure)	NO	YES	 Will detect some additional STEC, but not all Must reflex to PHL to confirm toxin Contributes to biased reporting
O157 culture + Toxin detection	YES	YES	 Provides recognizable name on preliminary report
Toxin detection reflex positive to O157 culture	YES	NO*	 Delayed ID of O157 if present Need to educate physicians as to importance of Stx detection
Toxin detection w/rapid submission to PHL	YES	NO*	 Delayed ID of O157 if present Need physician education as to importance of Stx detection May lead to broad appreciation of Stx vs serotype

1,945 Isolates of Non-O157 STEC Serogrouped by CDC, 1983-2005

CDC, unpublished data

Increased reporting of non-O157 EHEC in Washington

Figure 1. Rate of reported O157 and non-O157 Shiga toxin (Stx)-producing *Escherichia coli* (STEC) infections and number of laboratories performing Stx testing by year, Washington State, USA, 2005–2010.

Specimens tested Test for Shiga toxin only

Stool tested by PCR, submitted for viral enteritis

N = 2725 (2006-2008)

- 38 Stx+ specimens
- Cx pos.
 O157 (3) vs non-O157 (12)
- Previous outbreak strains O26:HNM, O26:H11, O103:H25, O121:H19, O145:HNM

TABLE 2. Shiga-toxigenic *E. coli* isolated from patient stool from Alberta and Northern Territories

Yr	Serotype	Patient age	stx type(s)	Stool appearance
2007	O26:H11	83 yr	stx_1	Liquid, brown
	Orough:H11	3 yr	stx_1	Liquid, brown
	O11:H30	3 yr	stx_1	Liquid, brown
	O157:H16	2 yr	stx_1/stx_2	Solid, brown
	O6:H16/O103:H25	31 yr	stx_1	Liquid, brown
2008	O145:HNM	8 mo	stx_1	Liquid, tan
	O26:HNM	13 yr	stx_1	Liquid, brown
	O69:H11	52 yr	stx_1	Solid, brown
	O26:H11	6 mo	stx_1	Liquid, yellow
	Orough:HNM	16 mo	stx_1	Semisolid, brown
	O121:H19	10 yr	stx_1/stx_2	Liquid, brown
	O157:H7	48 yr	stx_1/stx_2	Liquid, brown
	O157:H7	3 yr	stx_1/stx_2	Liquid, brown
	O103:H25	16 yr	stx_1	Semisolid, brown

Comprehensive detection

N = 2328 (2009-2010)

- 21 Stx+ identified
- 8, O157:H7 (5 bloody)
- 13, Non-O157 (5 bloody)
- Culture only method (8/21 detected)
- Criteria-driven and culture-only methods would underdiagnose

E. coli serotype	Age (yr)	Stool sample description
O157:H7	5	Liquid
O157:H7 ^a	23	Liquid, bloody, mucoid
O157:H7	26	Mucoid, bloody
O157:H7	37	Liquid
O157:H7	66	Bloody, liquid
O157:H7	15	Blood speckled, liquid
O157:H7	22	Bloody, liquid
O157:H7	51	Liquid
O26:H11	3	Liquid
O6:H2	20	Bloody, liquid
O111:HNT	21	Bloody, mucoid
O5:HNM	28	Liquid
O111:HNM	34	Bloody
O103:H25 ^a	45	Mucoid
O121:H19	54	Liquid
O111:HNM	57	Liquid
O121:H19	17	Semiformed
O121:H19	17	Liquid
O5:HNM	21	Liquid, bloody
O145:HNM	21	Bloody, liquid
ONT:H25	34	Mucoid

Review

- Testing for shiga-toxins is necessary for comprehensive detection of STEC: non-O157 are a significant proportion of infections
- Sporadic nature of these infections paired with outbreaks demands constant surveillance through incorporation into routine testing
- Number of infections overall is still underappreciated based on current testing practices

Infamous outbreaks

Year	Serotype	Source	Location	Cases	HUS	Deaths
1993	O157:H7	Jack in the Box hamburgers	US Northwest	Several 100	3	4 (children)
1996	O157:H7	Odwalla apple juice	NW US/Canada	65	13	1 (16 mo)
2000	O157:H7	Public Water Supply	Walkerton, Ontario	~2500	24	7
2006	O157:H7	Bagged spinach (CA)	26 states	199	31	3
2008	O111:HNM	Country Cottage Buffet	Oklahoma	341	17 (9 children)	1

Recent outbreaks

Year	Serotype	Source	Location	Cases	Hospitalized	HUS	Deaths
2009	O157:H7	JBS Swift Beef Co/Fairbanks Farms Beef	8 states	26	19	5	2
2009	O157:H7	Nestle Raw cookie dough (flour)	30 states	72	34	10	0
2010	O145	Shredded romaine lettuce	5 states	30	12	3	0
2011	O157:H7	Romaine lettuce	10 states	60	30	2	0
2012	O126	Jimmy John's clover sprouts	11 states	29	7	0	0

Recent outbreaks

Year	Serotype	Source	Location	Cases	Hospitalized	HUS	Deaths
2012	O157:H7	Organic spinach/spring mix blend	5 states	33	15	2	0
2013	O121	Frozen food products	19 states	35	9	2	0
2013	O157:H7	Ready-to-eat salad (sold @ Trader Joe's)	4 states	33	11	2	0
2014	O121	Raw clover sprouts Evergreen Fresh Sprouts (Idaho)	6 states	19	8	0	0

Recent outbreaks

Year	Serotype	Source	Location	Cases	Hospitalized	HUS	Deaths
2014	O157:H7	Ground beef Wolverine Packing Co.	4 states	12	7	0	0
2015	O26	Chipotle Mexican Grill	14 states	60	22	0	0
2015	O157:H7	Costco Rotisserie chicken salad	7 states	19	5	2	0
2016	O157	Alfalfa sprouts Jack & The Green Sprouts	2 states	11	2	0	0

Source and cause summary

Major outbreaks since 2009 (advent of broad toxin testing adoption):

- Produce vs Meat = 9 vs 4
- O157 vs non-O157 = 8 vs 5

Non-O157 likely still underreported

Pre 2009: 5 O157 vs 1 non-O157

The worst case scenario

THE 2011 O104:H4 GERMAN STEC OUTBREAK

Timeline of events - 2011

- May 23rd Robert Koch Institute reports unusual number of HUS & bloody diarrhea attributable to STEC
 - Samples first detected May 8th
- May 24th WHO contact Danish *E. coli* network after German patient diag/w STEC
 - Isolate typed as O104:H4 & positive for shiga-toxin production (Stx_{2a})
 - Subsequent German samples all type as O104:H4
- May 26th Spanish cucumbers implicated in outbreak by PCR
- May 30th O104:H4 specific PCR developed in Germany
- June 6th whole genome sequence assembled & released
- June 10th O104:H4 detected on fenugreek sprouts by PCR

The final numbers (circa July 22)

- Total diagnosed infections: 4075
- HUS cases: 908 cases
 - 22.3% (atypical)
 - 34 deaths (3.7 % fatal)
- Non-HUS cases: 3167
 - 16 deaths (0.05% fatal)

Country	Н	US	STEC		
Country	Cases	Deaths	Cases	Deaths	
Austria	1	0	4	0	
Canada	0	0	1	0	
Czech Republic	0	0	1	0	
Denmark	10	0	15	0	
France	7	0	10	0	
Germany	857	32	3078*	16	
Greece	0	0	1	0	
Luxembourg	1	0	1	0	
Netherlands	4	0	7	0	
Norway	0	0	1	0	
Poland	2	0	1	0	
Spain	1	0	1	0	
Sweden	18	1	35	0	
Switzerland	0	0	5	0	
UK	3	0	4	0	
USA	4	1	2	0	
Total	908	34	3167	16	

Atypical presentation

- Median age of patients with HUS, 42 y.o.
- HUS distribution:
 - 2% < 5 y.o. vs normally 69%
 - 88% of HUS cases were in adults (20X normal)
- Bloody diarrhea (adults 91% vs children 64%)
- Severe neurological symptoms (48%, 104/217)
- Many received Abx (mero, azithro, rifaximin, tigecycline)
 - Outcome data pending; carbapenems and rifampin were recommended in some cases
- Person-to-person??

Strain characteristics

- The German STEC is not actually STEC!!
- Screening PCR found genes for the aggregative adhesin locus of EAggEC
- All biochemical profiles similar for EAggEC & less for STEC
- Genome sequence suggests EAggEC was phage-transduced w/ Shiga-toxin bacteriophage

A strange duck

- Intimin-negative rare for STEC
 - Typically don't cause HUS in children

- Encodes antibiotic determinants
 - TEM-1 broad spectrum β-lactamase
 - CTX-M-15 ESβL also confers cefepime resistance
- Because shiga-toxin is major factor, strain has been termed an STEC

Not as unique as we thought

- Review of unpublished data from PulseNet & EU Surveillance Network
- Stx2+ O104:H4 in databases
 - 2001 2 patients w/HUS, Germany (EAggEC/STEC)
 - 2004 1 patient (no clinical Hx), France
 - 2005 1 HUS, Korea
 - 2009 2 HUS, Republic of Georgia (EAggEC/STEC)
 - 2010 1 severe diarrhea, Finland (EAggEC/STEC)

The Forgotten French experience

- 1995, small outbreak of HUS linked to O111 STEC/EAggEC strain (Stx_{2a}+)
- 1º children
- Severe disease & ↑ HUS
- Suggests this combination may be more potent for disease

All Quiet on the Western Front

- Outbreak diminished per mid-July 2011
- Largest & deadliest STEC outbreak in history
- Food inspection agencies reviewed processes
 - Egyptian sprout seeds implicated
- Multinational effects 16 nations w/ cases

How would labs fare in this outbreak now?

Method	Detect EAggEC/STEC emerging pathogen???	Comments
O157 Culture only	No	Miss all infected patients!
O157 culture, toxin detection based on criteria (e.g. – bloody diarrhea, age <5 or >60, summer months, HUS, ruminant/farm exposure)	Maybe	 Symptoms were atypical Most patients were >5 and <60 Many children non-bloody Ruminant/farm exposure absent Severe cases without HUS BUT, all were summer, and many adults were bloody
O157 culture + Toxin detection/PCR	YES	Toxin is unchanged, will detectNo delay
Toxin/PCR detection reflex positive to O157 culture	YES	Toxin is unchanged, will detectNo delay
Toxin/PCR detection w/rapid submission to PHL	YES	Toxin is unchanged, will detectNo delay

Key Points

- Not a seasonal illness occurs year round
- Geographically unpredictable
- Bloody diarrhea poor universal predictor of STEC
- >60% of sporadic cases and 40% of outbreaks are non-O157
 - Must screen for shiga toxins or genes
- Prevention of HUS only achievable
 3-4 days after onset of illness
 - Delays are critical

