If Baby Could Talk: Laboratory Detection of Prenatal Drug Exposure

Gwen McMillin, PhD. DABCC (CC,TC)
Medical Director, Toxicology and Pharmacogenomics
ARUP Laboratories

Professor (Clinical), Department of Pathology
University of Utah School of Medicine

July 29, 2015
Illicit drug use while pregnant

- 5.9% of all ages
- 18.3% age 15-17
- 9.0% age 18-25
- 3.4% age 26-44

What about prescription drug use and misuse?

2012 SAMHSA National Survey on Drug Use and Health, NSDUH Series H-46, HHS Publication 13-4795, Rockville, MD, USA
The number of infants diagnosed with neonatal abstinence syndrome (NAS) has increased >10-fold since 1995. Between 2010-11

- 99.6% tested positive for opioid exposure
- 97.1% admitted to intensive care units; average stay was 26.1 days
- <1% were documented to use heroin
AN ESTIMATED 10-11% OF ALL BIRTHS IN THE USA ARE AFFECTED BY PRENATAL DRUG EXPOSURE

Drugs in Pregnancy – what it means for baby

- Premature birth
- Low birth weight
- Withdrawal symptoms (e.g., NAS)
- Feeding issues / failure to thrive
- Developmental delays
- Behavioral problems
- Neglect
- Increased risk of drug abuse later in life
How to detect prenatal drug exposure?

- Maternal self-report
 - Unreliable and under-estimates use

- Maternal testing
 - Serial, comprehensive testing is not practical or cost-effective for most
 - Does not prove that baby was exposed (or not)

- Maternal screening to evaluate risk of exposure

- Newborn testing
Approach to detect drug-exposed newborns

1. Consult local and/or state policies
2. Evaluate risk of drug exposure during pregnancy
3. Collect specimen(s)
4. Submit specimen(s) for testing and/or monitor newborn for signs/symptoms of NAS
5. Submit specimen(s) for testing with NAS or other reason for testing
Specimens for drug detection

- Urine
- Blood
- Meconium, Umbilical Cord

Estimated detection window:
- Hours
- Days
- Weeks
- Months

Concentration of drugs
Meconium

- First stool of the newborn
- Used for drug testing for ~25 yrs
- Begins to form at ~12-16 wks gestation
- Accumulates over remainder of pregnancy
- Largest quantity accumulates in late pregnancy
- Usually passes within 48 hours of birth
- Looks different than milk stool
- Collection requires coordinated efforts and may not be available
Umbilical cord tissue

- Forms ~5th week of gestation
- Grows with fetus throughout pregnancy
- Typically about 20 in long with full term births
- Drugs appear to deposit consistently across the length of cord
- Easy to collect at time of birth
- Particularly useful for high-risk scenarios wherein time to result is critical
- Concentrations of drug analytes are lower in cord than in meconium, but can be detected with appropriate methods
Overall positivity rate at ARUP ~73% (n=76,631)
Algorithm for evaluation of results

Are results consistent with expectations?

- **No**
 - Unexpected negative(s)
 - Contact laboratory to discuss testing
 - Discuss results with mother
 - Compare with pharmacy history for mother and newborn

- **Yes**
 - Unexpected positive(s)
 - Discuss results with mother
 - Contact laboratory to discuss testing

- Proceed as per relevant local policies
Frequently asked questions

- Can we detect first trimester exposures?
- Can we detect how frequently the mother used drugs, time of last use, and/or how much was used?
- Can we detect drugs administered in the hospital?
- Can we determine how and when a newborn will be affected by drug exposure(s)?
- What if results from twins or triplets don’t agree?
- What are the typical patterns of results observed?
Thank-you for your attention

gwen.mcmillin@aruplab.com
Examples of Recent ARUP References

Meconium

Umbilical cord tissue

Summary and Conclusions

- Meconium and umbilical cord can detect drug-exposed newborns
 - Qualitative results agree well between specimen types, for most drugs
 - Preferred specimen may depend on the hospital model for selection of newborns to test; umbilical cord is available at birth
 - Umbilical cord avoids detection of drugs administered to the newborn

- Drug detection reflects exposure based on test design, drug stability and recovery from the specimen matrix, drug use patterns, and timing of specimen collection relative to drug use

- Interpretation of results requires consideration of maternal admissions, pharmacy history for mother and newborn, and consultation with the laboratory regarding the testing performed