#### All the Right Technology in All the Right Places:

The Necessary Evolution of Urine Drug Testing

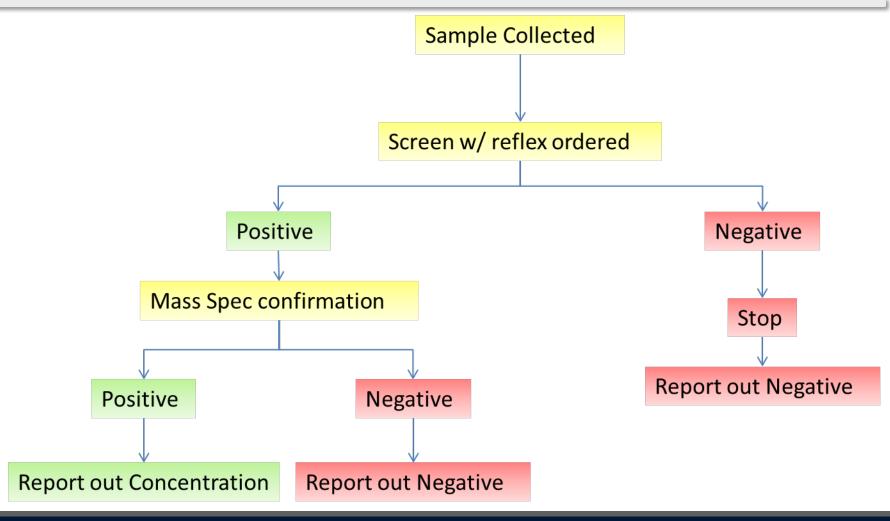
#### Frederick G. Strathmann, PhD, DABCC (CC, TC)

ARUP Laboratories Medical Director of Toxicology Director of High Complexity Platforms – Mass Spectrometry Scientific Director of BioComputing Assistant Director – ARUP Institute for Clinical & Experimental Pathology University of Utah Assistant Professor of Pathology

AACC Annual Meeting (August 2<sup>nd</sup>, 2016)





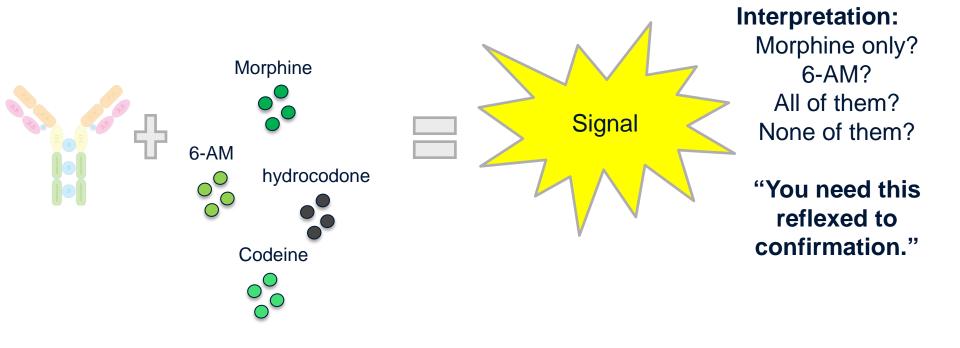

# **Current State of Urine Toxicology Testing**

- Immunoassay screen only
- Immunoassay screen with reflex to confirmation by LC/GC MS
- Direct to GC/LC-MS
- Hybrid (IA + LC-MS without "confirmation")
- Immunoassays
- Quadrupole
- Time-of-Flight
- Quadrupole + Time-of-Flight





# **Tried and True Workflow**








# **Challenges with (some) IA Screens**

- Presumptive screening method used
  - e.g., immunoassay for opiates







#### **More Problems with Immunoassays**

|                   | Immunoassay screens |            |            | Confirmation (tested when screen POS) |                    |                 |                               | Confirmed POS Specimens |                  |              |                |
|-------------------|---------------------|------------|------------|---------------------------------------|--------------------|-----------------|-------------------------------|-------------------------|------------------|--------------|----------------|
|                   | Total<br>tested (#) | Pos<br>(#) | Pos<br>(%) | Confirm<br>pos (#)                    | Confirm<br>neg (#) | True pos<br>(%) | <mark>False pos</mark><br>(%) | Males<br>(#)            | Females<br>(#)   | Males<br>(%) | Females<br>(%) |
| AMPH <sup>a</sup> | 8,825               | 705        | 8.0        | 608                                   | 97                 | 86.2            | 13.8                          | 263                     | 345              | 43.3         | 56.7           |
| BARB              | 8,825               | 163        | 1.9        | 159                                   | 4                  | 97.5            | 2.5                           | 54                      | 105              | 34.0         | 66.0           |
| BENZO             | 8,825               | 1,130      | 12.8       | 1,125                                 | 5                  | 99.6            | 0.4                           | 480 <sup>b</sup>        | 653 <sup>b</sup> | 42.4         | 57.6           |
| COC               | 8,825               | 237        | 2.7        | 237                                   | 0                  | 100.0           | 0.0                           | 140                     | 97               | 59.1         | 40.9           |
| ETOH              | 2,296               | 35         | 1.5        | 35                                    | 0                  | 100.0           | 0.0                           | 16                      | 19               | 45.7         | 54.3           |
| MDMA <sup>a</sup> | 8,825               | 174        | 2.0        | 0                                     | 174                | 0.0             | 100                           | 0                       | 0                | _            | _              |
| MTD               | 8,825               | 262        | 3.0        | 262                                   | 0                  | 100.0           | 0.0                           | 98                      | 164              | 37.4         | 62.6           |
| OPI <sup>c</sup>  | 8,825               | 2,642      | 29.9       | 1,744                                 | 898                | 66.0            | 34.0                          | 820                     | 924              | 47.0         | 53.0           |
| OXY <sup>c</sup>  | 8,825               | 1,215      | 13.8       | 1,192                                 | 23                 | 98.1            | 1.9                           | 601 <sup>c</sup>        | 684 <sup>c</sup> | 46.8         | 53.2           |
| PCP               | 8,825               | 4          | 0.05       | 0                                     | 4                  | 0.0             | 100                           | 0                       | 0                | -            | _              |
| PPXY              | 8,825               | 4          | 0.05       | 3                                     | 1                  | 75.0            | 25.0                          | 2                       | 1                | 66.7         | 33.3           |
| THC               | 8,825               | 1,793      | 20.3       | 1,777                                 | 16                 | 99.1            | 0.9                           | 906                     | 871              | 51.0         | 49.0           |
| Totals            | 99,371              | 8,364      | 8.4%       | 7,142                                 | 1,222              | 85.4%           | 14.6%                         | 3,380                   | 3,863            |              |                |

#### Table IV. Summary Results from Immunoassay Screens and Confirmatory Testing

Johnson-Davis et al. (2016). Journal of Analytical Toxicology 40(2), 97-107.





## **Panels – One Size Doesn't Fit All**

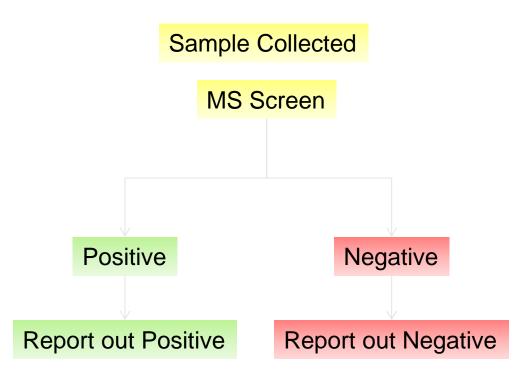
| Panel 1         |                 | Panel 3         |       |
|-----------------|-----------------|-----------------|-------|
| Marijuana       | Demol 0         | Marijuana       |       |
| Cocaine         | Panel 2         | Cocaine         |       |
| Opiates         | Marijuana       | Opiates         |       |
| Oxycodone       | Cocaine         | Phencyclidine   |       |
| Phencyclidine   | Opiates         | Amphetamines    | . 000 |
| Amphetamines    | Ethanol         | MDMA (Ecstasy)  |       |
| MDMA (Ecstasy)  | Phencyclidine   | Barbiturates    |       |
| Barbiturates    | Amphetamines    | Benzodiazepines |       |
| Benzodiazepines | Barbiturates    | Methadone       |       |
| Methadone       | Benzodiazepines | Propoxyphene    |       |
| Propoxyphene    |                 |                 |       |



www.afforditNOW.com

# The Expanded Screen Something is (always) Missing

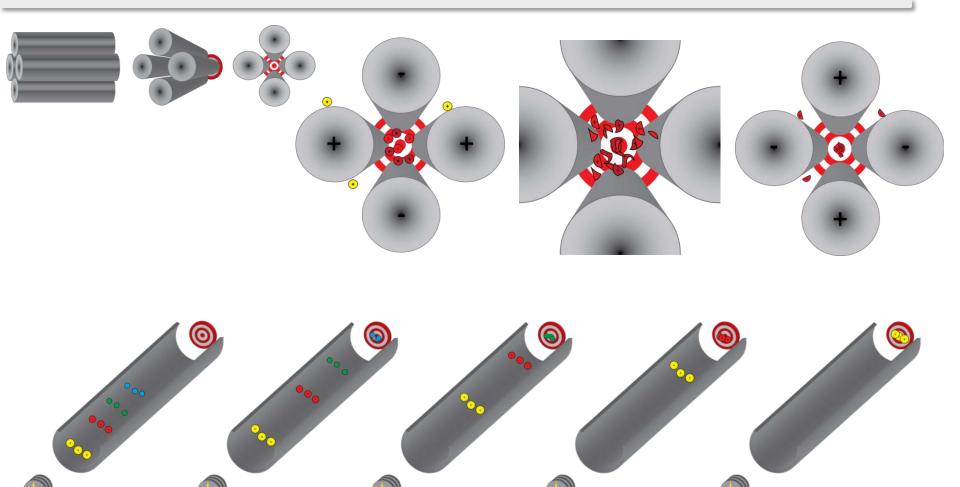
| Drugs/Drug Classes |
|--------------------|
| Amphetamines       |
| Barbiturates       |
| Benzodiazepines    |
| Buprenorphine      |
| Carisoprodol       |
| Cocaine            |
| Ethyl Glucuronide  |
| Fentanyl           |
| MDMA (Ecstasy)     |
| Meperidine         |
| Methadone          |
| Opiates            |
| Oxycodone          |
| Phencyclidine      |
| Propoxyphene       |
| Tapentadol         |
| Tramadol           |
| THC (Cannabinoids) |
| Zolpidem           |




www.iwebstreet.com






#### **Mass Spec-based Screen**







#### **MS: Quadrupoles and Flight Tubes**

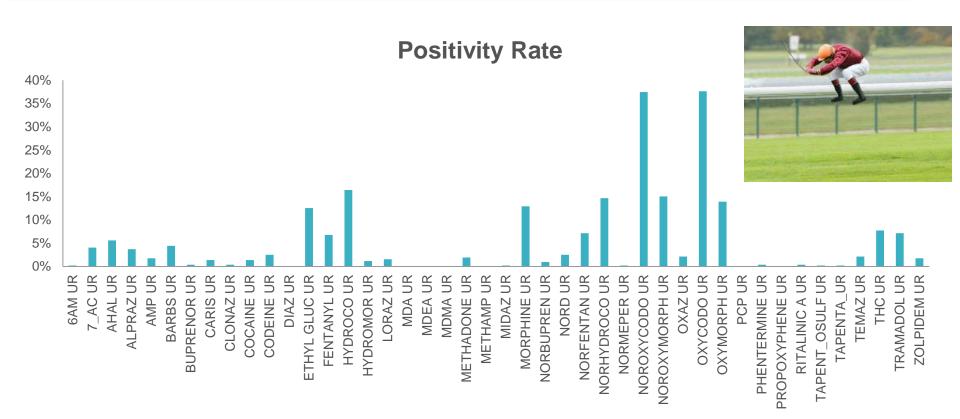






# **Benefits of a MS Screen**

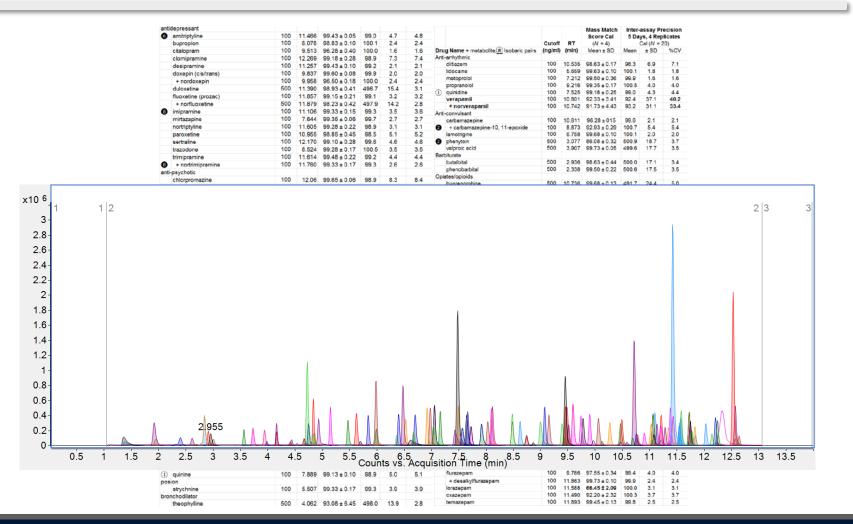
- Sensitivity & Specificity on par with classic "confirmatory" methods
- Individual compound/metabolite identification
- Elimination of cross-reactivity complications
- Drug/metabolite pairs for interpretations
- Drug abuse testing conducted concurrently for high risk populations
- Relatively easy integration of new targets
- If qualitative "Reflex to Quantitation" still possible when needed




Pain Med, 2018 Jul 17. pii: pnw185. [Epub ahead of print] Cost and Efficacy Assessment of an Alternative Medication Compliance Urine Drug Testing Strategy. Doyle K<sup>1</sup>, Strathmann FG<sup>2</sup>. Author information






#### Panels – One Size Doesn't Fit All







#### **One Size Fits All. Not the Right Answer.**





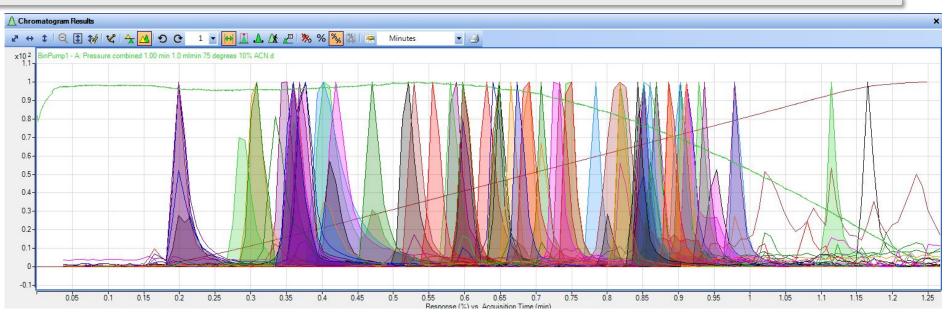


#### What are we looking for from a workflow?

- Qualitative screen to rule out
  - Allows broad panel
  - Detect illicit drugs
  - Detect abuse
  - Sensitive/Specific
  - Cheap
  - Fast

ABORATORIES

- Comprehensive
- Easy (for the lab!)

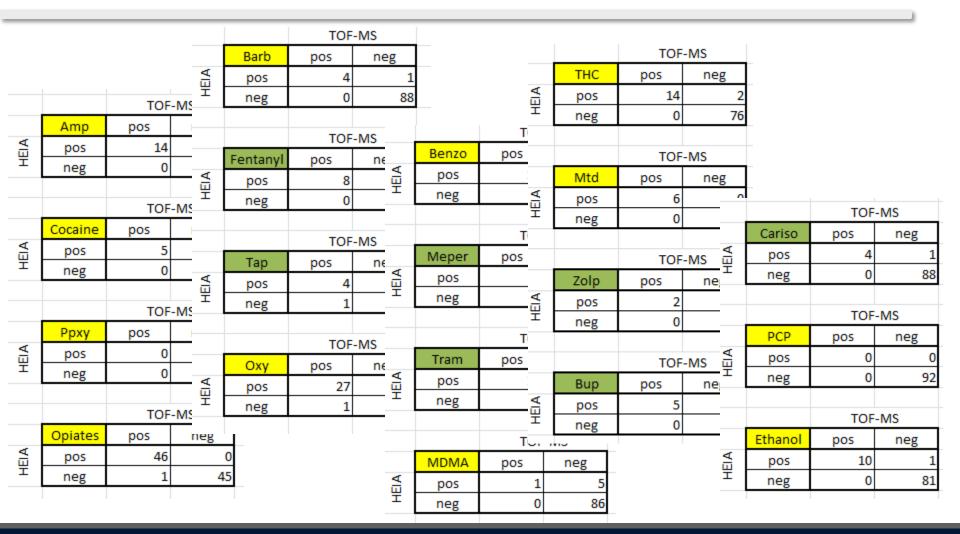

- Quantitative confirmation
  - Sensitive/Specific
  - Metabolite ratios
  - Pharmaceutical impurities
  - D/L Ratios



www.mogicons.com



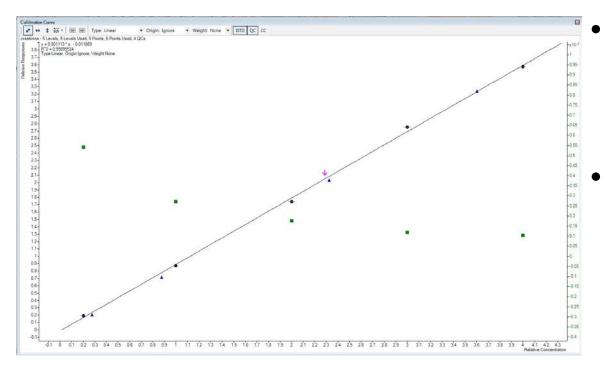
# **One Exciting New Possibility** *LC-TOF Rapid Screen*




- < 1.2 minutes to cover ALL currently offered immunoassays</li>
- Cost equivocal to a routine 9 compound immunoassay panel
- Includes enzymatic hydrolysis for added sensitivity





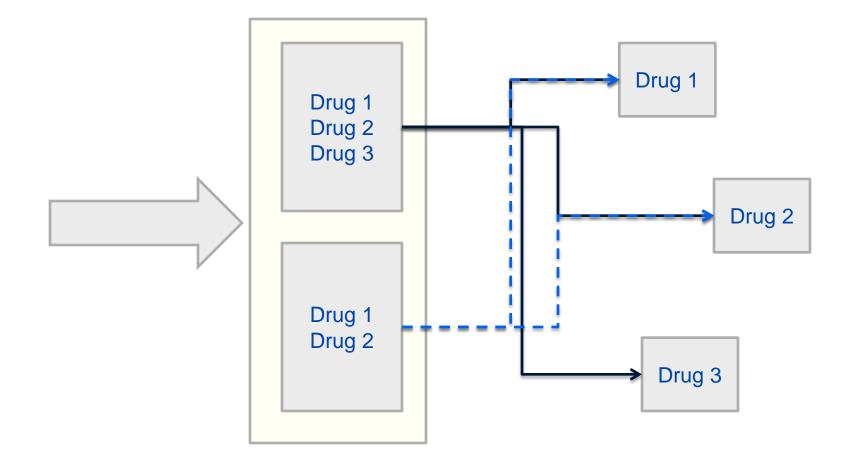

# **Analytical Performance**







# **Quantitative Creatinine Result Included**




- Imprecision
  - 3% @ 87 mg/dL
  - 2% @ 230 mg/dL
- Accuracy
  - 8% bias throughout AMR (20-400 mg/dL)



LABORATORIES

#### **Custom Panels with Confirmation**







# **Summary & Key Points**

- MKAE THE CMLOPEX SIMPLE
- Design Testing with the Patient and Physician in Mind, not Reimbursement.
- Find the Right Technology for the Right Job.
- The Future is in Intelligently Designed Custom Panels Using Advanced Screening Capabilities with Tried and True Confirmatory Methods.







## **Contact Information**

#### Frederick G. Strathmann, PhD, DABCC (CC, TC)

**ARUP** Laboratories

**Assistant Professor** 

Department of Pathology, University of Utah

frederick.g.strathmann@aruplab.com





ABORATORIES