esting

Untargeted Metabolomic Profiling in Inborn Errors of Metabolism

research

V. Reid Sutton, MD Professor, Molecular & Human Genetics Baylor College of Medicine Medical Director, Biochemical Genetics Laboratory

Disclosure

A fixed portion of my salary is paid by Baylor Genetics Laboratories but compensation is not tied to laboratory revenue

Outline

- Common practice and limitations of current routine testing for IEMs
- Global <u>Metabolomic Assisted Pathway Screen</u> (Global MAPS[®]) - Methods
- Validation for common IEMs
- Confirmation of DNA variant pathogenecity
- Discovery of Novel Biomarkers

CURRENT RECOMMENDATIONS FOR INTELLECTUAL DISABILITY EVALUATION

AAN Recommendations for Intellectual Disability (2011)

- Screening for inborn errors of metabolism (IEMs) in children with GDD/ID has a yield of between 0.2% and 4.6%, depending on the presence of clinical indicators and the range of testing performed (Class III).
- Testing for congenital disorders of glycosylation has a yield of up to 1.4%, and testing for creatine disorders has a yield of up to 2.8% (Class III).

1st Tier: Non-Targeted screening to identify 54 (60%) treatable IEMs

Blood:

- ammonia, lactate
- plasma amino acids
- total homocysteine
- acylcarnitine profile
- copper, ceruloplasmin

Urine:

- organic acids
- purines & pyrimidines
- creatine metabolites
- oligosaccharides
- glycosaminoglycans

2nd Tier: Targeted testing to identify 35 (40%) treatable IEMs requiring 'specific testing'

- according to patient's symptomatology patient (Table 4) & clinician's expertise
- utilization of textbooks & digital resources (WebApp: <u>www.treatable-ID.org</u>)
- consider the following biochemical / molecular analyses:
 - whole blood manganese
 - plasma cholestanol
 - plasma 7-dehydroxy-cholesterol:cholesterol ratio
 - plasma pipecolic acid & urine AASA
 - plasma very long chain fatty acids
 - plasma vitamin B12 & folate
 - serum & CSF lactate:pyruvate ratio
 - enzyme activities (leucocytes): arylsulphatase A, biotinidase, glucocerebrosidase, fatty aldehyde dehydrogenase
 - urine deoxypyridonoline
 - CSF amino acids
 - CSF neurotransmitters
 - CSF: plasma glucose ratio
 - CoQ measurement fibcroblasts
 - molecular: CA5A, NPC1, NPC2, SC4MOL, SLC18A2, SLC19A3, SLC30A10, SLC52A2, SLC52A3, PDHA1, DLAT, PDHX, SPR, TH

van Karnebeek CDM et al., Mol Genet & Metab 111:428-38, 2014

Current Challenges

- For undifferentiated phenotypes, such as intellectual disability, seizures, recurrent vomiting, failure to thrive etc. many different tests are needed
- Various fluid types (blood, urine, cerebrospinal fluid) may be needed for diagnosis
- Cost for multiple tests may be prohibitive and many are rare, so no good way to tier testing

Methods/Tests

- HPLC amino acids
- GC/MS organic acids
- MS/MS
 - Acylcarnitines
 - Newborn screening
 - Individual specialized tests
 - Purines & Pyrimidines
 - Creatine & guanidinoacetate
 - Pyridoxine responsive seizure panels
 - Bile acids
 - CSF Neurotransmitters
 - Etc!

Rationale for Metabolomic Approach

METHODS

Metabolon, a global leader in metabolomics

Pioneering the emerging field of global biochemical pathway analysis for biomarker discovery and the development of innovative diagnostic tests

- Founded in 2000
- Over 150 employees worldwide with expertise in biochemistry, mass spectrometry and software development
- 54,000 sq. ft. facility in Research Triangle Park, NC and Sacramento
- CLIA-certified lab onsite

Pathway Visualization: Metabolync[™] plugin to Cytoscape developed to overlay analyte findings onto metabolic pathways

Statistical Analysis

Biomarkers Mechanistic Understanding Drug MoA Cellular Characteristics

Interpretation

Mechanistic Understanding Drug MoA Cellular Characteristics

Interpretation

Biomarkers Mechanistic Understanding Drug MoA Cellular Characteristics

Interpretation

Statistical Analysis

Pathway Visualization: Metabolync[™] plugin to Cytoscape developed to overlay analyte findings onto metabolic pathways

Statistical Analysis

Biomarkers Mechanistic Understanding Drug MoA Cellular Characteristics

Interpretation

Global MAPS

<u>Global Metabolomic Assisted Pathway Screen</u>

- Metabolic pathway screen for perturbations in levels of analytes and relative abundance
 - Screens for >2500 small molecules (50-1500 Da)
 - Z-scores provided (not absolute values)
- Small molecule metabolomic analysis
 - Plasma
 - ~750-900 analyte identifications per plasma sample
 - CSF
 - ~300 analyte identifications per CSF sample
 - Urine
 - ~1200 analyte identifications per urine sample

Limitations of test

- 1. Inappropriate for identification of
 - Analytes >1500 Da or <50 Da
 - Proteins/large peptides
 - Complex oligosaccharides
 - Large lipids
 - Elements (K, Na, etc.)
- 2. Analytes requiring special extraction/chromatographic separation
 - Homocysteine (requires reductant treatment)
- 3. Screening tool to identify metabolic perturbations
- 4. Values are not quantitative
- 5. Not for acute assessments

If you are interested in a specific compound we can provide information on detection rates, accuracy, and analyte stability.

Sample collection/validation

 Retrospectively collected from stored lab samples

- •Na-Heparin treated plasma, stored -20 C for up to 3 months
- •83% from Texas Children's Hospital

•"Normal Controls"

- Patient that came to our lab for testing but for whom no abnormal analytes were detected
- Roughly age and sex matched to known patient samples

Overview of Plasma Samples

•200 total

- 128 from patients with diagnosis of IEM72 "Normal Controls"
- •27 different IEMs
- Majority of patients on treatment

32 8 ų ⁼requency 9 μΩ. ΠΠΠ 0 20 0 10 30 40 50 age (yrs)

Histogram of patient age at sampling

Overview of samples

•200 total

128 from patients with diagnosis of IEM72 "Normal Controls"

•27 different IEMs

•Majority of patients organic acidemia on treatment Urea cycle

of samples

Current analyte detections possible in our lab

Average metabolomic detection in plasma

Average metabolomic detection in plasma

Clinical validation experiments

 Plasma separation time course studies- 30 mins to >1 day

Expected IEM-related analyte elevations were detected

Expected IEM-related analyte elevations were detected

			z-score							
Disorder	Disease- related findings	-	5 () 	5	10	15	20	rare	
Phenylketonur	ria phenylalanine						·			
3-MCC def.	hydroxyisovaleroylcarnitine (C5) 3-methylcrotonylglycine				•	••				
Argininemia	homoarginine arginine)				
Glutaric acidur type 1	ria glutaroylcarnitine (C5) glutarate									
HMG coA lyase def.	3-methylglutaroylcarnitine (C6) beta-hydroxyisovalerate					•				
Homocystinur	ia methionine 5-methylthioadenosine		Ι							
MCAD def.	hexanoylglycine (C6) octanoylcarnitine (C8)						•	•		
Propionic acidem	2-methylcitrate									
Thymidine pho def.	osph. 2'-deoxyuridine 5,6-dihydrothymine thymidine					•			••	

Methylmalonic acidemia

Methylmalonic acidemia

Metabolomic Results: Argininemia

not identified

z-score <- 2

Plasma metabolomic analysis successfully screened for 20 different IEMs

• Urea cycle disorders

- Arginase def
- Argininosuccinate lyase def
- Citrullinemia
- Ornithine transcarbamylase def

Amino acid disorders

- Homocystinuria (CBS)
- Maple syrup urine disease
- Phenylketonuria

• Fatty acid oxidation disorders

- MCAD
- VLCAD

Organic acidemias

- 3-methylcrotonyl-CoA carboxylase def
- Cobalamin disorders
- Glutaric acidemia type I
- HMG-CoA lyase def
- Isovaleric acidemia
- Methymalonic acidemia
- Propionic acidemia
- Other
 - Guanidinoacetate methyltransferase def
 - Holocarboxylase synthetase def
 - Thymidine phosphorylase def
 - TMLHE def

Untargeted metabolomic analysis for the clinical screening of inborn errors of metabolism

Marcus J. Miller¹ • Adam D. Kennedy² • Andrea D. Eckhart² • Lindsay C. Burrage¹ • Jacob E. Wulff² • Luke A.D. Miller² • Michael V. Milburn² • John A. Ryals² • Arthur L. Beaudet¹ • Qin Sun¹ • V. Reid Sutton¹ • Sarah H. Elsea¹

FUNCTIONAL VALIDATION OF DNA VARIANTS OF UNCERTAIN SIGNIFICANCE

Neurologic phenotypes

Case 2 - Aromatic Amino Acid Decarboxylase Deficiency

- 4 year old infant with developmental delay and hypotonia; initial presentation 11 months
- Tests performed previously– VLCFA, LSD panel, urine MPS, CMA, PAA, UOA, ACP, NH3, lactate, CK, CSF glucose/protein, muscle biopsy, ETC analysis, mitochondrial genome/depletion, MRI brain
- WES 2 VUS (trans), c.286G>A (p.G96R) and c.260C>T (p.P87L) in the *DDC* gene

Case 2 - Pathway and Results

Patient is shown in red

Dopa-containing medications

Aromatic amino acid decarboxylase deficiency

Case 3

- 19 month old male
 - Global developmental delay
 - Hypotonia
 - Abnormal movements
 - Abnormal MRI (delayed myelination)
 - Oculomotor apraxia
 - Facial hemangioma
 - Constipation

- Prior normal workup
 - Microarray
 - Metabolic workup
 - Plasma amino acids
 - Lactate
 - Ammonia
 - Urine organic acids
 - CSF amino acids
 - CSF neurotransmitter profile

Whole exome sequencing and metabolomics ordered

Case 3 WES Results

- Single heterozygous pathogenic variant
 - UROC1, novel c.1448_1449delCT (p.S483fs)
 - Urocanase deficiency [MIM #276880]
- Two heterozygous VUS
 - ABAT, novel: c.454C>T (p.P152S) and c.1393G>C (p.G465R)
 - GABA transaminase deficiency [MIM #613163]

Single heterozygous VUS

- **ACAD9**, ACAD9 deficiency
- **ATM**, Ataxia-telangiectasia
- **UPB1**, Beta-ureidopropionase deficiency
- **DARS**, Hypomyelination with brainstem and spinal cord involvement and leg spasticity
- **CSPP1**, Joubert syndrome 21
- *HERC2*, Mental retardation, autosomal recessive 38
- **TH**, Segawa syndrome, recessive
- **SPG11**, Spastic paraplegia 11, autosomal recessive
- **AP4B1**, Spastic paraplegia 47, autosomal recessive

Case 3 WES Results

- Single heterozygous pathogenic variant -*UROC1*, novel c.1448 1449delCT (p.S483fs)
 - •Confirmed by Sanger sequencing: Coverage = 100%
 - »Father heterozygous
 - »Mother negative
 - •Urocanase deficiency [MIM #276880]
- Two heterozygous VUS
 - ABAT, novel: c.454C>T (p.P152S) and c.1393G>C (p.G465R)
 - GABA transaminase deficiency [MIM #613163]

Case 3 - Metabolomic Results

Cis- and trans-urocanic elevations

No significant alterations of molecules in histidine pathway. Second pathogenic variant likely not present. Diagnosis likely not urocanase deficiency.

Case 3 WES Results

- Single heterozygous pathogenic variant -UROC1, novel c.1448_1449delCT (p.S483fs)
 - Confirmed by Sanger sequencing: Coverage = 100%
 »Father heterozygous
 »Mother negative
 - •Urocanase deficiency [MIM #276880]
- Two heterozygous VUS
 - ABAT, novel: c.454C>T (p.P152S) and c.1393G>C (p.G465R)
 - •c.454C>T (p.P152S), novel, inherited from mother
 - •c.1393G>C (p.G465R), novel, inherited from father
 - •Both variants predicted to be deleterious using sift and polyphen
 - •GABA transaminase deficiency [MIM:#613163]

GABA transaminase (ABAT) deficiency (Plasma!)

2-pyrrolidinone - a new biomarker for ABAT deficiency

Exome + Metabolomics

- 180 Cases with both clinical exome and clinical metabolomic testing
- Assessed diagnostic rate of platforms
- Assessed when metabolomics contributed to variant re-classification [Alaimo, ASHG 2017]

Contribution of Metabolomics to Genomics

Molecularly Solved

Contribution of Metabolomics to Genomics

Provided InformationDid not aid in the case

Rules Out Variants from Diagnosis

Variant Classification Change

Confirms Molecular Diagnosis

Contribution of Metabolomics to Variant Interpretation

FURTHER VALIDATION AND NEW DISCOVERIES

Peroxisomal Biogenesis disorders (PBD)

PBD are a clinical spectrum of disease Disease Phenotype

Classic Zellweger

Neonatal Adrenoleukodystrophy

Infantile Refsum

Disease Severity

Biochemical Phenotype

PEX alleles

↑ ↑ VLCFA's Absent or deficient peroxisomes

Severe hypomorphic or null

Pictures from Inborn Metabolic Diseases 4th edition and SIMD NAMA

↑ or normal VLCFA's Reduced # peroxisomes

Mild hypomorphic

Mild PBD

- 7 year old
- Phenotype mimicking Usher syndrome with hearing loss and pigmentary retinopathy, normal cognition, diagnosed by research sequencing study for Usher
- *PEX1* G843D homozygote

Zellweger-spectrum disorders Metabolomics

~650 named molecules identified in each plasma sample, N=19

Results: Untargeted metabolomic analysis

Results: Sphingomyelins as new biomarkers for PBD-ZSD

NEW DISCOVERIES!

Oral Carnitine is converted to Trimethylamine N-oxide (TMAO)

Oral Carnitine is converted to Trimethylamine N-oxide (TMAO)

Koeth R.A., et al., Nature Medicine (2013) PMID:23563705 Backhed F., Nature Medicine (2013) PMID: 23652100

Diet & baseline production of TMAO

Koeth R.A., et al., Nature Medicine (2013) PMID: 23563705

Dietary influence of carnitine-challenge on TMAO production

Koeth R.A., et al., Nature Medicine (2013) PMID: 23563705

Plasma TMAO elevations in Global MAPS validation cohort

Meat restriction and oral carnitine supplementation

•Clinical notes on 19 of 24 patients

•All on Chronic PO carnitine (range 17-145 mg/kg/day)

•All highly discouraged from consuming meat

Meat restriction and oral carnitine supplementation

•Clinical notes on 19 of 24 patients

- •All on Chronic PO carnitine (range 17-145 mg/kg/day)
- •All highly discouraged from consuming meat

Disorder	3-methylhistidine (average z-score)	p value
organic acidemia	-0.70	5.02E-04
urea cycle	-0.73	1.82E-05
pku	-0.57	7.96E-03
no diagnosis	0.00	NA

Plasma Carnitine is decreased in patients with organic acidemias

Organic No Acidemia Diagnosis

Plasma Carnitine is decreased in patients with organic acidemias

TEST REPORTING

Reporting Format

- Analysis of data
- Interpretation provided by laboratory director
- Tables of analytes with Z-score >+2 or <-2
 - Human metabolites
 - Drugs
 - Xenobiotics
 - Dietary
- Analytes categorized by pathway

Global MAPS^{®M} Global Metabolomic Assisted Pathway Screen^{®M}

INTERPRETATION:

We understand this is a 3 year old male with developmental delay, ocular motor apraxia, and seizures. Molecular testing revealed a de novo 12q11.2 duplication (361 Kb). This region contains 8 genes: RNASE7, RNASE8, SOLO, SNF219, HNRNPC, RPGRIP1, SUPT16H, and CHD8. His family history includes two brothers, ages 14 months and 5 years old, who are also affected. The 14 month old has a similar clinical presentation, while the 5 year old suffered from delayed speech development which has since resolved. In addition, his 56 year old maternal grandmother has a history of Crohn's disease and Type 2 diabetes. Analysis of plasma amino acids, urine organic acids, plasma acylcarnitines, and plasma creatine/guandinoacetate were negative. Plasma was submitted for analysis of perturbations in metabolic pathways that may be relevant to these clinical symptoms and molecular findings.

All significant analytes are listed in Tables 1-4. N6-succinyladenosine is significantly elevated. Accumulation of this compound is associated with adenylosuccinase deficiency (OMIM 103050), a disorder of de novo purine synthesis. Suggest urine purine analysis for confirmation of this finding. Needs clinical correlation.

Results are dependent upon sample quality, diet, medications, and other physiological conditions. Use of special diets or supplements may mask metabolic abnormalities. Clinical indications, medications, and diet are required for proper interpretation. An expanded report is available upon request.

RESULTS:

z-score '	Superpathway	Subpathway	HMDB ID ^
7.3	Nucleotide	Purine Metabolism, Adenine containing	HMDB00912
3.1	Lipid	Lysolipid	
2.4	Amino Acid	Phenylalanine and Tyrosine Metabolism	HMDB00821
2.4	Lipid	Lysolipid	
2.3	Nucleotide	Pyrimidine Metabolism, Orotate containing	HMDB00226
2.3	Amino Acid	Glycine, Serine and Threonine Metabolism	HMDB00092
2.0	Amino Acid	Leucine, Isoleucine and Valine Metabolism	HMDB00678
2.0	Amino Acid	Phenylalanine and Tyrosine Metabolism	HMDB00158
-2.2	Lipid	Fatty Acid Metabolism (also BCAA Metabolism)	HMDB02013
-4.0	Amino Acid	Phenylalanine and Tyrosine Metabolism	HMDB01434
	7.3 3.1 2.4 2.4 2.3 2.3 2.0 2.0 -2.2	7.3 Nucleotide 3.1 Lipid 2.4 Amino Acid 2.4 Lipid 2.3 Nucleotide 2.3 Amino Acid 2.0 Amino Acid 2.0 Amino Acid 2.0 Lipid 2.1 Lipid	7.3 Nucleotide Purine Metabolism, Adenine containing 3.1 Lipid Lysolipid 2.4 Amino Acid Phenylalanine and Tyrosine Metabolism 2.4 Lipid Lysolipid 2.3 Nucleotide Pyrimidine Metabolism, Orotate containing 2.3 Amino Acid Glycine, Serine and Threonine Metabolism 2.0 Amino Acid Leucine, Isoleucine and Valine Metabolism 2.0 Amino Acid Phenylalanine and Tyrosine Metabolism 2.0 Amino Acid Fatty Acid Metabolism (also BCAA Metabolism)

1. Significantly altered analytes (z-score >2 or <-2) possibly related to the patient's phenotype

Summary Global MAPS

- Identifies all common IEMs studied to date screened on PAA/UOA/ACP
- Screening tool for undifferentiated phenotypes
 - Developmental Delay/Intellectual disability/Hypotonia
 - Seizures (non-specific)
- Does <u>not</u> replace PAA, UOA, etc. for diagnostic testing or management nor can it detect large molecules (MPS, CDG)
- Validate DNA results and can identify IEMs for which no biochemical testing available (Citrate transporter deficiency)
- Potential to diagnose neurotransmitter disorders on a plasma specimen (AADC & GABA transaminase)
- Discovery of Novel Biomarkers for IEMs (PBDs)
- Understand effects of therapies in IEMs

BAYLOR GENETICS

Sarah Elsea

Marcus Miller

Taraka Donti

GIVING LIFE TO POSSIBLE

What does Global MAPS test for?

- Disorders of amino acid metabolism: plasma amino acids \$220
- Organic acidemias: urine organic acids and acylglycines \$500
- Purine disorders: urine purine panel \$260
- **Pyrimidine disorders:** (urine pyrimidine panel \$280
- Neurotransmitter disorders: plasma thymidine; urine pyrimidines; plasma/urine creatine & guanidinoacetate; <u>csf</u>: succinyladenosine, 5HIAA, HVA, 3OMD, lactate, & glucose \$1330 (exclusive of LP costs)
- Cholesterol Metabolism & PBDs \$850

- Creatine disorders: plasma/ urine creatine and guanidinoacetate \$280
- Bile acid disorders: plasma/urine bile acids \$917
- Urea cycle disorders: plasma amino acids & urine orotic acid \$300
- Fatty acid oxidation disorders: acylcarnitine profile, acylglycines, & urine organic acids \$770
- Certain mitochondrial disorders:
 - MNGIE: plasma thymidine \$200

Total cost: > \$5000!