Carrier detection for Tay-Sachs disease: a model for genetic disease prevention

Irene De Biase, MD PhD
Assistant Professor of Pathology, University of Utah
Assistant Medical Director, Biochemical Genetics and Supplemental Newborn Screening, ARUP Laboratories
Conflict of Interest

- None to declare
Learning objectives

- Review the clinical characteristics and the biochemical features of Tay-Sachs Disease
- Describe the population-based screening for Tay-Sachs disease and its impact on disease incidence
- Explore the unique challenges in carrier testing for Tay-Sachs disease
Cherry red spot

Warren Tay
British ophthalmologist
In 1881, he described the cherry red spot on the retina of a one-year old child with mental and physical retardation

Bernard Sachs
Jewish-American neurologist
In 1896, observed the extreme swelling of neurons in autopsy tissue of affected children
Also noticed the disease seemed to be of Jewish origin
TSD is a lysosomal storage disease

- The underlying biochemical defect is the profound deficiency of the lysosomal hydrolase β-hexosaminidase A

- HexA is necessary for the break-down of the ganglioside GM2, a component of the plasma membrane

Okada et al. Science 1969; 165:698-700
Degradation of glycosphingolipids

- Tay-Sachs Disease
- Generalized Gangliosidosis
- Gaucher Disease
- Sandhoff Disease
- Fabry Disease
- Metachromatic leukodystrophy
- Krabbe Disease
- Gaucher Disease

Enzymes:
- β-Galactosidase (Sap B)
- β-N-Acetylhexosaminidase (GM2 activator)
- Sialidase
- β-Glucocerebrosidase (Sap A,C)
- β-Galactocerebrosidase (Sap A,C)
\(\beta \)-hexosaminidase isoforms: HexA and HexB

Tay-Sachs Disease
- \(\alpha \beta \) GM2 activator
- \(\beta \)-Galactosidase (Sap B)

Generalized Gangliosidosis
- \(\alpha \beta \) GM2 activator
- \(\beta \)-Galactosidase (Sap B)

Sandhoff Disease
- \(\beta \beta \) GM2 activator
- \(\beta \)-Galactosidase (Sap B)

Fabry Disease
- \(\alpha \beta \) GM2 activator
- \(\alpha \)-Galactosidase (Sap B)

Metachromatic leukodystrophy
- \(\beta \)-Cer
- Arylsulfatase A (Sap B)

Gaucher Disease
- \(\beta \)-Glucocerebrosidase (Sap A,C)
- \(\beta \)-Galactocerebrosidase (Sap A,C)

Krabbe Disease
- \(\beta \)-Cer
- \(\beta \)-Glycerocerebrosidase (Sap A,C)
Three gene system required for HexA activity

1. chromosome 15
 \(HEXA\)
 \(\alpha\) subunit
 Hex A: \(\alpha\beta\)
 Tay-Sachs disease

2. chromosome 5
 \(HEXB\)
 \(\beta\) subunit
 Hex B: \(\beta\beta\)
 Sandhoff disease

3. chromosome 5
 \(GM2A\)
 activator
 GM2-gangliosidosis
 AB variant
Three gene system required for HexA activity

1. chromosome 15
 \[HEXA\]
 \(\alpha\) subunit
 Hex A: \(\alpha\beta\)
 Tay-Sachs disease

2. chromosome 5
 \[HEXB\]
 \(\beta\) subunit
 Hex B: \(\beta\beta\)
 Sandhoff disease

3. chromosome 5
 \[GM2A\]
 activator
 GM2-gangliosidosis
 AB variant

TSD mode of inheritance: autosomal recessive
TSD clinical phenotype varies widely

- **Infantile TSD**
 - most prevalent
 - usual onset at 6 months

- **Juvenile TSD**
 - extremely rare
 - onset between ages of 2 and 10 years

- **Late Onset TSD**
 - rare
 - signs and symptoms present in late 20's and early 30's
Infantile Tay-Sachs Disease

✅ Relentless deterioration of mental and physical abilities beginning around six months of age, and resulting in death by age 5

<table>
<thead>
<tr>
<th>3 - 6 mo</th>
<th>6 - 10 mo</th>
<th>After 10 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Excessive Startling</td>
<td>• Gradual loss of vision</td>
<td>• Complete blindness</td>
</tr>
<tr>
<td>• Twitchy eye movement</td>
<td>• Gradual deafness</td>
<td>• Strong seizures</td>
</tr>
<tr>
<td>• Reverse maturation (i.e. failure to walk)</td>
<td>• Loss of motor skills</td>
<td>• Dementia</td>
</tr>
<tr>
<td></td>
<td>• Macrocephaly</td>
<td>• Unresponsive, vegetative state</td>
</tr>
<tr>
<td></td>
<td>• Hypotonia</td>
<td>• Death due to bronchopneumonia between ages 2-5</td>
</tr>
</tbody>
</table>
Late-onset Tay-Sachs Disease (LOTS)

- Juvenile
 - Ataxia (beginning at 2-10 years of age)
 - Cognitive decline
 - Spasticity and seizures
 - Loss of vision
 - Early death

- Chronic adult-onset
 - Psychosis, depression, bipolar symptoms
 - Progressive dystonia, choreoathetosis, ataxia
 - Cognitive dysfunction and dementia
Diagnostic confirmation for a symptomatic patient

✓ β-hexosaminidase A (HexA) enzymatic activity in serum or white blood cells using synthetic substrates
 o infantile TSD: 0% - 5% residual activity
 o juvenile or chronic adult-onset TSD: < 15% residual activity

✓ Molecular testing
 o Confirm diagnosis: mutations in the HEXA gene
 o Exclude pseudodeficiency alleles
 o Identify specific disease-causing mutations in at-risk family members and for prenatal diagnosis
Tay-Sachs Disease Management

Tragically, there is no cure
Affected children can only be made as comfortable as possible

- Adequate nutrition and hydration (feeding tubes)
- Manage infectious disease
- Respiratory care
- Anti-convulsion medications to control seizures
- Antipsychotic or antidepressant therapy (adult-onset TSD)
Novel Treatments?

- Hematopoietic stem-cell transplantation
 No benefit for neurodevelopmental symptoms, and potential harm for overall survival (Bley et al. 2011)
- Substrate reduction therapy
 No measurable benefits in late-onset TSD with Miglustat [inhibitor of glycosphingolipids synthesis] (Shapiro et al. 2009)
- Recombinant beta-hexosaminidase A
 Work in progress. Difficult to deliver across the blood–brain barrier
- Pharmacological chaperones
 HexA selective inhibitors, work in progress (Rountree 2009)
 Possible benefits in late-onset TSD using Pyrimethamine [antimalarial drug that enhances HexA activity] (Osher et al. 2011)
Most common in Ashkenazi Jews

- Most common in Eastern Europeans of Jewish descent (Ashkenazi Jews), French Canadians and members of the Cajun community in Louisiana
 - 1:30 carrier frequency
 - 1:3,600 disease frequency (Infantile Type)
 - 1:67,000 disease frequency (Adult type)

- General population
 - 1:300 carrier frequency
 - 1:320,000 disease frequency (Infantile Type)
The importance of being tested

Carrier testing

- Screening programs for *at-risk* populations
- Individuals with a positive family history

ACOG/ACMG guidelines: *TSD carrier screening should be offered to individuals and couples at high-risk, including those of Ashkenazi Jewish, French-Canadian, or Cajun descent and those with a family history consistent with TSD, as part of routine obstetric care*

ACOG Committee on Genetics committee opinions #318, 2005
The screening program for Tay-Sachs Disease started at Johns Hopkins (Dr. Michael Kaback) in 1971

- Originally done by enzyme assay

Rationale

- TSD occurs predominantly in a defined population (Ashkenazi Jews)
- Availability of a simple, inexpensive carrier detection test (serum and/or WBC HexA activity)
β-hexosaminidase A (HexA) enzymatic assay

- Uses enzyme-specific artificial 4-MU-conjugated substrate
- 4-MU released is measured using a fluorometer
Measurement of HexA activity

• The fluorogenic substrate measures both the HexA and Hex B activities
 ➢ HexA + Hex B = total activity

• Hexosaminidase A is heat labile

• Heat-inactivation allows to quantify HexA activity as a ratio of total activity
Carrier status is established by HexA%

<table>
<thead>
<tr>
<th>Carrier of Tay-Sachs disease</th>
<th>↓</th>
<th>%HexA</th>
<th>↓/N Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with Tay-Sachs disease</td>
<td>↓↓</td>
<td>%HexA</td>
<td>↓↓ Total</td>
</tr>
<tr>
<td>Carrier of Sandhoff disease</td>
<td>↑</td>
<td>%HexA</td>
<td>↓ Total</td>
</tr>
<tr>
<td>Patients with Sandhoff disease</td>
<td>↑↑</td>
<td>%HexA</td>
<td>↓↓ Total</td>
</tr>
<tr>
<td>Pregnant Women</td>
<td>↓/N</td>
<td>%HexA</td>
<td>↑↑↑ Total</td>
</tr>
</tbody>
</table>

Hex A: αβ Hex B: ββ
Tay-Sachs disease Sandhoff disease
Prototype for ethnic-based carrier screening

Before population carrier screening the incidence of Tay-Sachs disease was 1:3,600 for Ashkenazi Jewish births.

After implementation of screening, the incidence was reduced by greater than 90%.

Kaback M & the International TSD Data Collection Network (JAMA. 1993;270:2307-2315)
“Tay-Sachs Disease represents a prototypic effort in the coordination of adult public education, voluntary carrier testing, and comprehensive genetic counseling directed to the prospective prevention of an unbeatable and uniformly fatal childhood disease”

Kaback M & the International TSD Data Collection Network (JAMA. 1993;270:2307-2315)
TSD Biochemical Genetics Testing at ARUP

- Hexosaminidase A Percent and Total Hexosaminidase in Plasma or Serum (2008121)
 - Confirm diagnosis of Tay-Sachs disease
 - Carrier screening in males or non-pregnant females

- Hexosaminidase A Percent and Total Hexosaminidase in Leukocytes (2008125)
 - Carrier status in women who are pregnant or taking oral contraceptives
 - Individuals with inconclusive serum results

- Hexosaminidase A Percent and Total Hexosaminidase in Plasma with Reflex to Leukocytes (2008129)
Is it really that simple?

✓ Limitations of the HexA enzymatic test

False positives
- Alternative hexosaminidase isoforms
- Pseudodeficiency alleles

False negatives
- B1 variant

Inconclusive results
Increases in plasma/serum total hexosaminidase cause false positive

HexA enzymatic test in plasma/serum (May 2013 hotline – August 2014)

<table>
<thead>
<tr>
<th>Status</th>
<th>Percentage</th>
<th>(N =)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-carrier</td>
<td>66%</td>
<td>104</td>
</tr>
<tr>
<td>TSD Carrier</td>
<td>7%</td>
<td>11</td>
</tr>
<tr>
<td>Inconclusive</td>
<td>11%</td>
<td>18</td>
</tr>
<tr>
<td>Carrier with ↑↑ total activity</td>
<td>15%</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>N = 158</td>
<td>(86M, 72F)</td>
</tr>
</tbody>
</table>

![Graph showing total activity in plasma/serum]
Alternative heat-resistant forms of Hexosaminidase

Several conditions increase total hexosaminidase activity in serum/plasma, but NOT in leukocytes

%HexA and total activity in a cohort of patients with symptomatic liver disease or in remission
Pseudodeficiency alleles

- General population carrier frequency: 1:300
- General population carrier frequency by enzyme*: 1:170

✔ p.Arg247Trp and p.Arg249Trp
 - not associated with disease
 - reduce HexA enzymatic activity toward synthetic substrates when activity is determined [the naturally occurring GM2 ganglioside is not stable and not available]
 - Molecular genetic testing can be used to clarify
 - About 35% of non-Jewish individuals and 2% of Jewish individuals (identified as carriers by HEX A enzyme-based testing) are carriers of a pseudodeficiency allele

* Triggs-Raine et al. 1992
B1 variant

Table 4.—Mutations Associated With Later-Onset Forms of Hexosaminidase-A–Deficient GM₂ Gangliosidoses*

<table>
<thead>
<tr>
<th>Form of Disease</th>
<th>Mutation</th>
<th>Ethnic Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>“B₁ Variant”</td>
<td>Arg₁₇₈ → His</td>
<td>Portuguese, European</td>
</tr>
<tr>
<td>(late infantile or juvenile onset)</td>
<td>Arg₁₇₈ → Cys</td>
<td>Czech</td>
</tr>
<tr>
<td></td>
<td>Arg₄₉₉ → His</td>
<td>Scotch, Irish</td>
</tr>
<tr>
<td></td>
<td>Arg₅₀₄ → His</td>
<td>Assyrian, Armenian</td>
</tr>
<tr>
<td></td>
<td>Gly₂₅₀ → Asp</td>
<td>Lebanese</td>
</tr>
<tr>
<td>Juvenile GM₂</td>
<td>Gly₂₆₉ → Ser</td>
<td>Ashkenazi Jewish, diverse</td>
</tr>
<tr>
<td></td>
<td>Lys₁₉₇ → Thr</td>
<td>Dutch</td>
</tr>
</tbody>
</table>

*Identified in both homozygous and compound heterozygous states. Arg indicates arginine; His, histidine; Cys, cystine; Gly, glycine; Asp, aspartic acid; Ser, serine; Lys, lysine; and Thr, threonine.

- Associated with juvenile and chronic hexosaminidase A deficiency
- Able to cleave the artificial substrate, but NOT GM2

Kaback M & the International TSD Data Collection Network (JAMA. 1993;270:2307-2315)
Inconclusive results using the enzymatic test

HexA% activity in leukocytes
(May 2013 hotline – August 2014)

- Around 10% of results are outside normal range but higher than observed in Tay-Sachs disease
- Carrier status should be excluded
Targeted mutation analysis greatly improves detection in at-risk populations

<table>
<thead>
<tr>
<th>Mutation</th>
<th>AJ</th>
<th>Not- AJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1278insTATC</td>
<td>~82%</td>
<td>~8-30%</td>
</tr>
<tr>
<td>IVS12+1</td>
<td>~10-15%</td>
<td>0</td>
</tr>
<tr>
<td>G269S</td>
<td>~ 2%</td>
<td>~ 5%</td>
</tr>
<tr>
<td>c.1073+1G>A</td>
<td>0</td>
<td>~ 15%</td>
</tr>
<tr>
<td>Pseudo-alleles</td>
<td>2%</td>
<td>4-32%</td>
</tr>
<tr>
<td>7.6-kb del</td>
<td>French Canadian</td>
<td>~ 99% Ashkenazi Jews Mutations</td>
</tr>
</tbody>
</table>
“Next generation” TSD carrier screening Challenges

✓ Targeted mutation analysis identified 92 – 99% of carriers in a **homogeneous** AJ population

➢ AJ population tested by our labs is probably **NOT** homogeneous

Jan 2011 – Dec 2013

<table>
<thead>
<tr>
<th>HEXA 7 mutations Panel</th>
<th>N</th>
<th>Non-carrier</th>
<th>TSD Carrier</th>
<th>Pseudodeficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>742</td>
<td>98%</td>
<td>2%</td>
<td>< 1%</td>
</tr>
<tr>
<td>(67M, 675F)</td>
<td>(N = 724)</td>
<td>(N = 14)</td>
<td>(N = 4)</td>
<td></td>
</tr>
</tbody>
</table>

➢ Tay-Sachs Disease (*HEXA*) 7 Mutations (0051428)
Towards an ethnicity-independent TSD carrier screening

Molecular Genetics & Genomic Medicine

METHOD

Next-generation DNA sequencing of HEXA: a step in the right direction for carrier screening

Jodi D. Hoffman¹, Valerie Greger², Erin T. Strovel³, Miriam G. Blitzer³, Mark A. Umbarger², Caleb Kennedy², Brian Bishop², Patrick Saunders², Gregory J. Porreca², Jaclyn Schienda⁴, Jocelyn Davie², Stephanie Hallam² & Charles Towne²

¹Division of Genetics, Department of Pediatrics, Floating Hospital for Children, Tufts Medical Center, Boston, Massachusetts
²Good Start Genetics Inc., Cambridge, Massachusetts
³Division of Genetics, Department of Pediatrics, University of MD School of Medicine, Baltimore, Maryland
⁴Dana Farber Cancer Institute, Boston, Massachusetts

- Full gene analysis limits false-positive and false-negative results compared to traditional enzyme and genotyping methodologies
- CAVEAT: variant of unknown significance still require functional studies
ARUP performs full gene sequencing

- Tay-Sachs Disease (HEXA) Sequencing and 7.6kb Deletion (2009298)

Identify causative *HEXA* gene mutation(s) in individual with abnormal level of HEX A enzyme
Conclusions

- Tay-Sachs disease population-based carrier screening is a good model for genetic disease prevention.
- Best sensitivity is achieved combining enzyme and molecular testing.
- Access to inexpensive sequencing methodologies is necessary for pan-ethnic carrier screening.
Unresolved issues

✓ Current recommendations is to offer carrier screening to members of at-risk populations
 ➢ TSD has been reported in children of all ethnic, racial, and religious groups

✓ Preventing the births of affected children is a less-than-ideal method of disease control
 ➢ We need a cure!!
Irene De Biase, MD, PhD
irene.de-biase@aruplab.com