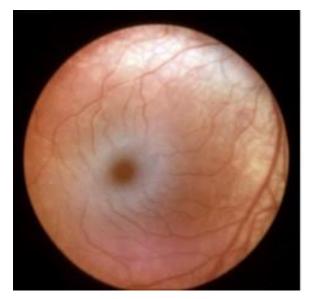
Carrier detection for Tay-Sachs disease:

a model for genetic disease prevention

Irene De Biase, MD PhD

Assistant Professor of Pathology, University of Utah Assistant Medical Director, Biochemical Genetics and Supplemental Newborn Screening, ARUP Laboratories


Conflict of Interest

None to declare

Learning objectives

- Review the clinical characteristics and the biochemical features of Tay-Sachs Disease
- Describe the population-based screening for Tay-Sachs disease and its impact on disease incidence
- Explore the unique challenges in carrier testing for Tay-Sachs disease

Cherry red spot

Warren Tay

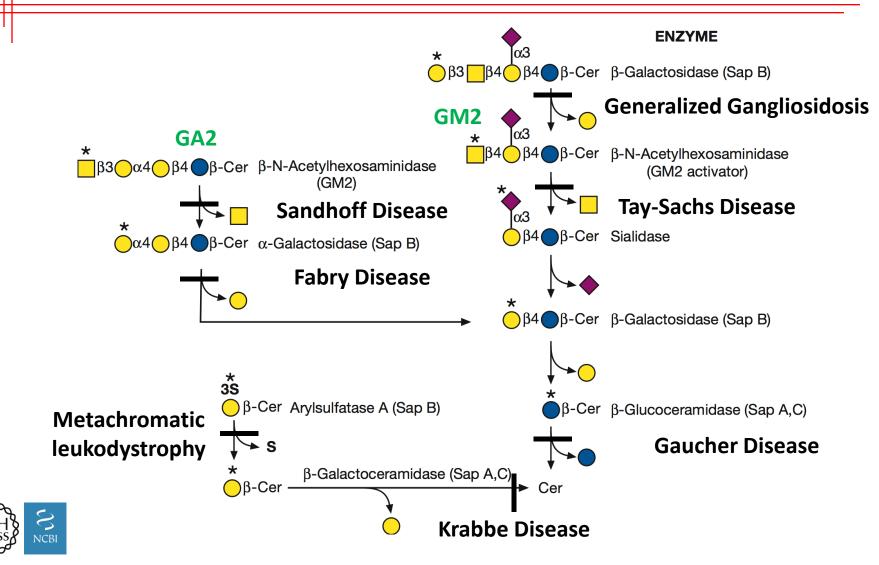
British ophthalmologist

In 1881, he described the **cherry red spot** on the retina of a one-year old child with **mental and physical retardation**

> **NOVEL collection** University of Utah

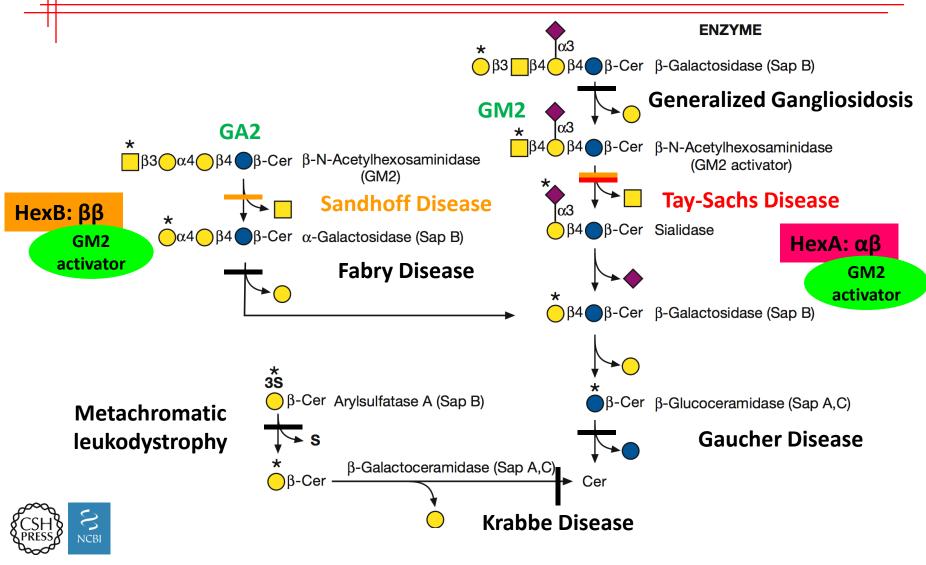
Bernard Sachs

Jewish-American neurologist

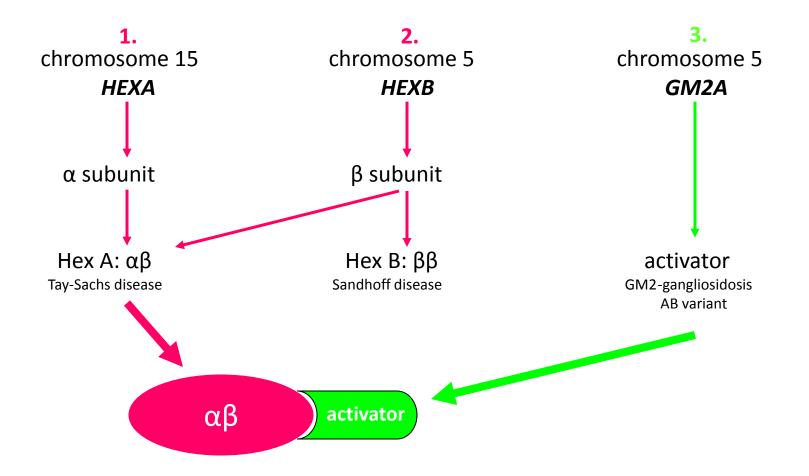

In 1896, observed the **extreme swelling of neurons** in autopsy tissue of affected children

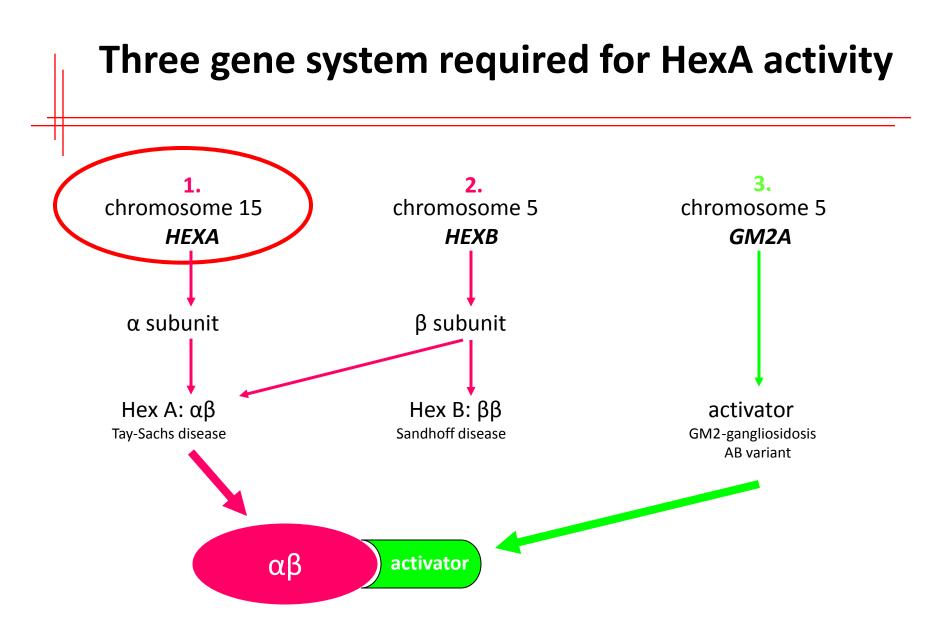
Also noticed the disease seemed to be of Jewish origin

TSD is a lysosomal storage disease


- The underlying biochemical defect is the profound deficiency of the lysosomal hydrolase β-hexosaminidase A
- HexA is necessary for the break-down of the ganglioside GM2, a component of the plasma membrane

Degradation of glycosphingolipids


Essentials of Glycobiology Second Edition


β-hexosaminidase isoforms: HexA and HexB

Essentials of Glycobiology Second Edition

Three gene system required for HexA activity

TSD mode of inheritance: autosomal recessive

TSD clinical phenotype varies widely

• Infantile TSD

- most prevalent
- usual onset at 6 months

Juvenile TSD

- extremely rare
- onset between ages of 2 and 10 years

Late Onset TSD

- rare
- signs and symptoms present in late 20's and early 30's

Infantile Tay-Sachs Disease

✓ Relentless deterioration of mental and physical abilities beginning around six months of age, and resulting in death by age 5

3 -6 mo	6 - 10 mo	After 10 mo
 Excessive Startling Twitchy eye movement Reverse maturation (i.e. failure to walk) 	 Gradual loss of vision Gradual deafness Loss of motor skills Macrocephaly Hypotonia 	 Complete blindness Strong seizures Dementia Unresponsive, vegetative state Death due to bronchopneumonia between ages 2-5

Late-onset Tay-Sachs Disease (LOTS)

✓ Juvenile

- Ataxia (beginning at 2-10 years of age)
- Cognitive decline
- Spasticity and seizures
- Loss of vision
- Early death
- ✓ Chronic adult-onset
- Psychosis, depression, bipolar symptoms
- Progressive dystonia, choreoathetosis, ataxia
- Cognitive dysfunction and dementia

Diagnostic confirmation for a symptomatic patient

- β-hexosaminidase A (HexA) enzymatic activity in serum or white blood cells using <u>synthetic substrates</u>
- infantile TSD: 0% 5% residual activity
- juvenile or chronic adult-onset TSD: < 15% residual activity

✓ Molecular testing

- Confirm diagnosis: mutations in the HEXA gene
- Exclude pseudodeficiency alleles
- Identify specific disease-causing mutations in at-risk family members and for prenatal diagnosis

Tay-Sachs Disease Management

Tragically, there is no cure

Affected children can only be made as comfortable as possible

- Adequate nutrition and hydration (feeding tubes)
- Manage infectious disease
- Respiratory care
- Anti-convulsion medications to control seizures
- Antipsychotic or antidepressant therapy (adult-onset TSD)

Novel Treatments?

Hematopoietic stem-cell transplantation

No benefit for neurodevelopmental symptoms, and potential harm for overall survival (Bley et al. 2011)

• Substrate reduction therapy

No measurable benefits in late-onset TSD with Miglustat [inhibitor

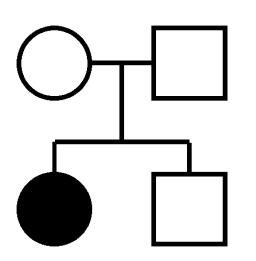
of glycosphingolipids synthesis] (Shapiro et al. 2009)

• Recombinant beta-hexosaminidase A

Work in progress. Difficult to deliver across the blood-brain barrier

• Pharmacological chaperones

HexA selective inhibitors, work in progress (Rountree 2009)


Possible benefits in late-onset TSD using Pyrimethamine

[antimalarial drug that enhances HexA activity] (Osher et al. 2011)

Most common in Ashkenazi Jews

- Most common in Eastern Europeans of Jewish descent (Ashkenazi Jews), French Canadians and members of the Cajun community in Louisiana
 - > 1:30 carrier frequency
 - > 1:3,600 disease frequency (Infantile Type)
 - > 1:67,000 disease frequency (Adult type)
- General population
 - > 1:300 carrier frequency
 - 1:320,000 disease frequency (Infantile Type)

The importance of being tested

Carrier testing

- Screening programs for *at-risk* populations
- Individuals with a positive family history

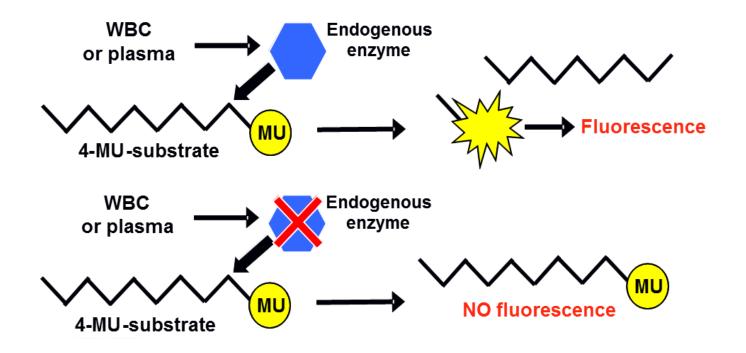
ACOG/ACMG guidelines: TSD carrier screening should be offered to individuals and couples at high-risk, including those of Ashkenazi Jewish, French-Canadian, or Cajun descent and those with a family history consistent with TSD, as part of routine obstetric care

ACOG Committee on Genetics committee opinions #318, 2005 ACMG Practice Guidelines. Genet Med 2008; 10(1):54 –56

TSD carrier screening started in 1971

The screening program for Tay-Sachs Disease started at Johns Hopkins (Dr. Michael Kaback) in 1971

Originally done by enzyme assay


Rationale

TSD occurs predominantly in a defined population (Ashkenazi Jews)

Availability of a simple, inexpensive carrier detection test (serum and/or WBC HexA activity)

β-hexosaminidase A (HexA) enzymatic assay

- Uses enzyme-specific artificial 4-MU-conjugated substrate
- 4-MU released is measured using a fluorometer

Measurement of HexA activity

 The fluorogenic substrate measures both the HexA and Hex B activities
 HexA + Hex B = total activity

HexA

+

HexB

HexB

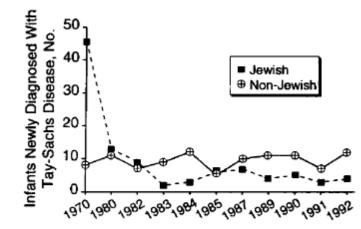
- Hexosaminidase A is heat labile
- Heat-inactivation allows to quantify HexA activity as a ratio of total activity

Carrier status is established by HexA%

Carrier of Tay-Sachs disease	↓ %HexA	↓/N Total
Patients with Tay-Sachs disease	↓↓ %HexA	↓↓ Total
Carrier of Sandhoff disease	↑ %HexA	↓ Total
Patients with Sandhoff disease	<mark>↑↑ %</mark> HexA	↓↓ Total
Pregnant Women	↓/N %HexA	<mark>↑↑↑</mark> Total

Hex A: $\alpha\beta$ Tay-Sachs disease

Hex B: **B**


Sandhoff disease

Prototype for ethnic-based carrier screening

Before population carrier screening the incidence of Tay-Sachs disease was 1:3,600 for Ashkenazi Jewish births

Table 1.—Tay-Sachs Disease Heterozygote Screening, 1971 Through 1992

Country	No. Tested	Carriers	At-Risk Couples
United States	712 818	27 150	657
Israel	159 544	4229	263
Canada	55 922	2922	57
South Africa	11 638	1286	36
Europe	10 927	725	21
Brazil, Mexico	1682	96	20
Australia	473	10	2
Total	953 004	36 418	1056

After implementation of screening, the incidence was reduced by greater than 90%

Kaback M & the International TSD Data Collection Network (JAMA. 1993;270:2307-2315)

"Tay-Sachs Disease represents a prototypic effort in the coordination of adult public education, voluntary carrier testing, and comprehensive genetic counseling directed to the prospective prevention of an unbeatable and uniformly fatal childhood disease"

Kaback M & the International TSD Data Collection Network (JAMA. 1993;270:2307-2315)

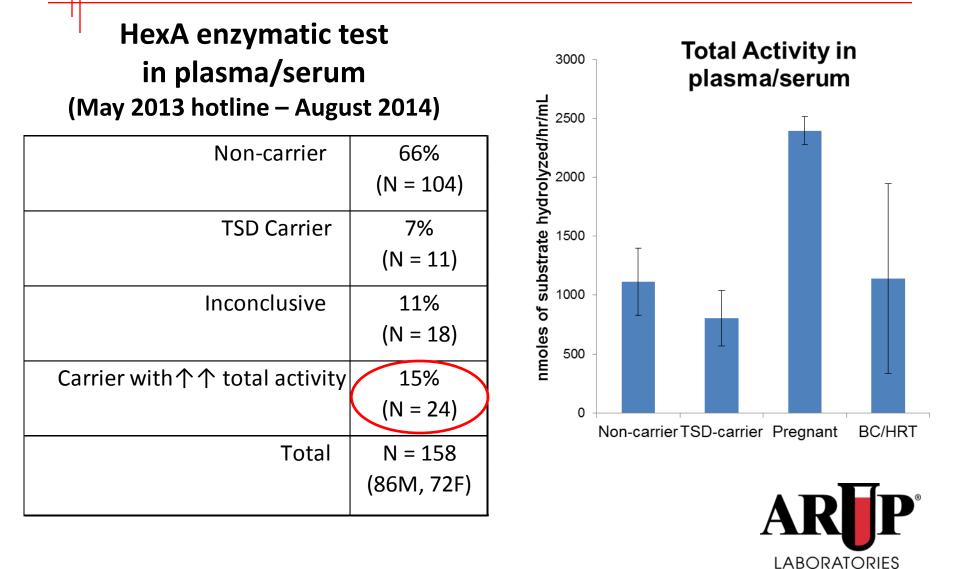
TSD Biochemical Genetics Testing at ARUP

- Hexosaminidase A Percent and Total Hexosaminidase in Plasma or Serum (2008121)
 - Confirm diagnosis of Tay-Sachs disease
 - Carrier screening in males or non-pregnant females
- Hexosaminidase A Percent and Total Hexosaminidase in Leukocytes (2008125)
 - Carrier status in women who are pregnant or taking oral contraceptives
 - o Individuals with inconclusive serum results
- Hexosaminidase A Percent and Total Hexosaminidase in Plasma with Reflex to Leukocytes (2008129)

Is it really that simple?

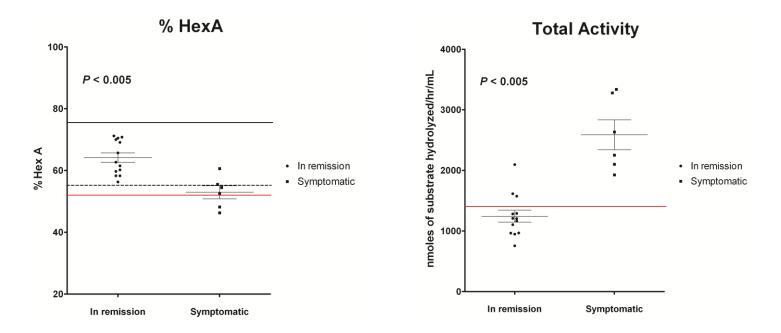
✓ Limitations of the HexA enzymatic test

False positives


- Alternative hexosaminidase isoforms
- Pseudodeficiency alleles

False negatives

- B1 variant


Inconclusive results

Increases in plasma/serum total hexosaminidase cause false positive

Alternative heat-resistant forms of Hexosaminidase

Several conditions increase total hexosaminidase activity in serum/plasma, but NOT in leukocytes

%HexA and total activity in a cohort of patients with symptomatic liver disease or in remission

Pseudodeficiency alleles

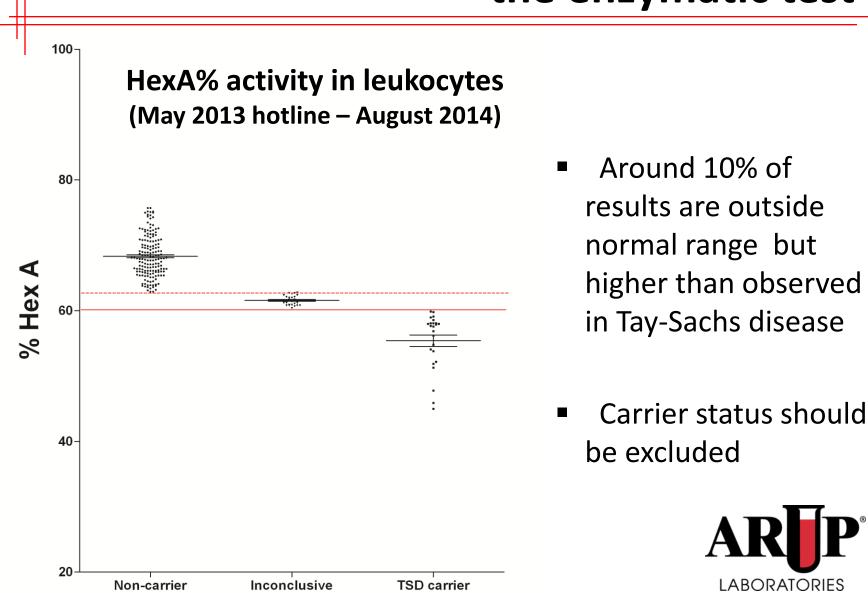
- General population carrier frequency: 1:300
- General population carrier frequency **by enzyme***: 1:170

✓ p.Arg247Trp and p.Arg249Trp

- \circ $\,$ not associated with disease $\,$
- reduce HexA enzymatic activity toward <u>synthetic substrates</u> when activity is determined [the naturally occurring GM2 ganglioside is not stable and not available]
- Molecular genetic testing can be used to clarify
 About 35% of non-Jewish individuals and 2% of Jewish
 individuals (identified as carriers by HEX A enzyme-based testing)
 are carriers of a pseudodeficiency allele

B1 variant

Table 4.—Mutations Associated With Later-Onset Forms of Hexosaminidase-A-Deficient GM₂ Gangliosidoses*


Form of Disease	Mutation	Ethnic Group
"B1 Variant" (late infantile or juvenile onset)	Arg178 → His	Portuguese, European
	Arg178 → Cys	Czech
	5 other mutations reported	Diverse other
Juvenile GM2	Arg499 \rightarrow His	Scotch, Irish
	Arg504 → His	Assyrian, Armenian
	Gly250 → Asp	Lebanese
Chronic or adult GM ₂	Gly269 → Ser	Ashkenazi Jewish, diverse other
	Lys197 → Thr	Dutch

*Identified in both homozygous and compound heterozygous states. Arg indicates arginine; His, histidine; Cys, cystine; Gty, glycine; Asp, aspartic acid; Ser, serine; Lys, lysine; and Thr, threonine.

- Associated with juvenile and chronic hexosaminidase A deficiency
- Able to cleave the artificial substrate, but NOT GM2

Kaback M & the International TSD Data Collection Network (JAMA. 1993;270:2307-2315)

Inconclusive results using the enzymatic test

Targeted mutation analysis greatly improves detection in at-risk populations

Mutation	AJ	Not- AJ
1278insTATC	~82%	~8-30%
IVS12+1	~10-15%	0
G269S	~ 2%	~ 5%
c.1073+1G>A	0	~ 15%
Pseudo-alleles	2%	4-32%
7.6-kb del	French (Canadian

~ 99% Ashkenazi Jews Mutations

"Next generation" TSD carrier screening Challenges

Targeted mutation analysis identified 92 – 99% of carriers in a homogeneous AJ population AJ population tested by our labs is probably NOT homogeneous

Jan 2011 – Dec 2013

HEXA 7 mutations Panel			
N	Non-carrier	TSD Carrier	Pseudodeficiency
742	98%	2%	< 1%
(67M <i>,</i> 675F)	(N = 724)	(N = 14)	(N = 4)

Tay-Sachs Disease (HEXA) 7 Mutations (0051428)

Towards an ethnicity-independent TSD carrier screening

Open Acces

Molecular Genetics & Genomic Medicine

METHOD

Next-generation DNA sequencing of *HEXA*: a step in the right direction for carrier screening

Jodi D. Hoffman¹, Valerie Greger², Erin T. Strovel³, Miriam G. Blitzer³, Mark A. Umbarger², Caleb Kennedy², Brian Bishop², Patrick Saunders², Gregory J. Porreca², Jaclyn Schienda⁴, Jocelyn Davie², Stephanie Hallam² & Charles Towne²

¹Division of Genetics, Department of Pediatrics, Floating Hospital for Children, Tufts Medical Center, Boston, Massachusetts ²Good Start Genetics Inc., Cambridge, Massachusetts ³Division of Genetics, Department of Pediatrics, University of MD School of Medicine, Baltimore, Maryland ⁴Dana Farber Cancer Institute, Boston, Massachusetts

- Full gene analysis limits false-positive and false-negative results compared to traditional enzyme and genotyping methodologies
- CAVEAT: variant of unknown significance still require functional studies

ARUP performs full gene sequencing

 Tay-Sachs Disease (HEXA) Sequencing and 7.6kb Deletion (2009298)

Identify causative *HEXA* gene mutation(s) in individual with abnormal level of HEX A enzyme

Conclusions

- Tay-Sachs disease population-based carrier screening is a good model for genetic disease prevention
- Best sensitivity is achieved combining enzyme and molecular testing
- Access to inexpensive sequencing methodologies is necessary for pan-ethnic carrier screening

Unresolved issues

- Current recommendations is to offer carrier screening to members of *at-risk* populations
 TSD has been reported in children of all ethnic, racial, and religious groups
- Preventing the births of affected children is a less-than-ideal method of disease control
 We need a cure!!

Irene De Biase, MD, PhD irene.de-biase@aruplab.com