Learning Objectives

- 1. Learn how to calculate basic accuracy statistics such as sensitivity, specificity, likelihood ratios and AUC
- 2. Understand reasons for differences in diagnostic accuracy: real differences, bias, random variation, cut-offs.
- 3. Understand the difference between tests conducted under ideal conditions vs real conditions
- 4. Understand the role of higher-level approaches to performance evaluation

No Disclosures

Testing a Test : Beyond Sensitivity and Specificity:

Robert Schmidt MBA MD PhD MMed

Tests are Central to Medicine

- Diagnosis
- Prognosis
- Monitoring
- Management

Hierarchy of Effectiveness

Societal Impact

Cost effectiveness

Clinical effectiveness

Clinical performance

Analytical performance

What this talk is about

Evaluating Tests:

- Accuracy
- Usefulness
- Test Comparisons
- Limitations
- Future Directions

Societal Impact

Cost effectiveness

Clinical effectiveness

Clinical performance

Analytical performance

Case:

Your father has just returned from his annual physical. His doctor suggested that he consider a prostatic specific antigen (PSA) test to screen for prostate cancer. He is unsure what to do and asks your advice. Should he take the test?

The basic task: classification

Test result

Perfect Test:

5

Test value

Test value

Test

Test value

Disease

Absent

Total

Present

Test value

How well did we classify those with disease?

Sensitivity = 148/200 = 74%

How well did we classify those without disease?

Specificity = 160/200 = 80%

Test value

Sensitivity = accuracy in the diseased group Specificity = accuracy in the nondiseased group

Two useful mnemonics*

SnNout:

High <u>Sen</u>sitivity Test with a <u>N</u>egative result rules <u>out</u>

SpPin:

High <u>Sp</u>ecificity Test with a <u>p</u>ositive result rules <u>in</u>

PSA test

- Sensitivity 90%
- Specificity 20%

How might this test be useful?

- SnNout?
- SpPin?

Results May Vary.....

Sensitivity of PSA Tests

Specificity of PSA Test

Sensitivity and Specificity Depend on Cutoff Values

	Cutoff A	Cutoff B
Sensitivity	74%	22%
Specificity	80%	98%

	Disease		
Test	Present	Absent	Total
Positive	148	40	188
Negative	52	160	212
Total	200	200	

Threshold Effects on Test Performance

Threshold Effects on Test Performance

Tradeoff: Specificity vs Sensitivity

Threshold	Sensitivity	Specificity
15	98	22
18	74	80
20	22	98

How to Compare Tests

	Sensitivity		
Specificity	Test A	Test B	
0.1	0.98	0.95	
0.2	0.97	0.91	
0.3	0.95	0.88	
0.4	0.91	0.78	
0.5	0.87	0.70	
0.6	0.80	0.56	
0.7	0.70	0.40	
0.8	0.55	0.20	
0.9	0.38	0.10	
1.0	0.10	0.01	

Receiver Operating Characteristic (ROC) Curve

1 – specificity = FPR

ROC Curve for The Perfect Test

Test Performance is Related to Area Under the Curve (AUC)

Area Under the Curve (AUC)

Perfect Test AUC = 1.0

Real Test

Useless Test AUC = 0.5

Does the AUC mean anything?

Does the AUC Mean Anything?

Meaning of AUC

AUC = 1.0 \rightarrow perfect separation

PSA vs PSA velocity

	Area Under the Curve (AUC)	
Study	PSA velocity	PSA
Eggener, 2005	0.91	0.88
Ciatto, 2004	0.74	0.67
Berger, 2007	0.87	0.65

Take home message:

Threshold Effects

No Threshold Effects

How do I know if a test is useful?

Is this test useful?

Usefulness is defined by the customer

Will this test tell me whether my patient has Prostate Cancer?

Usefulness is defined by the customer

The customer's problem:

Usefulness = Capabilities - Requirements

What is the impact of a *positive* result?

Positive Likelihood ratio, LR+

What is the impact of a <u>negative</u> result? Negative Likelihood ratio, LR-

Key Relationship

Likelihood = Impact Factor

Two ways to be certain:

Prior odds x Likelihood Ratio = **Posterior odds**

A test can solve the problem if:

 $LR_{Actual} > LR_{Required}$

$$LR^+ > \frac{PosteriorOdds}{PriorOdds}$$
 Confirm

Or:

$$LR^{-} < \frac{PosteriorOdds}{PriorOdds}$$
 Exclude

Futile test: <u>*Required*</u> LR+ = $\frac{PostOdds}{PriorOdds} = \frac{10}{2} = 5$

Rule-in, Confirmation Zone High LR+ is better

Rule-out, Exclusion Zone: Low LR- is better

Capabilities > Requirements?

Key Points:

- Accuracy ≠ Usefulness
- Potential Usefulness = LR = f(Sn,Sp)
- Usefulness = Capabilities Requirements:
 - -The objective (exclude, confirm)
 - Prior uncertainty
 - Required certainty
 - -The Test Impact (actual LR vs required LR)

Setting Test Thresholds

ROC curve = set of available Likelihood Ratios

How to select a threshold value

Diagnostic Zones for Thresholds

Accuracy, Usefulness and Optimality

Key Points – Setting Thresholds

Comparing Tests

- Thresholds are a nuisance
- ROC/AUC facilitates comparisons of <u>diagnostic</u> accuracy

Using Tests

- Thresholds are required
 - Define a test
 - Link capabilities and requirements
 - Can be set to optimize performance
 - Optimum is context dependent
 - Depends on error costs

Comparing Test Performance

Why do test results differ?

- **1. True differences**
- 2. False differences
 - (bias)
 - thresholds
- 3. Random variation (imprecision)

Evaluating Test Accuracy: Ideal vs Realistic Conditions

Test Performance Ideal vs Realistic Conditions

Referral Pattern & Disease Spectrum

Referral Pattern & Disease Spectrum

Effect of Prior Testing Will the index test perform differently?

*Index Test = the test of interest

Defining a Test: PICCO

Sources of <u>Real</u> Differences: Context is Everything

Ρ	Population	Setting Exclusion/Inclusion criteria Referral pattern Comorbidities Age, Gender
I	Index Test	Method (in detail) Cutoff Skill level
С	Condition	Disease of interest
С	Comparator (reference test)	Definition of disease
0	Outcome measure	Diagnostic accuracy Discomfort, adverse events Operational (TAT, Availability, cost, etc)

Comparing Test Performance

Why do test results differ?

- 1. True differences
- 2. False differences

bias

- thresholds
- 3. Random variation (imprecision)

Sources of Bias (Phantom Differences)

- Imperfect gold standard
- Verification Bias
- Indeterminate results
- Others....

Imperfect Gold Standard (Differential verification)

Verification bias

(Differential sampling)

Bias due to indeterminates

Evaluator A: Low sensitivity No indeterminates Low specificity High sensitivity **Evaluator B: High specificity** Many indeterminates

Indeterminates: Where do these values go?

	Gold Standard		
Index Test	Disease Present	Indeterminate	Disease Absent
Positive		Х	
Indeterminate	U	Y	V
Negative		Z	

Comparing Test Performance

Why do test results differ?

- 1. True differences
- 2. False differences (bias)

3. Random variation (imprecision)

Understanding Statistical Variation in Studies Meta-Analysis

Specificity

Comparing tests

Source of Difference	Countermeasures
True Differences	
	Complete Reporting
	PICCO Moto analysis
	Meta-analysis
False Differences bias thresholds	Improved Study Design ROC Curves
Random variation	
	Study design Meta-analysis

Higher Levels of Test Evaluation

Societal Impact

Cost effectiveness

Clinical effectiveness

Clinical performance

Analytical performance

Problems with Test Evaluation

- Potentially useful ≠ Clinically useful
- Potential problems
 - Tests are not used properly
 - Tests do not change diagnosis
 - Tests do not change management
- Tests are not used in isolation

Incremental value

Clinical Trial Evaluation of Tests

Key Question:

Do patients who receive this test have better outcomes?

Tests don't exist in isolation

- Test Research vs Diagnostic Research
- What is the *incremental* value of a test?

Tests are often combined

The acid test

Clinical Trial Evaluation Prostate Screening (PSA)

	Event Rate		
Outcomes	No Screen	Screen	Relative Risk
All cause mortality	200	198	0.99 [0.97-1.01]
Death from prostate CA	8	7	0.88 [0.71-1.09]
Prostate CA diagnosis	44	64	1.46 [1.21-1.77]

Levels of Evaluation

Therapeutics

Phase II/III Trial – Explanatory Trial

Scientific Perspective Hypothesis: Does this drug affect outcomes? As-Treated Analysis Carefully controlled population, setting Carefully controlled administration and monitoring

Phase III Trial – Pragmatic Trial

Policy Perspective Hypothesis: Does *prescribing* this drug affect outcomes? Intention-to-Treat Analysis Patients seeking treatment for condition Usual conditions

Diagnostics

Scientific Test Evaluation

Single test Idealized population Expert administration Expert interpretation

Pragmatic Test Evaluation

Multiple tests Actual population Usual conditions

Higher Cost Less Effective New Cancer Drug CER = 100,000/QLY

Effectiveness

Lower Cost Less Effective

Summary

- Many ways to assess performance
- Many reasons why studies differ
 - Real differences (PICCO)
 - False differences
 - Thresholds
 - Bias
 - Statistical variation
- Progress in Performance Evaluation
 - Quality of Reporting
 - Quality of studies
 - Types of studies
- Educating Clinicians

Testing A Test: Beyond Sensitivity and Specificity