Therapeutic drug monitoring (TDM) of thiopurine drugs

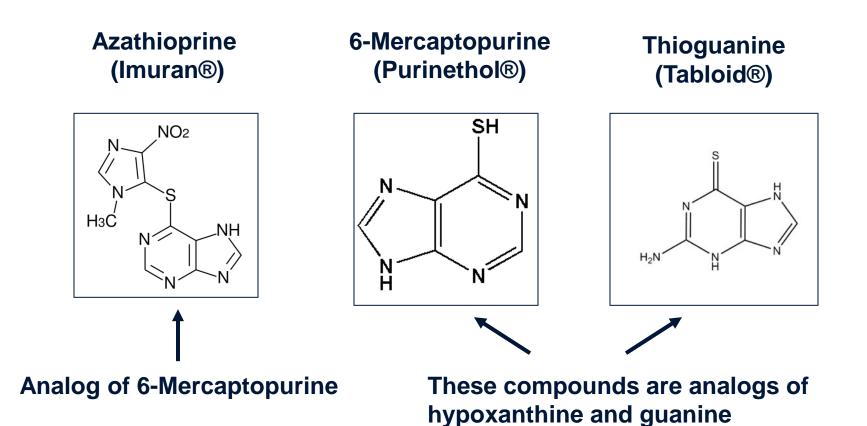
Kamisha L. Johnson-Davis, Ph.D., DABCC (CC,TC)

Associate Professor Department of Pathology, University of Utah

Medical Director – Clinical Toxicology ARUP laboratories

Topics

- Discuss the function of thiopurine drugs
- Thiopurine Drug Metabolism
- Pharmacogenetics of Thiopurine methyltransferase (TPMT)


 Describe analytical methods to support therapeutic drug management

Thiopurine drugs

Immunosuppressive antimetabolites

Thiopurine Drugs - Clinical Use

Acute lymphoblastic leukemia -

- Cancer in WBC
- Most common cancer in children
- 3,000 new cases / year (3.7-4.9 cases / 100,000)
 in children
- 98% remission after treatment

• Reference: www.stjude.org

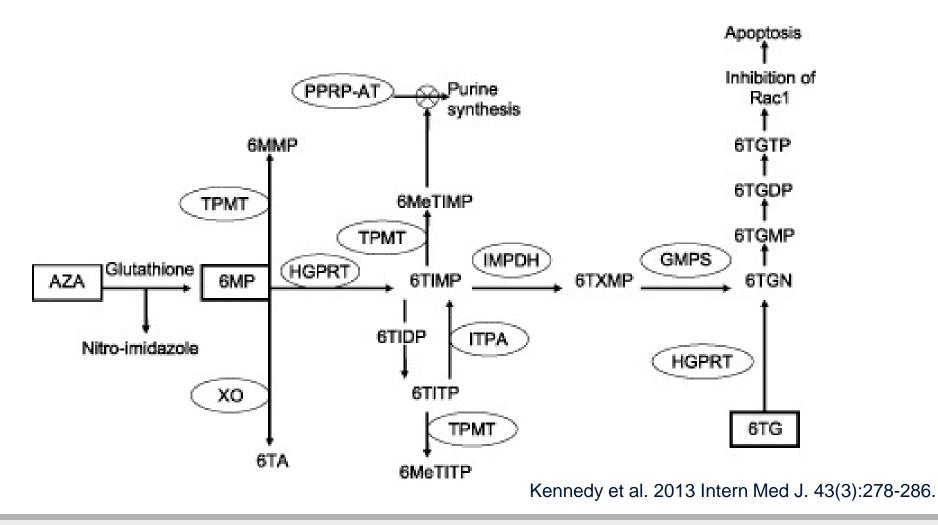
Thiopurine Drugs - Clinical Use

Inflammatory Bowel Disease

- Autoimmune Disease
- 1.6 million Americans (80,000 children)
- 70,000 new cases / year
- Maintain remission 70-75%

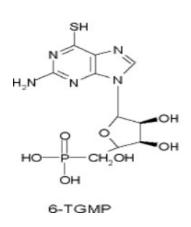
• Reference: www.ccfa.org

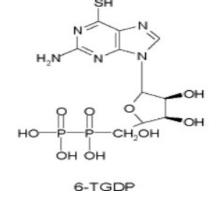
Thiopurine Drugs - Clinical Use

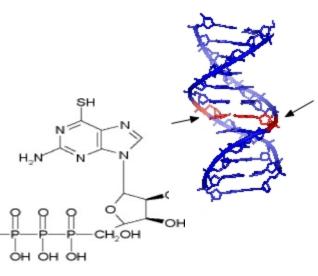

Rheumatoid Arthritis

- Autoimmune Disease tissues near joints
- 1.3 million adults (>18 yr)
- Incidence 89 / 100,000 (65 74 yr); 41 / 100,000 (30 - 65 yr)
- 50 60% remission after treatment

Reference: www.cdc.gov

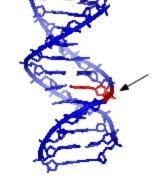






Thiopurine Drugs - cytotoxicity

- 6-TGN resembles DNA nucleotides
- Incorporates into replicating DNA
 - Blocks proliferation (T-cells, B-cells)
 - Inhibits purine de novo synthesis (6-MMPN)
 - Promote immunosuppression
 - Induce T-cell apoptosis



6-TGTP

Is Thiopurine Therapy Effective in All Patients?

Table 2.	Azathioprine	tolerance:	estimated	proportions	of patients
----------	--------------	------------	-----------	-------------	-------------

Please estimate the percentage of your patient population in which azathioprine is tolerated well, reasonably well and poorly.

Reported tolerance	Derma (n = 95) mean% (SD)	Gastro (n = 92) mean% (SD)	Rheum (n = 96) mean% (SD)	All (n = 283) mean% (SD)	P* (significant)
Well	69 (21)	75 (12)	59 (19)	67 (19)	<0.001 (yes)
Reasonably well	17 (17)	13 (9)	22 (12)	17 (14)	<0.001 (yes)
Poorly	14 (10)	13 (7)	19 (11)	15 (10)	<0.001 (yes)
Missing responses	4	1	6	11	

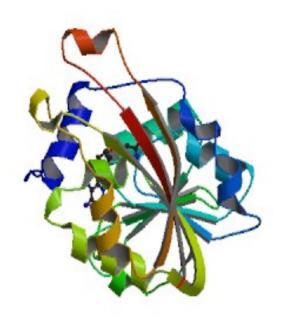
*anova; P < 0.05.

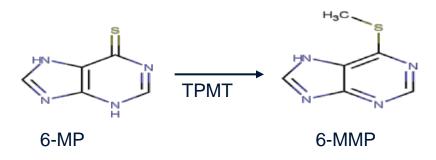
Table 3. Estimated proportions of patients experiencing azathioprine side-effects	Table 3.	Estimated	proportions of	patients ex	periencing	azathioprine	side-effects
---	----------	-----------	----------------	-------------	------------	--------------	--------------

Which of the following side-effects have you had experience of in your patient population? Please estimate the percentage.

Side-effect	Derma (n = 95) mean% (SD)	Gastro ($n = 92$) mean% (SD)	Rheum (<i>n</i> = 96) mean% (SD)	All (<i>n</i> = 283) mean% (SD)	P* (significant)
Nausea	16 (16)	11 (10)	20 (18)	16 (15)	<0.001 (yes)
Pancreatitis	0.1 (0.5)	2 (2)	0.3 (1.3)	0-6 (1-7)	<0.001 (yes)
Neutropaenia	4 (6)	5 (4)	8 (11)	6 (8)	0.003 (yes)
Abnormal LFTs	9 (8)	5 (4)	10 (11)	8 (9)	<0.001 (yes)
Missing responses	2	8	7	17	-

*ANOVA; P < 0.05.

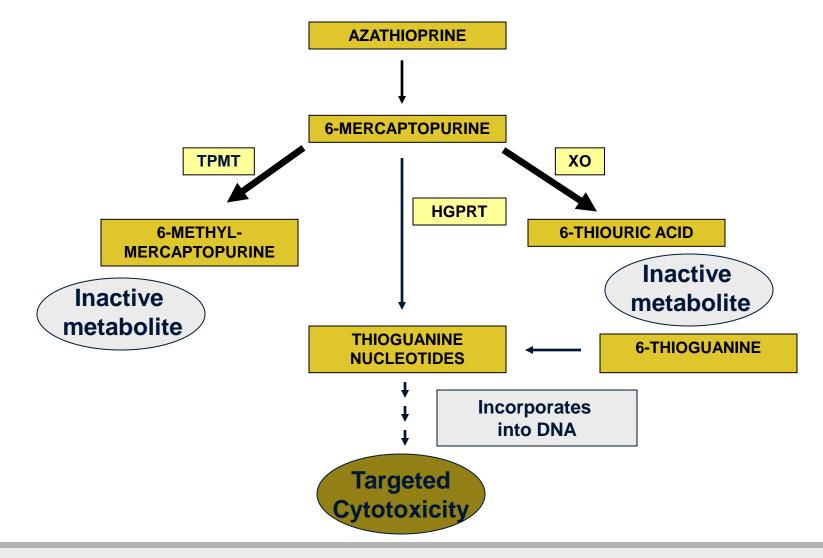

Fargher et al. (2007) J. Clin Pharm Ther 32: 187-195



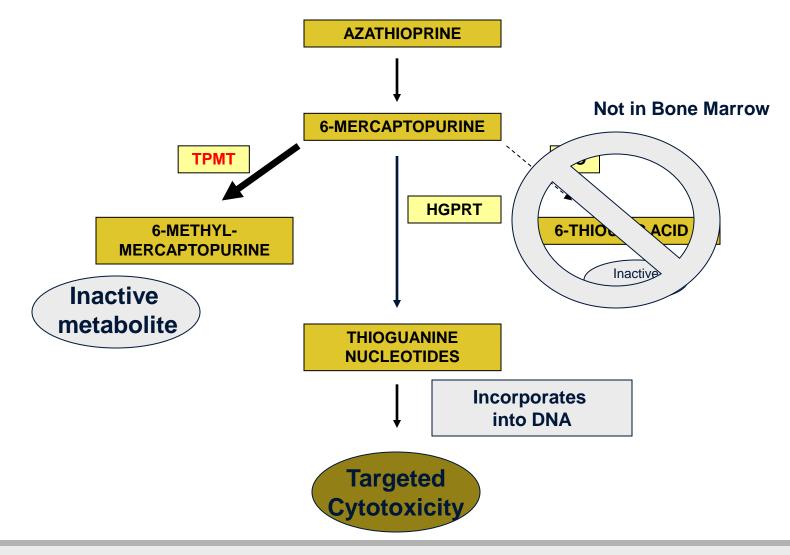
Thiopurine S-methyltransferase (TPMT)

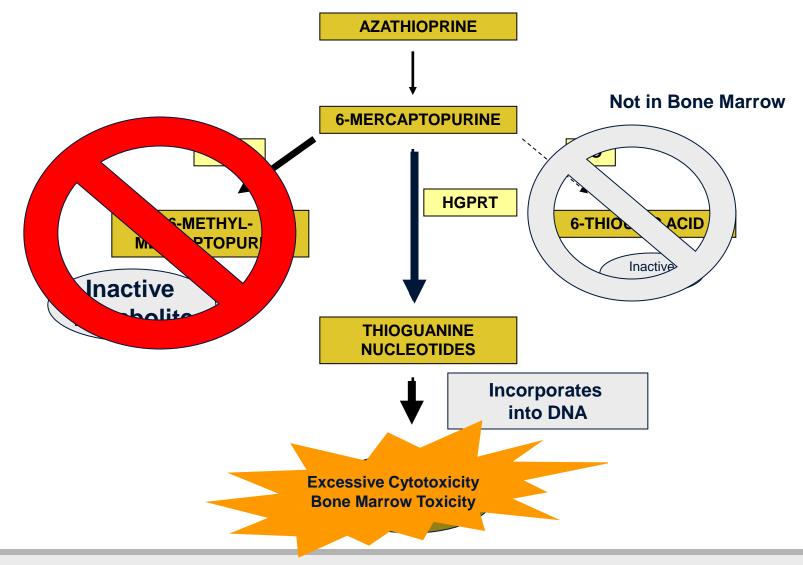
- Cytoplasmic s-methylation of thiopurines
 - 28 kDa, soluble protein; 245 amino acids
- Sites of Metabolism
 - Heart, Liver, Kidney, Intestines, Pancreas
 - RBC and WBC
- Exhibits genetic polymorphisms
 - May lead to adverse effects from thiopurine drug use

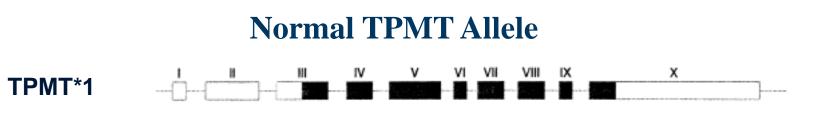



Distribution of TPMT Activity – Caucasian Population

Shaeffeler E et al, Pharmacogenetics 2004







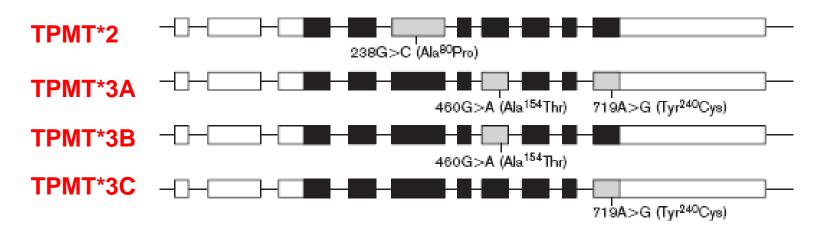
NATIONAL REFERENCE LABORATORY

TPMT Allele

- TPMT is ~30 kb long
- Consists of 10 exons
 - 8 of which encode for protein
- Patients with 2 normal TPMT alleles
 - normal high activity

Shaeffeler E et al. 2004, Pharmacogenetics

Genetic Mutations in TPMT Alleles

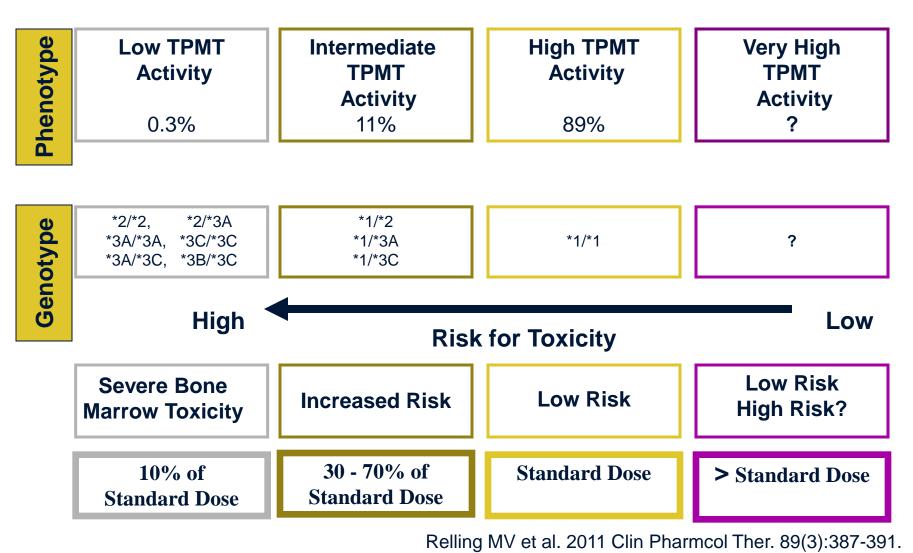

- Single Nucleotide Polymorphisms (SNPs)
 - Occur in the coding region of the gene
 - Occur at exon-intron splice sites
 - Can decrease the function of the enzyme

- Variable number tandem repeats (VNTRs)
 - Occur in the promotor region of the gene
 - Decrease function of the enzyme
 - Most common VNTR*3, *4, *5
 - Spire-Vayron et al, 1999; Roberts et al., 2008

Most Common Nonfunctional TPMT Alleles

- The four most common nonfunctional TPMT alleles account for • >95% of low TPMT activity
- The most common allele variant found in the Caucasian population ۲ is the TPMT *3A allele
- The most common allele variant found in the Asian and African ۲ population is the TPMT *3C allele

Shaeffeler E et al. 2004, Pharmacogenetics


Mutations affect TPMT Activity

- Protein becomes unstable and undergo degradation
 - TPMT*2, *3A, *3B, *3C have enhanced proteolysis of variant proteins
 - Tai et al., (1999) Pharmacogenetics 9:641-50.
- Decreased enzyme half-life
 - TPMT*1 18 h vs. TPMT*2 and TPMT*3 15 min
 - Tai et al., (1997) Nalt Acad Sci USA 94:6444-6449.
- Variant alleles cause decreased enzyme activity
 - Krynetski et al., (1995) Proc. Natl. Acad. Sci. 92:949-953.

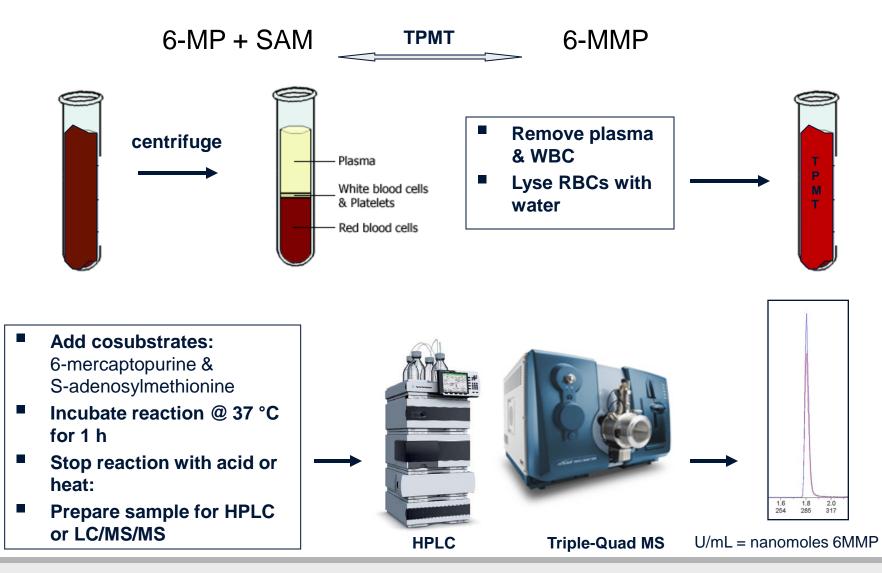
Dose Adjustments for TPMT Activity

Analytical Methods to support testing for thiopurine drugs

Testing Strategies to Access TPMT Activity

Phenotype

- Enzyme reaction assess inactivation of thiopurine drug
- Quantification of thiopurine drug metabolites


Genotype

- Determines the allele pattern of a patient
- Primarily tests for 4 variant TPMT alleles
 - TPMT*2, *3A, *3B, *3C

Phenotype Assay – TPMT Enzyme

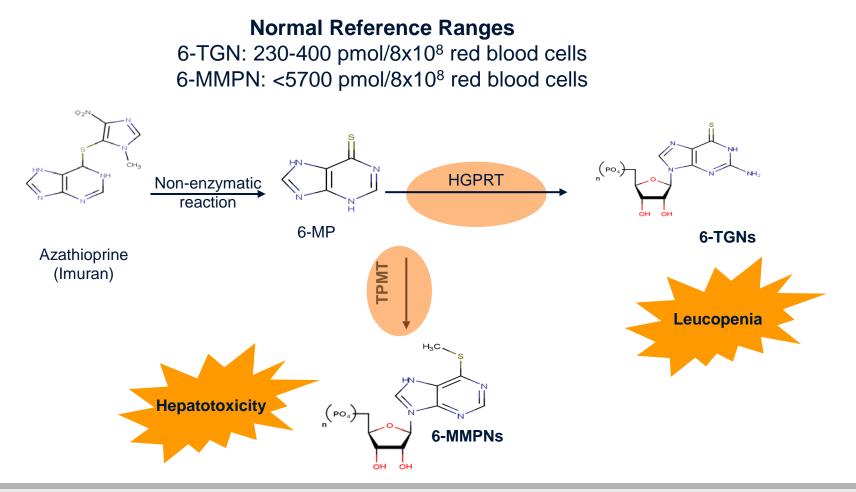
NATIONAL REFERENCE LABORATORY

Result Interpretation

Low (< 17 U/mL) – high risk of bone marrow toxicity with standard dosing regimens; dose reduction of 80-90% is recommended

Intermediate (17.0 - 23.9) – risk of bone marrow toxicity with standard dosing regimens; dose reduction by 20-50% may be necessary

Normal (24 - 44 U/mL) – low risk of bone marrow toxicity with standard dosing regimens


High (>44 U/mL) – risk of therapeutic failure due to excessive inactivation of these drugs. Patients may require a higher dose

Phenotype test - Thiopurine Drug Metabolites

• Test quantifies 6-TGN and 6-MMPN levels in whole blood

Phenotype Test

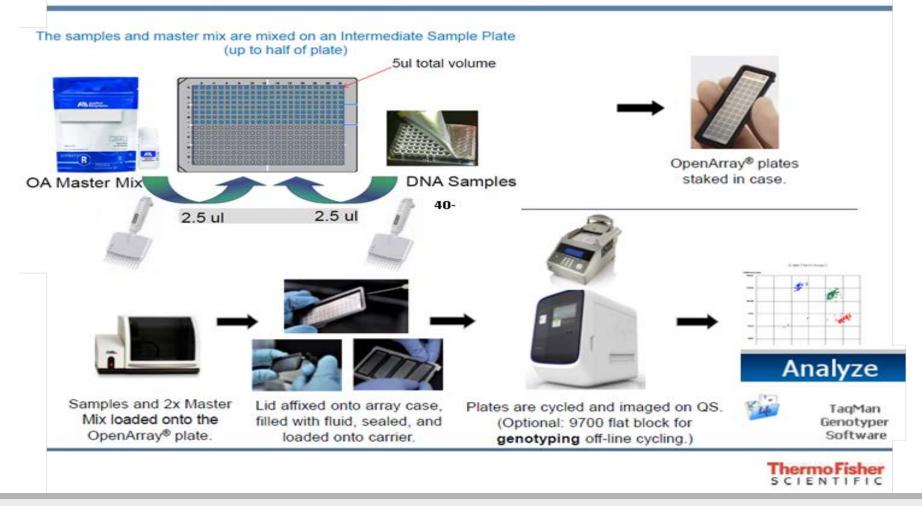
Pros

- Less expensive than genotype test
- May be more informative than Genotype

Cons

- Enzyme function can be altered by:
 - NSAIDS can inhibit enzyme activity
 - Specimen mishandling can impact TPMT enzyme activity
 - Blood transfusion
 - Not accurately assessed in patients who receive RBC transfusion within 60 days of testing

Genotype TPMT assay


- PCR
 - Mini-sequencing assay
 - Fluorescence detection
- Detect the most common alleles
 - *TPMT**2 [238G>C]
 - TPMT*3A [460G>A and 719A>G]
 - TPMT*3B [460G>A]
 - TPMT*3C [719A>G]

Genetic Test - PCR

General OpenArray® Workflow

Genotype Test

Pros

- Genotype test is not affected by
 - Blood transfusions
 - Concomitant medications

Cons

- Assay cannot detect all of the nonfunctional TPMT alleles (>30)
- Wildtype or Normal alleles are inferred if none of the four non-functional alleles are detected
- Cannot distinguish between a heterozygote or a compound heterozygote
 - *1/*3A or *3A/*3C, *3A/*3B, *3B/*3C

Summary

- Phenotype assay may provide more clinical information
 - Detects rapid metabolizer phenotypes and impaired enzyme activity from rare genetic variants
 - Genotype test may not detect all rare mutations
- Genetic testing can be performed before and after thiopurine drug therapy
 - Consider testing if erythrocyte TPMT activity is abnormal

Take Home Message

- Test patients for TPMT status prior to therapy
 - Phenotype
 - Genotype
- Patients with low or absent TPMT activity
 - Avoid Thiopurine therapy or reduce the standard dose
- Genotype/phenotype tests to assess TPMT activity do not replace routine clinical monitoring

Department of Pathology

© 2016 ARUP Laboratories