Assessing Laboratory Performance for Next Generation Sequencing Based Detection of Germline Variants through Proficiency Testing

Karl V. Voelkerding, MD

Professor of Pathology

University of Utah

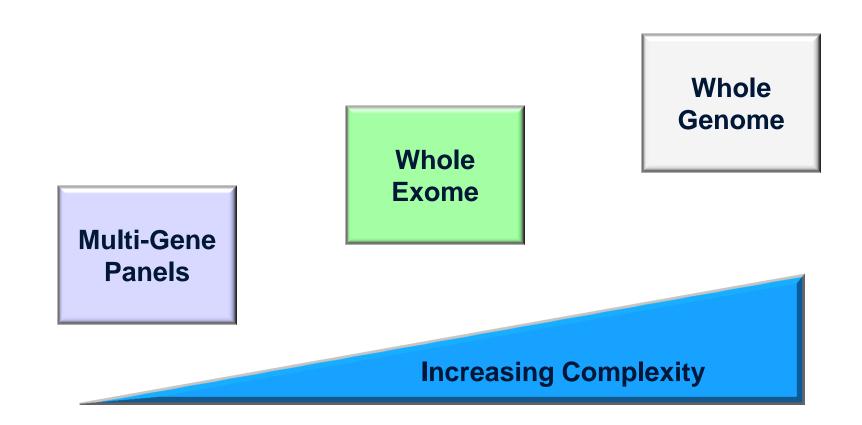
Medical Director for Genomics and Bioinformatics

ARUP Laboratories

ARUP Laboratories Quarterly Webinar September 27, 2018

Learning Objectives

- Explain the rationale for using a method-based PT approach for NGS testing for germline variants
- Describe analytical and annotation results evaluated in method-based PT for germline variants
- Relate trends in laboratory performance in method-based PT for germline variants
- Discuss how in silico PT increases options for assessment of laboratories performing NGS including complex scenarios presented by exome sequencing


Learning Objectives

- Explain the rationale for using a method-based PT approach for NGS testing for germline variants
- Describe analytical and annotation results evaluated in method-based PT for germline variants
- Relate trends in laboratory performance in method-based PT for germline variants
- Discuss how in silico PT increases options for assessment of laboratories performing NGS including complex scenarios presented by exome sequencing

ABORATORIES

Current Diversity of NGS Germline Diagnostic Testing

NATIONAL REFERENCE LABORATORY

Developing NGS PT for Germline Variants

Challenge: How to Create a Proficiency Testing Program To Assess Multi-Gene Panels to Exomes/Genomes for Germline Variants

Developing NGS PT for Germline Variants

Challenge: How to Create a Proficiency Testing Program To Assess Multi-Gene Panels to Exomes/Genomes for Germline Variants

The Journal of Molecular Diagnostics, Vol. 16, No. 3, May 2014

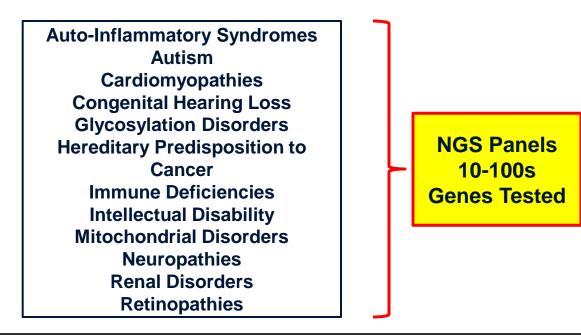
^{the} Journal of Holecular Diagnostics

jmd.amjpathol.org

PERSPECTIVES

Methods-Based Proficiency Testing in Molecular Genetic Pathology

Iris Schrijver, *† Nazneen Aziz,‡ Lawrence J. Jennings, 🞙 Carolyn Sue Richards, 🛛 Karl V. Voelkerding, **†† and Karen E. Weck ‡ 💱

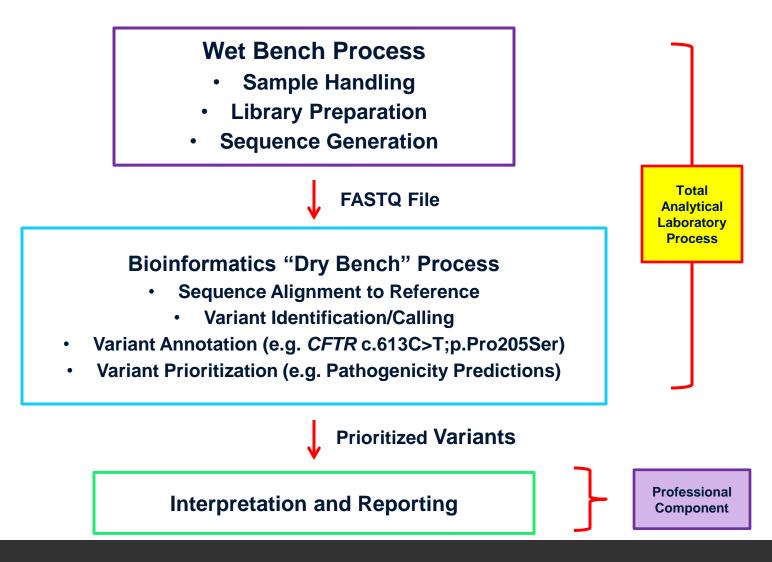


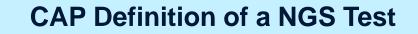
Concept of Methods Based PT for NGS

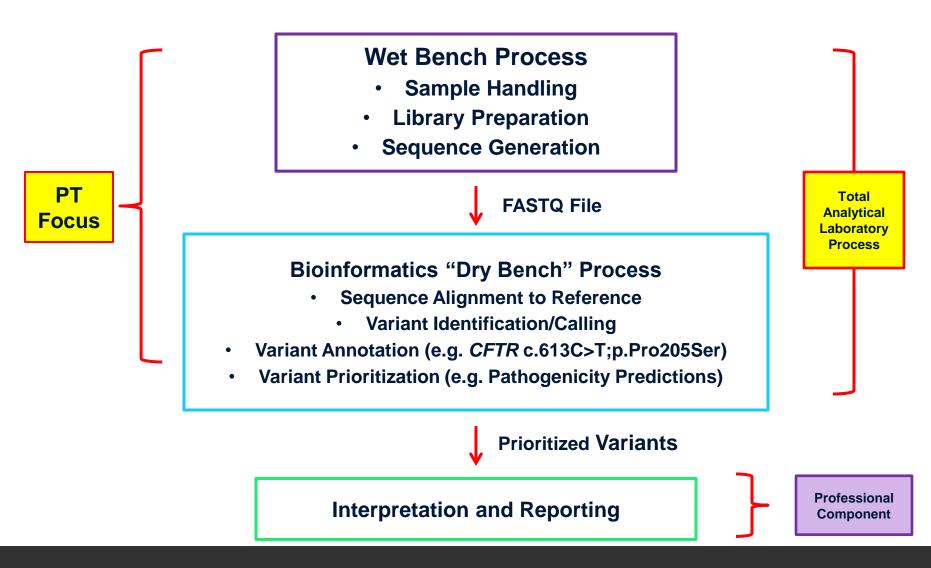
Assess the Laboratory's Ability to Accurately Detect Germline Variants In a Diversity of Genes

Reflects Primary Analytical Goal of Germline Panel, Exome and Genome NGS Testing

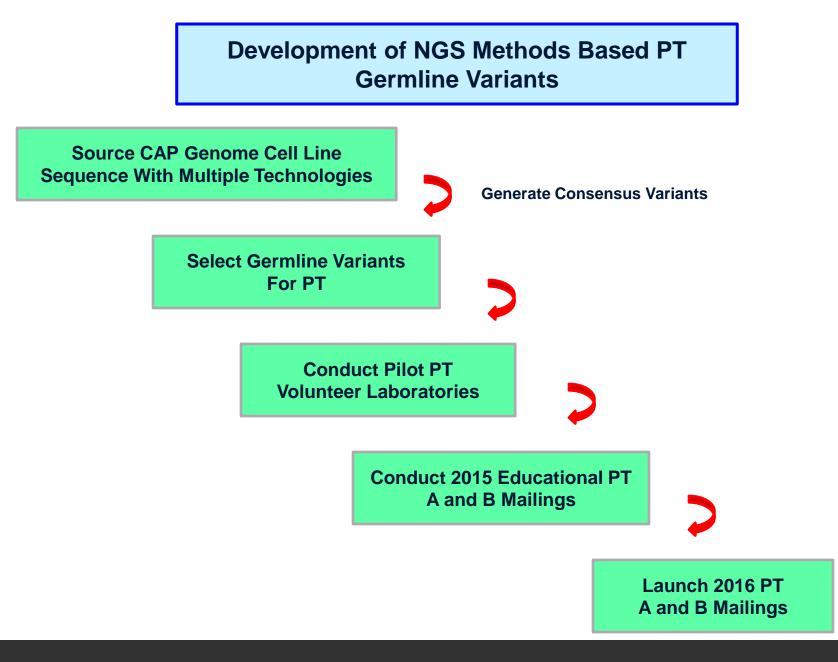
Concept of Methods Based PT for NGS


What is the NGS Analytical Process That Needs to be Assessed?


NATIONAL REFERENCE LABORATORY



CAP Definition of a NGS Test



NATIONAL REFERENCE LABORATORY

AR PLABORATORIES

Learning Objectives

- Explain the rationale for using a method-based PT approach for NGS testing for germline variants
- Describe analytical and annotation results evaluated in method-based PT for germline variants
- Relate trends in laboratory performance in method-based PT for germline variants
- Discuss how in silico PT increases options for assessment of laboratories performing NGS including complex scenarios presented by exome sequencing

CAP Catalogue NGS Germline PT

Next-Generation Sequencing

Analytes/procedures in **bold** type are regulated for proficiency testing by the Centers for Medicare & Medicaid Services (CMS).

Next-Generation Sequencing NGS

Procedure	Program Code	Challenges/Shipment
	NGS	
Next-generation sequencing	I	1

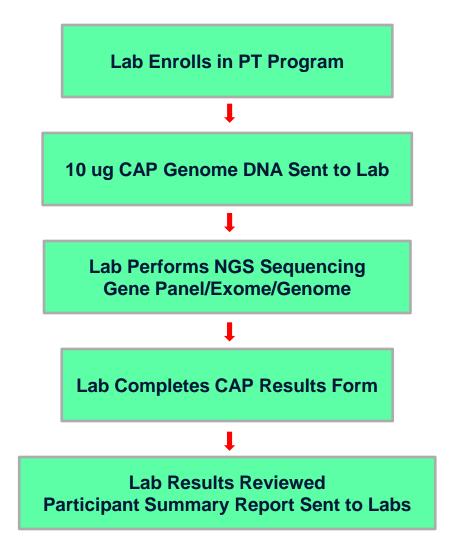
Additional Information

Laboratories will have the ability to test up to 200 preselected chromosomal positions within various genes; for a full list of genes in this program, please go to cap.org. Under the Laboratory Improvement tab, click on Catalog and Ordering Information. The list is located under the PT Order Supplements header.

Program Information

- One 10.0-µg extracted DNA specimen
- Methods-based challenge for germline variants for laboratories using gene panels, exome, and whole genome sequencing
- Results for this program must be submitted online through e-LAB Solutions Suite
- Two shipments per year

Labs Can Analyze Up To 200 Chromosomal Positions Chosen in Genes Involved in Inherited Disorders Included Reference (Wild Type) Positions, SNVs and Indels


200 Chromosomal Positions Chosen for PT from CAP Genome Located in Disease Relevant Genes – Listed in CAP Catalogue

Disease areas
Autism
Arrhythmogenic disorders
Cancer
Cardiomyopathy
Ciliopathies
Congenital disorders
Epilepsy
Eye disorders
Familial hypercholesterolemia
Hearing loss
Hereditary Liver Disease
Hereditary Red Cell Disorder
Heterotaxy
Long QT
Marfan syndrome
Neuromuscular disorders
Noonan and related Syndrome
Nuclear mitochondrial
Periodic Fever Syndrome
Renal
Respiratory disease
Short Stature
Severe combined immunodeficiency
X linked intellectual disability

Positions Chosen Contain

Reference (Wild Type) Sites SNVs Indels

CAP NGS Germline PT Process for Laboratories

NATIONAL REFERENCE LABORATORY

AR PLABORATORIES

Results Form for CAP PT for Germline Variants

NGS-01 Results Exception Code ONO 33				
Gene Name (HGNC ID) Chromosomal Position (HG19, Genome Reference Consortium GRCh37) Transcript Number	Variant Type	Zygosity (if applicable)	Variant Description* (if applicable)	
100 ○ (1000) ABCC9 (HGNC:60) chr12 22086810 NM_020297.2	110 Cannot be evaluated: 420 Insertion 421 Deletion 422 SNV 297 DelIns (Indels) 120 120 423 No variant detected	¹³⁰ ○ 730 Heterozygous ○ 729 Homozygous		
¹⁵⁰ (1001) <i>ABCD1</i> (HGNC:61) chrX 153001860 NM_000033.3	160 Cannot be evaluated: 420 Insertion 421 Deletion 422 SNV 297 Dellns (Indels) 170 423 No variant detected	180 730 Heterozygous 729 Homozygous	190	
200 Chromosomal Positions or Intervals Listed	Laboratories Requested to Provide What Genes Their Assay(s) Cover		HGVS Nomenclature (c. and p.)	

Results Form for CAP PT for Germline Variants

NGS-01 Results Exception Code 000 33			
Gene Name (HGNC ID) Chromosomal Position (HG19, Genome Reference Consortium GRCh37) Transcript Number	Variant Type	Zygosity (if applicable)	Variant Description* (if applicable)
¹⁰⁰ ○ (1000) <i>ABCC</i> 9 (HGNC:60) chr12 22086810 NM_020297.2	110 Cannot be evaluated: 420 Insertion 421 Deletion 422 SNV 297 Dellns (Indels) 120 120 423 No variant detected	¹³⁰ ○ 730 Heterozygous ○ 729 Homozygous	140
¹⁵⁰ ○ (1001) <i>ABCD1</i> (HGNC:61) chrX 153001860 NM_000033.3	160 Cannot be evaluated: ○ 420 Insertion ○ 298 Low quality data ○ 421 Deletion ○ 299 Coverage below threshold ○ 422 SNV ○ 010 Other, specify: ○ 423 No variant detected 170	¹⁸⁰ ○ 730 Heterozygous ○ 729 Homozygous	

200 Chromosomal Positions or Intervals Listed

- Labs Performing Gene Panels Answer Chromosomal Positions in Their Test
 - Labs Performing Exomes/Genomes Answer 50 Required Positions

Learning Objectives

- Explain the rationale for using a method-based PT approach for NGS testing for germline variants
- Describe analytical and annotation results evaluated in method-based PT for germline variants
- Relate trends in laboratory performance in method-based PT for germline variants
- Discuss how in silico PT increases options for assessment of laboratories performing NGS including complex scenarios presented by exome sequencing

ABORATORIES

Data Summary 2016 A and B Mailing Surveys

First Graded CAP NGS Methods Based Proficiency Test Germline Variants

Laboratory Enrollment in CAP NGS Germline MBPT Surveys

Participant Laboratory Data	2016 A Mailing	2016 B Mailing
Number of Labs Enrolled	130	142
Number of Labs Returning Results*	125 (91%)	128 (90%)

*Number and (Percentage) of Labs Returning Results At Time of Data Summarization

Assay Types Performed in CAP NGS Germline MBPT Surveys

Assays Performed by Participating Laboratories*	2016 A Mailing	2016 B Mailing
Multi-Gene Panels	72	71
Exome	42	47
Whole Genome	5	6

*Multiple Responses per Laboratory Allowed Not All Laboratories Responded

NATIONAL REFERENCE LABORATORY

Platform Usage* in CAP NGS Germline MBPT Surveys

Platform	2016 A Mailing Responses from 115 Labs	2016 B Mailing Responses from 115 Labs
Illumina HiSeq 2500	37	35
Illumina MiSeq	33	34
Illumina NextSeq 500	22	24
Illumina HiSeq 3000/4000	6	6
Illumina HiSeq X Five/Ten	3	4
Illumina HiSeq 2000	1	0
Illumina MiSeqDx	1	0
Ion Torrent PGM	9	8
Ion Torrent Proton	6	5
Ion Torrent S5/S5 XL	2	3
Pacific Biosciences RS/RS II	0	0
Roche 454 GS Junior/FLX+	1	0

*Multiple Responses per Laboratory Allowed Not All Laboratories Responded

Types of Chromosomal Positions in CAP NGS Germline MBPT Surveys

Chromosomal Position Type	2016 A Mailing	2016 B Mailing
Reference	140 (1)*	90
Single Nucleotide Variant	57 (7)	109 <mark>(1)</mark>
Insertion	1	0
Deletion	2	1 <mark>(1)</mark>

(1)* Position is Non-Coding and Omitted from Data Analysis

Red Parentheses are Non-Graded Positions Discordance Between Genomic and Transcript Reference Sequences

Types of Chromosomal Positions in CAP NGS Germline MBPT Surveys

Chromosomal Position Type	2016 A Mailing	2016 B Mailing
Reference	140 (1)*	90
Single Nucleotide Variant	57 <mark>(7)</mark>	109 <mark>(1)</mark>
Insertion	1	0
Deletion	2	1 (1)

(1)* Position is Non-Coding and Omitted from Data Analysis

Red Parentheses are Non-Graded Positions Discordance Between Genomic and Transcript Reference Sequences

Reference Position Analysis for 2016 A and B Mailing Surveys

2016 A Mailing	Number of Labs Analyzing Each of the 139 Graded Reference Positions	Mean 26 Median 24	Range 12-68
-------------------	---	----------------------	-------------

2016 B Mailing

Number of Labs Analyzing Each of the 90 Graded Reference Positions	Mean 30 Median 24	Range 15-59
--	----------------------	-------------

Reference Position Analysis for 2016 A and B Mailing Surveys

	Analysis Responses for All 139 Graded	% No Variant Detected	% Variant Detected	% Cannot Evaluate
2016 A Mailing	Reference (WT) Positions	Mean 98.0% Median 100% Range 81.8-100%	Mean 1.53% Median 0.0% Range 0.0-9.5%	Mean 0.49% Median 0.0% Range 0.0-13.6%

2016 B Mailing	Analysis Responses for All 90 Graded Reference (WT) Positions	% No Variant Detected Mean 98.9% Median 100% Range 83.3-100%	% Variant Detected Mean 0.0% Median 0.0% Range 0.0-0.0%	% Cannot Evaluate Mean 1.02% Median 0.0% Range 0.0-16.7%

Reference Position Analysis for 2016 A and B Mailing Surveys

2016 A Mailing	Analysis Responses for All 139 Graded Reference (WT) Positions	% No Variant Detected Mean 98.0% Median 100% Range 81.8-100%	% Variant Detected Mean 1.53% Median 0.0% Range 0.0-9.5%	% Cannot Evaluate Mean 0.49% Median 0.0% Range 0.0-13.6%
2016 B Mailing	Analysis Responses for All 90 Graded Reference (WT) Positions	% No Variant Detected Mean 98.9% Median 100% Range 83.3-100%	% Variant Detected Mean 0.0% Median 0.0% Range 0.0-0.0%	% Cannot Evaluate Mean 1.02% Median 0.0% Range 0.0-16.7%
		Intended Beenenee		
		Intended Response		

Types of Chromosomal Positions in CAP NGS Germline MBPT Surveys

Chromosomal Position Type	2016 A Mailing	2016 B Mailing
Reference	140 (1)*	90
Single Nucleotide Variant	57 <mark>(7)</mark>	109 <mark>(1)</mark>
Insertion	1	0
Deletion	2	1 (1)

(1)* Position is Non-Coding and Omitted from Data Analysis

Red Parentheses are Non-Graded Positions Discordance Between Genomic and Transcript Reference Sequences

2016 A Mailing		Mean 43 Median 46	Range 17-75
-------------------	--	----------------------	-------------

	2016		
В	Mailing		

Number of Labs Analyzing Each of the 108 Graded SNV Positions	Mean 29 Median 23	Range 16-51
---	----------------------	-------------

Α				
	Analysis Responses for All 50 Graded SNV	% Variant Detected	% Not Detected	% Cannot Evaluate
	Positions	Mean 93.6% Median 94.0% Range 82.4-100%	Mean 5.6% Median 5.4% Range 0.0-16.2%	Mean 0.83% Median 0.0% Range 0.0-6.7%

Β

Analysis Responses for All 108 Graded SNV	% Variant Detected	% Not Detected	% Cannot Evaluate
Positions	Mean 97.8%	Mean 1.8%	Mean 0.40%
	Median 100%	Median 0.0%	Median 0.0%
	Range 87.5-100%	Range 0.0-10.3%	Range 0.0-10.5%

Α	Analysis Responses for All 50 Graded SNV Positions	% Variant Detected Mean 93.6% Median 94.0% Range 82.4-100%	% Not Detected Mean 5.6% Median 5.4% Range 0.0-16.2%	% Cannot Evaluate Mean 0.83% Median 0.0% Range 0.0-6.7%
В	Analysis Responses for All 108 Graded SNV Positions	% Variant Detected Mean 97.8% Median 100% Range 87.5-100%	% Not Detected Mean 1.8% Median 0.0% Range 0.0-10.3%	% Cannot Evaluate Mean 0.40% Median 0.0% Range 0.0-10.5%

Intended Response

HGVS Nomenclature Assessment in 2016 A and B Mailing Surveys

NGS-01 Results			Exception Code 000 33
Gene Name (HGNC ID) Chromosomal Position (HG19, Genome Reference Consortium GRCh37) Transcript Number	Variant Type	Zygosity (if applicable)	Variant Description* (if applicable)
¹⁰⁰ (1000) <i>ABCC</i> 9 (HGNC:60) chr12 22086810 NM_020297.2	110 Cannot be evaluated: ○ 420 Insertion ○ 298 Low quality data ○ 421 Deletion ○ 299 Coverage below threshold ○ 422 SNV ○ 010 Other, specify: ○ 297 DelIns (Indels) 120	¹³⁰ ○ 730 Heterozygous ○ 729 Homozygous	140
¹⁶⁰ (1001) <i>ABCD1</i> (HGNC:61) chrX 153001860 NM_000033.3	100 Cannot be evaluated: ○ 420 Insertion ○ 298 Low quality data ○ 421 Deletion ○ 299 Coverage below threshold ○ 422 SNV ○ 010 Other, specify: ○ 297 DelIns (Indels) 170 ○ 423 No variant detected	¹⁸⁰ ○ 730 Heterozygous ○ 729 Homozygous	

Standardized Nomenclature Currency of Genetic Information

HGVS Nomenclature (c. and p.)

HGVS Nomenclature Assessment in 2016 A and B Mailing Surveys

Five Assessment Categories for HGVS Nomenclature Usage

- Preferred: Complete HGVS Nomenclature: NF1 c.7546C>T; p.Pro2516Ser
- Acceptable: Acceptable HGVS Nomenclature: NF1 c.7546C>T; p.P2516S
 - Incomplete: Incomplete HGVS Nomenclature: NF1 c.7546C>T
 - Unacceptable: Incorrect Annotation
 - Not Evaluated/Graded*

*Discordance Between Population Allele Frequency Of Human Genome Reference Sequence (Minor Allele) And Reference Transcript Provided (Major Allele)

Α

Percentage of Labs Providing
Complete Intended Responses
(Including Variant Type, Zygosity and Preferred
or Acceptable Nomenclature)
For Each of the 50 Graded SNV PositionsMean 93.3%
Median 94.0%Range
81.0-100%

Β

Percentage of Labs Providing Complete Intended Responses (Including Variant Type, Zygosity and Preferred or Acceptable Nomenclature) For Each of the 108 Graded SNV Positions	Mean 96.2% Median 97.1%	Range 55.6-100%

Types of Chromosomal Positions in CAP NGS Germline MBPT Surveys

Chromosomal Position Type	2016 A Mailing	2016 B Mailing
Reference	140 (1)*	90
Single Nucleotide Variant	57 <mark>(7)</mark>	109 <mark>(1)</mark>
Insertion	1	0
Deletion	2	1 (1)

(1)* Position is Non-Coding and Omitted from Data Analysis

Red Parentheses are Non-Graded Positions Discordance Between Genomic and Transcript Reference Sequences

Insertion and Deletion Analysis for 2016 A Mailing Survey

AP3B1 Deletion Heterozygous c.2409_2411delGAA p.Lys804del	EYS Deletion Homozygous c.6079-4_6079-3delTC	<i>TPM2</i> Insertion Heterozygous c.773_3dupC
	V	
T T G T T T C T T T C T T T C T C T C T		
AP3B1	EYS	TPM2

AP3B1

Insertion and Deletion Analysis for 2016 A Mailing Survey

Analysis Responses PSR Table 1 and 2	AP3B1 Deletion Heterozygous c.2409_2411delGAA p.Lys804del	EYS Deletion Homozygous c.6079-4_6079-3deITC	TPM2 Insertion Heterozygous c.773-3dupC	
Number of Labs Providing Responses and Response Types	52	46	45	
Cannot Evaluate	4 (7.7%)	4 (8.7%)	5 (11.1%)	
Variant Not Detected	4 (7.7%)	5 (10.9%)	5 (11.1%)	
Variant Detected	44 (84.6%)	37 (80.4%)	35 (77.8%)	
Complete Intended Response (Variant Type, Zygosity, Preferred or Acceptable Nomenclature)	esponse ariant Type, Zygosity, referred or Acceptable		30 of 35 (85.7%)	

Insertion and Deletion Analysis for 2016 A Mailing Survey

Analysis Responses PSR Table 1 and 2	AP3B1 Deletion Heterozygous c.2409_2411delGAA p.Lys804del	EYS Deletion Homozygous c.6079-4_6079-3deITC	<i>TPM2</i> Insertion Heterozygous c.773-3dupC	
Number of Labs Providing Responses and Response Types	52	46	45	
Cannot Evaluate	4 (7.7%)	4 (8.7%)	5 (11.1%)	
Variant Not Detected	4 (7.7%)	5 (10.9%)	5 (11.1%)	
Variant Detected	44 (84.6%)	37 (80.4%)	35 (77.8%)	
Complete Intended Response (Variant Type, Zygosity, Preferred or Acceptable Nomenclature)	37 of 44 (84.1%)	24 of 37 (64.9%)	30 of 35 (85.7%)	

AP3B1 Gene Heterozygous Deletion c.2409_2411delGAA, p.Lys804del

Gene Name/	Transcript	Variant			Nomenclature	No.	
Chromosomal Position	Number	Туре	Zygosity	Description	Grade Assignment	Labs	Percent
AP3B1 (HGNC:566)							
chr5 77396832-77396841	NM_003664.4	Deletion	Heterozygous	c.2409_2411delGAA, p.Lys804del	Preferred	28	63.7%
	_			c.2262_2264delGAA, p.Lys755del	Unacceptable	1	2.3%
				c.2409_2411del In-frame Unknown pathogenicity	Incomplete (a)	1	2.3%
				c.2409_2411del, p.Lys804del	Acceptable	9	20.4%
				c.2409_2411delGAA, p.Lys803_Lys804del	Unacceptable	2	4.5%
				c.2409_2411delGAA;p.Lys806delLys	Unacceptable	1	2.3%
				c.2409_2411delNNN p.Lys804del	Unacceptable	1	2.3%
		SNV	Homozygous	c.1754T>A, p.Val585Glu	Unacceptable	1	2.3%

Variable Use of HGVS Nomenclature – Observed in Other CAP PT Programs

Performance Summary 2016 NGS MBPT Germline Graded Surveys

Observations

✤ Analysis of Reference Positions and SNVs Positions is Solid

Indel Detection Sensitivity is Lower than SNVs (Numbers of Indels are Low)

Harmonization of HGVS Nomenclature Usage is a Future Goal

Learning Objectives

- Explain the rationale for using a method-based PT approach for NGS testing for germline variants
- Describe analytical and annotation results evaluated in method-based PT for germline variants
- Relate trends in laboratory performance in method-based PT for germline variants
- Discuss how in silico PT increases options for assessment of laboratories performing NGS including complex scenarios presented by exome sequencing

NATIONAL REFERENCE LABORATOR

NGS Proficiency Testing

Current Proficiency Testing with Physical DNA Samples is Constrained

Limited Number and Types of Variants in Any Given Physical Sample

Approaches to Increasing the Diversity of Physical DNA Samples

- Cell Line DNAs with Spiked In Synthesized DNAs Containing Variants
 - Modify Cell Lines via Genome Editing (eg, CRISPR-Cas9)

In Silico Mutagenesis Based PT for NGS Diagnostics

Advantages

Current Ability: Simulation of SNVs and Indels with Different Variant Allele Fractions

In Development: Simulation of Copy Number and Structural Variation

Applicable to Diverse Testing Areas (Germline, Somatic, Infectious Diseases)

PT Samples Are Data Files that Laboratories Download and Process - Portability

In Silico Mutagenesis Based PT for NGS Diagnostics

Advantages

Current Ability: Simulation of SNVs and Indels with Different Variant Allele Fractions

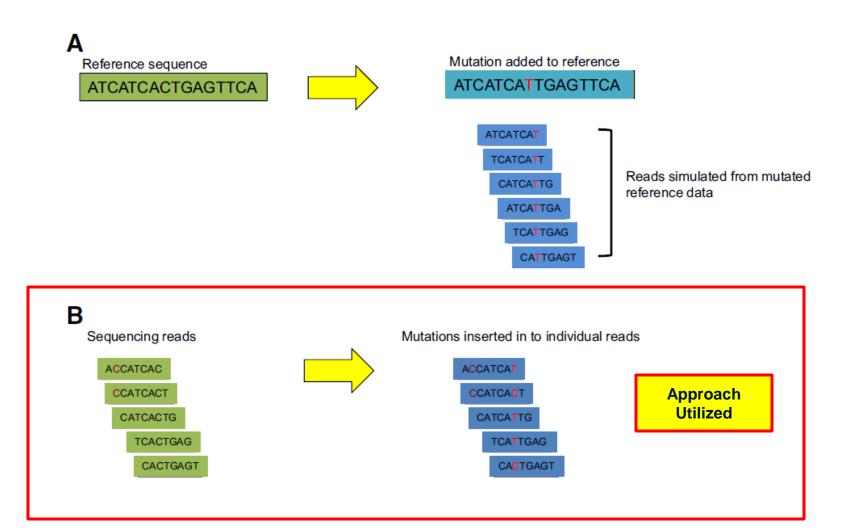
In Development: Simulation of Copy Number and Structural Variation

Applicable to Diverse Testing Areas (Germline, Somatic, Infectious Diseases)

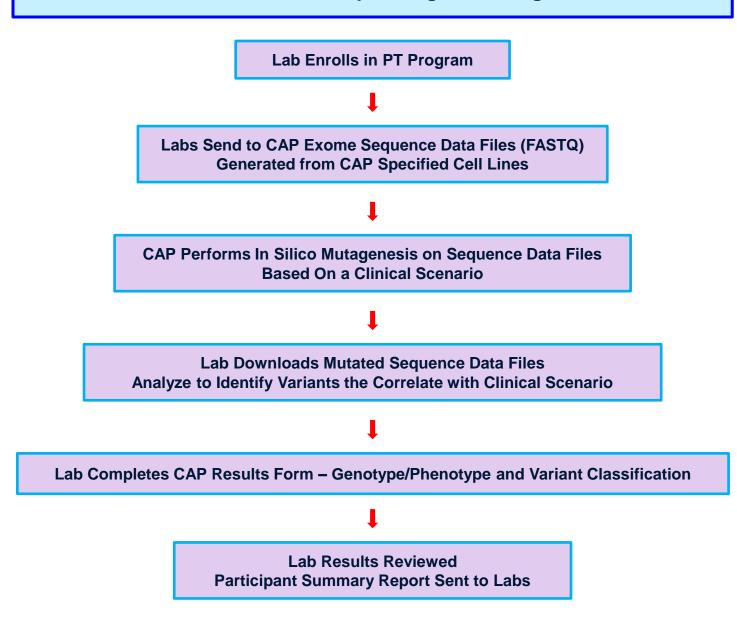
PT Samples Are Data Files that Laboratories Download and Process - Portability

Limitations

Only Evaluates the Bioinformatics Pipeline


Requires Laboratory Expertise in Managing File Sharing Protocols

Uncertainty Persists in Biases in In Silico Manipulated Sequence Files



Two Major Approaches for In Silico Mutagenesis

In Silico Based PT for Exome Sequencing for Undiagnosed Disorders

In Silico Based PT for Exome Sequencing for Undiagnosed Disorders Educational PT Launch 2018

Next-Generation Sequencing Undiagnosed Disorders—Exome NGSE

Analyte/Procedure	Program Code	Challenges per Shipment
	NGSE	
Exome analysis for germline undiagnosed disorders	I	1

Additional Information/Minimum Requirements

- This in silico based Survey will assess the ability of the laboratory to identify germline variants responsible for a provided clinic phenotype as is encountered in an undiagnosed disease scenario. In addition to analyzing the in silico mutagenized file to identify a genetic diagnosis for the provided clinical scenario, pathogenic or likely pathogenic ACMG secondary findings may also be reported.
- Laboratories must provide an exome sequencing data file that has been generated using one of the following sources: a specimen from the NGS Survey program (see page 252) or from one of the NIST Reference Material cell lines: RM 8398 (NA12878), RM 8391, RM 8392, or RM 8393. Specimens from the NGSST and NGSHM Surveys cannot be used for this program.
- FASTQs or unaligned BAMs must be submitted along with a BED file describing the regions targeted and interrogated by your laboratory. Additionally, >90% of exons targeted and interrogated by your laboratory must have a minimum read coverage of 10X.

Program Information

- One exome sequencing data file, originating from your laboratory and provided to the CAP, for in silico mutagenesis. The mutagenized exome sequencing data file is to be downloaded and analyzed by your bioinformatics pipeline
- The mutagenized exome sequencing file will be accompanied by a clinical history, relevant laboratory data, and results of ancillary studies, where appropriate
- Two online activities per year; your CAP shipping contact will be notified <u>via email</u> when the activity is available

CLINICAL SCENARIO for 2018 A Mailing for Exome PT

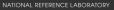
The patient presented in the first year of life with failure to thrive, hypotonia, group B streptococcus bacteremia, and hypoalbuminemia. By the third year of life, additional features included strabismus, seizures and ataxia

Table 1: Indicate the gene(s) and variant(s) causative for patient phenotype(s). Carrier states in genes that could be causative for the patient phenotype should also be reported. Refer to the kit instructions for examples of reporting format.

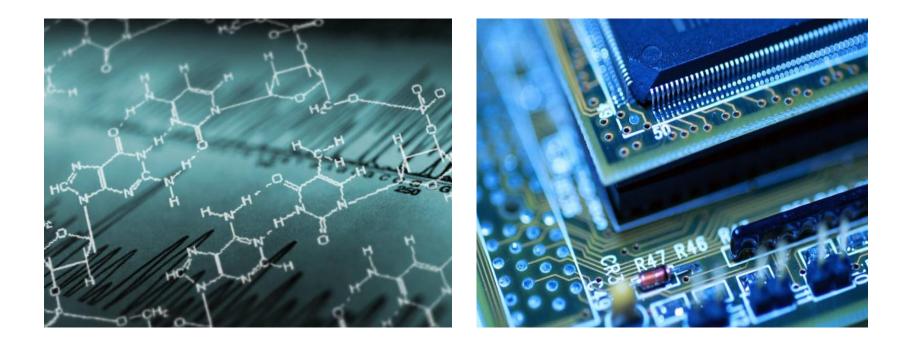
Variant 1

Gene Symbol		Genomic Coordinates (Chromosome and chromosoma	Transcript Used for Annotation		HGVS-Based Variant Description			
060	(HGNC)	position or interval)	(Indicate only 1 NCBI (N		Nucleotide Change (c	.) Predicted Protein Change (p.)		
	Zygosity	Causative F (Select all that ap	* ·	Мо	de of Inheritance for Variant	Variant Classification		
¹¹⁰ () () ()	728 Hemizygous730 Heterozygous729 Homozygous	 1063 Ataxia 1064 Failure to thrive 1169 Group B streptococcus bacteremia 1170 Hypoalbuminemia 	 1065 Hypotonia 1066 Seizures 1171 Strabismus 	○ 1068○ 1069	Autosomal dominant Autosomal recessive X-linked dominant X-linked recessive	 ²⁰⁰ 1071 Pathogenic 1072 Likely pathogenic 1073 Variant of uncertain significance 		

Fields for Additional Variants Causative for Phenotypic Features Separate Section for Secondary Findings


CLINICAL SCENARIO for 2018 A Mailing for Exome PT

The patient presented in the first year of life with failure to thrive, hypotonia, group B streptococcus bacteremia, and hypoalbuminemia. By the third year of life, additional features included strabismus, seizures and ataxia


Learning Objectives

- Explain the rationale for using a method-based PT approach for NGS testing for germline variants
- Describe analytical and annotation results evaluated in method-based PT for germline variants
- Relate trends in laboratory performance in method-based PT for germline variants
- Discuss how in silico PT increases options for assessment of laboratories performing NGS including complex scenarios presented by exome sequencing

Thank You

voelkek@aruplab.com

© 2018 ARUP Laboratories

ARUP IS A NONPROFIT ENTERPRISE OF THE UNIVERSITY OF UTAH SCHOOL OF MEDICINE, DEPARTMENT OF PATHOLOGY.