Genomic profiling and new immunotherapies: an oncologist's perspective

Jonathan Whisenant, MD Huntsman Cancer Institute February 2018

Introduction

- SOC molecular testing in GI cancers
- Promising targeted therapies in GI cancers not yet FDA approved
- Immunotherapies in GI cancer
 - FDA-approved indications
 - Not yet approved (but signals of activity)
- Clinical trials
- Summary

Introduction

- SOC molecular testing in GI cancers
- Promising targeted therapies in GI cancers not yet FDA approved
- Immunotherapies in GI cancer
 - FDA-approved indications
 - Not yet approved (but signals of activity)
- Clinical trials
- Summary

Colon cancer: EGFR, RAS and BRAF

- Anti-EGFR Ab therapy
 - Cetuximab FDA-approval 2004
 - Approved as single-agent or combination with irinotecan
 - EGFR-expressing, refractory to irinotecan
 - Randomized trial cetuximab alone vs cetuximab + irinotecan
 - RR 11% vs 23%
 - DCR 32% vs 55%
 - HR PFS 0.54 (TTP 1.5 mos vs 4.1 mos)

SOC Molecular testing and implications

- Colon cancer: EGFR, RAS and BRAF
 - BRAF

 ~ 2008: multiple trials
 retrospectively look at role of
 kras mutations (exon 2)

 Kras mutations identified in
 approximately 40% of patients

 Kras mut RR 1% vs kras wt RR
 up to 40%

 No difference in outcomes in kras
 mut treated w/ cetuximab vs
 supportive care

 2012: PSA indication includes
 frontline with FOLFIRI, kras wt

SOC Molecular testing and implications

- Colon cancer: EGFR, RAS and BRAF

 - Olon Caricer: EGFR, KAS and BRAF

 ~ 2008: multiple trials retrospectively look at role of kras mutations (exon 2)

 Kras mutations identified in approximately 40% of patients

 Kras mut RR 1½ vs kras wr RR up to 40%

 No difference in outcomes in Kras mut treated w/ cetuximab vs supportive care

 2012: FDA indication includes frontline with FOLFIRI, kras wt

 2014: "extended RAS testing" KRAS exons 2, 3, 4 & NRAS all predict lack of benefit to anti-EGFR antibody therapy (additional 10-15% of patients identified)

 2015: BRAF V600 mutations (5-10%) also suggest lack of response

- Colon cancer: EGFR, RAS and BRAF
 - ~ 2008: multiple trials retrospectively look at role of kras mutations (exon 2)
 * Kras mutations identified in approximately 40% of patients
 * Kras mut RR 1% vs kras wt RR up to 40%

 - Kras mut RR 1% vs kras wt RR up to 40%
 No difference in outcomes in kras mut treated w/ cetuximab vs supportive care
 2012: FDA indication includes frontline with FOLFIRI, kras wt
 2014: "extended RAS testing" KRAS exons 2, 3, 4 & NRAS all predict lack of benefit to anti-EGFR antibody therapy (additional 10-15% of patients identified)
 2015: BRAF V600 mutations (5-10%) also suggest lack of response
 2016: "sidedness" right-sided colon cancer with apparently no benefit with anti-EGFR antibody therapy (maybe fare worse?)

SOC Molecular testing and implications

80405: Overall Survival by Sidedness and Biologic Free 60 12 24 84 96 108

"Sidedness"

- Marked survival difference
- Detrimental effect with cetuximab?
- Midgut vs hindgut
- Molecular determinants?

SOC Molecular testing and implications

- Colon cancer: EGFR, RAS and BRAF

 ~ 2008: multiple trials retrospectively look at role of kras mutations (exon 2)

 Kras mutations identified in approximately 40% of patients

 Kras mut RR 18 vs kras wt RR up to 40%

 No difference in outcomes in kras mut treated w/ cetuximab vs supportive care

 2012: FDA indication includes frontline with FOLIRI, kras wt

 2014: "extended RAS testing" KRAS exons 2, 3, 4 & NRAS all predictive of lack of benefit to anti-EGFR antibody therapy (additional 10-15% of patients identified)

 2015: BRAF V600 mutations (5-10%) also suggest lack of response

 - 2015: BKAF V600 Mutations (5-10%) also suggest lack of response
 2016: "Sidedness" right-sided colon cancer with apparently no benefit with anti-EGFR antibody therapy (maybe fare worse?)
 Current status: extended RAS testing and BRAF mutations ~60% will have biomarker suggesting lack of benefit with anti-EGFR antibody therapy (this is not reflected in PI/FDA-approvals). Additionally with questionable benefit, potential harm in patients with right-sided primary tumors

Colon cancer: BRAF Poor prognosis (OS ~14 - 18 mos vs > 30 mos if BRAF wt) More common R (15%) vs L (5%) Peter outcomes with FOLFOXIRI No apparent benefit with anti-EGFR antibody therapy Really no response to available BRAF inhibitors No available BRAF inhibitors PROFIT AND AVAILABLE AND AVAI

• Colon cancer: BRAF • JCO 2015 – Vemurafenib in BRAF-mutated colorectal cancer • 21 patients • PFS 2.1 mos, RR 5% (one patient) • WHY? – paradoxical MAPK activation • RAS activation → CRAF activation, heterodimerization of BRAF-CRAF • Re-accumulation of P-ERK → CRAF activation • Increase in RTK phosphorylation (EGFR, HER2, MET, etc)

Colon cancer: BRAF Poor prognosis (OS ~14 - 18 mos vs > 30 mos if BRAF wt) Petro outcomes with FOLFOXIRI No apparent benefit with anti-EGFR antibody therapy Really no response to available BRAF inhibitors Dual targeted therapy braf + mek inhibition Triple therapy braf + mek + EGFR inhibition Triple therapy braf + mek + EGFR inhibition Association with MSI-H – candidates for immunotherapy

- Colon cancer: summary
 - SOC to check extended RAS, BRAF
 - SOC to check MSI status
 - Everything else probably not SOC (but rare actionable findings HER2 amplification, POLE mutations, ATM mutations, etc, unclear significance of PTEN loss, PIK3CA mutations)
 - BRAF mutations are a big problem

SOC Molecular testing and implications

- Esophagogastric cancer: Her2
 Approximately 20% of gastric cancer overexpress Her2
 - Rare overexpression in diffuse-type gastric cancer
 - Pathology issues:
 - More heterogeneity than with breast cancer higher false negative rate
 Tends to spare digestive luminal membrane
 CAP/ASCP/ASCO panel guidelines

SOC Molecular testing and implications

- Approximately 20% of gastric cancer overexpress Her2
- Rare overexpression in diffuse-type gastric cancer
- cancer

 Pathology issues:

 More heterogeneity than with breast cancer higher false negative rate

 Tends to spare digestive luminal membrane

 CAP/ASCP/ASCO panel guidelines

- Clinical data: TOGA trial
 Randomized phase III trial (2010)
 SFU + cisplatin + f- trastuzumab
 RR 47 % vs 35%
 OS 14 vs 11 mos
 Higher ratio / gene copy number more likely to benefit

SOC Molecular testing and implications TOGA • Her2/CEP17 ratio and gene copy number predictive of benefit • Small retrospective analysis suggests ration of 4.7 as optimal cutoff discriminating benefit • Ratio > 4.7 = "sensitive" (median OS 21 vs 14 mos) • Ratio > 5.1 → OS > 16 mos (median OS 28 vs 14 mos)

SOC Molecular testing and implications • Esophagogastric cancer: MET • MET expression in 25 – 75% • MET amplification ~ 5% • Randomized phase 2 trial evaluating ECX +/- rilotumumab (anti-hepatocyte growth factor / ligand-blocking) • Median PFS 5.7 vs 4.2 mos • Median OS 10.6 vs 8.9 mos

SOC Molecular testing and implications • Randomized phase 3 trials: • ECX +/- rilotumumab (RILOMET-1) • Median OS 8.8 vs 10.7 mos • FOLFOX +/- onartuzumab (METGastric) • Median OS 11 vs 11.3 mos • PFS 6.8 vs 6.7 mos • WHY? • Early discontinuation (toxicity) • Wrong biomarker (expression vs amplification vs mutation, etc) • Bad target Catanecci, Lancet Oncology 2017; Shah JAMA Oncology 2017

- Gastric cancer: summary
 - SOC to check Her2 amplification
 - Her2 ratio / GCN predictive of benefit
 - MET started out promising, ended up a flop
 - SOC to check MSI status
 - Everything else probably not SOC

Promising molecular testing and implications

- Intrahepatic cholangiocarcinoma
 - Actionable genetic alterations identifiable in ICC
 - FGF alterations

 - IDH1 mutations Other (EPHA2, BAP1, BRCA, KRAS, ERBB family, PTEN, ARID1A, SMAD4,

Targeting FGF alterations in Intrahepatic CC

Targeting FGF alterations in Intrahepatic CC

- Multiple FGFR inhibitors under study
 ORR 15 30% (almost always with FGFR2 fusions)
 - DCR > 50% (range 50-90%)
 - \bullet Median PFS 4-6 months, median duration of response 1 year
 - Well-tolerated fatigue, dry mouth, stomatitis, asthenia, dysgeusia hyperphosphatemia
- Multiple ongoing trials, phase 2 and phase 3

Targeting IDH1 in Intrahepatic CC

IDH1 Mutations

- IDH1 MUTATIONS
 IDH1 normal function catalyzes decarboxylation of isocitrate to alpha-KG, ultimately a major source of NADPH production
 Somatic point mutations (R132-) prevent conversion of isocitrate to alpha-KG, AND acquire neomorphic activity enabling IDH-1 to convert alpha-KG to 2HG
 2HG accumulation induces epigenetic deregulation → DNA and histone hypermethylation → block differentiation, promote proliferation

Targeting IDH1 in Intrahepatic CC

- AG-120 phase 1 study
- Dose escalation 3+3 design
 73 patients with IDH1 mutated CC

- CC
 Toxicity:
 Very well tolerated. No DLT
 Efficacy:
 OR 5%, 5D 56%
 Gmoths PFS 38.5%
 12-month PFS 21% (8 patients on therapy > 1 year)
- Ongoing international phase 3 trial (ClarIDHy)

Seet Overall	AG-131 Doxing			All Pis With CC
Response," n (%)	< 500 mg Q0 (x = 6)	500 mg QD (n = 62)	> 500 mg GD (n = 5)	(n = 73)
PR	(1(17)	3 (5)		4(5)
SD	3 (50)	36 (58)	2 (40)	41 (56)
90	1 (17)	21 (34)	2 (40)	24 (33)
Not assessed	1 (17)	2(3)	1 (20)	4(5)

Promising molecular testing and implications

• Intrahepatic cholangiocarcinoma

- Multiple phase 2 trials evaluating role of FGFR inhibitors
- Phase 3 trial evaluating role of IDH-1 inhibition with AG-120 (ClarIDHy)
- ? Potentially move it up to first-line
 - avoid chemotherapy
 - lag time for NGS results
 - add-on —> toxicity

Promising molecular testing and implications

- Cholangiocarcinoma cancer: summary
 - No FDA-approved targeted therapy
 - SOC to check MSI status
 - Given early data suggesting benefits with targeted therapies, would strongly consider genomic profiling (with clinical trial enrollment)
 - Other uncommon mutations potentially targetable
 - DDR (eg BRCA, ATM, POLE, CHEK2, PALB2, etc)
 - mTOR PTEN, STK11, TSC1, TSC2
 - MAK BRAF, NF1

Molecular testing and implications

- Hepatocellular carcinoma
 - 2 FDA-approved drugs ("targeted") sorafenib and regorafenib
 - Modest benefits
 - Moderate toxicity
 - BLU-554 potent, highly selective FGFR4 inhibitor
 FGF19 signals via FGFR4, aberrant expression appears to drive HCC
 FGF19 expression ~25-30%
 - Nivolumab no biomarker

- Pancreas cancer
 - Rare actionable mutations
 - BRCA2 platinum sensitivity, PARP inhibitors
 - NTRK fusions
 - ROS1 fusions
 - MSI

Molecular testing and implications

- Pancreas cancer
 - Rare actionable mutations
 - BRCA2 platinum sensitivity, PARP inhibitors
 - NTRK fusions
 - ROS1 fusions
 - MSI

Genomic profiling – clinical trials and off-label treatment

- Genomic alterations with emerging evidence of benefit: • BRCA1, BRCA2

 - other DDR genes (e.g. PALB2, ATM, CHEK2, POLE, BAP1, etc)
 - IDH1 (CC)
 - FGFR2 fusions (CC)
 - Her2 (not gastric)
 - Colon
 EHCC (mutations)
 - NTRK, ROS1 fusions

Genomic profiling – clinical trials and off-label treatment • DNA Damage Response genes (BRCA1, BRCA2, PALB2, ATM, CHEK2, POLE, etc) • Pancreas, colon, CC, gastric $\bullet\,$? Higher response to platinum agents • Role of PARP inhibitors Pancreas → Gem + cis + veliparib, PR 66%, DCR 88% Cisplatin, olaparib in mice → cisplatin active, better w/ addition of olaparib ongoing trials w/ veliparib, rucaparib, olaparib • Colon → not active in unselected patients, case reports with activity • Role of immunotherapy • Implications for germline testing, etc. SOC Molecular testing and implications • Summary: • Colorectal: extended ras, braf, MSI • Gastroesophageal: Her2 • Pancreas: not much Cholangiocarcinoma: promising early data Hepatocellular carcinoma: not much (FGFR4/FGF19) Popplans: Neuroendocrine tumor / neuroendocrine carcinoma Small bowel tumors (extrapolate from colon / ampullary / pancreas cancer) Appendix cancer (extrapolate from colon cancer) Anal cancer • ? MSI in everyone Genomic profiling – clinical trials and off-label treatment • What do we do? • Foundation Medicine • Others: Caris, Tempus, Guardant, ARUP, etc • MSI Practical issues: • Reimbursement / payment • Tumor samples • Repeat biopsies • Liquid biopsies

Ongoing issues w/ genomic profiling

- Oncogene addiction
- Driver mutations, passenger mutations, co-mutations, resistance mutations
 - adding multiple medications —> overlapping toxicity, contracts / budgets
- Sub-clonal populations, tumor heterogeneity
- Germline vs somatic mutations

Introduction

- SOC molecular testing in GI cancers
- Promising targeted therapies in GI cancers not yet FDA approved
- Immunotherapies in GI cancer
 - FDA-approved indications
 - Not yet approved (but signals of activity)
- Clinical trials
- Summary

Immunotherapy: MSI-H ("tissue agnostic") • phase 2 trial: refractory cancers • MSI-H colorectal (n=11) • MSS colorectal (n=21) • MSI-H non-colorectal (n=9) • MSI-H CRC • ORR 40% • 20-wk PFS 78% • MSI-H non-CRC • ORR 71% • 20-wk PFS 67%

Immunotherapy: MSI-H ("tissue agnostic")

FDA Announcement

Release Date: May 22.2017
Announcement: FDA approves first cancer treatment for any solid tumor with a specific genetic feature

S uncontrolled single arm trials

• 149 patients

• RR 40%

• response duration - 78% responses > 6 months

• Keynote 059 — phase 2 trial gastric/GEJ (refractory) • 259 patients — 57% PDL1+ (>/=1%, 223C) • ORR PDL1+ 16% vs PDL1- 6% • Median duration of response: 14 mos • 1st line ORR 26%

Immunotherapy: gastroesophageal cancer

FDA grants accelerated approval to pembrolizumab for advanced gastric cancer

On September 22, 2017, the Food and Drug Administration granted accelerated approval to pembrolizumab (KEYTRUDA, Merck & Co., Inc.) for patients with recurrent locally advanced or metastatic, gastric or gastroscophageal junction adenocarcinoma whose tumore express PD-1 as determined by an FDA-approve test. Patients must have had disease progression on or after two or more prior systemic therapies, including fluoropylimidine- and platinum-containing chemotherapy and, if appropriate, HEPZnea-tapled therapy.

Immunotherapy: hepatocellular carcinoma

- CHECKMATE-040
- phase 1/2
- child-pugh A, sorafenib failure
- 262 patients
 - 159 sorafenib failure
 - 80 sorafenib naive
- ORR 20% in expansion, DCR 56%
- OS 16 mos, 29 mos if sorafenib naive

6-month PFS 37% 9-month PFS 28%

FI-Khoueiry Lancet 2017

Immunotherapies: signals of activity

- Biliary tract cancers
 - KEYNOTE 026 17% response rate
 - \bullet KEYNOTE 158 100 cases cholangiocarcinoma, results pending this year
- Neuroendocrine carcinoma (high grade)
 - Merkel cell carcinoma, SCLC, case reports with high grade NET/NEC
- What about colon?
 - Generally disappointing
 - Multiple ongoing trials evaluating immunotherapy combinations
 - anti-PDL1 Ab + MEK inhibitor with responses

Immunotherapies: clinical trials

- anti-PD1 Ab + "drug X"
 - second immunomodulatory agent
 - second checkpoint inhibitor (eg CTLA4, LAG, etc)
 - costimulatory agonist (OX40, GITR, etc)
 - anti-VEGF
 - oncolytic virus
 - other (eg IDO, mTOR, p53 stabilizer, chemokine, cytokine)
 - \bullet chemotherapy (with antigen release)
 - abscopal effect —> add RT, SIRT

Immunotherapy: summary • MSI-H cancers ("tissue agnostic") • 40% ORR • 50% durable control (>2 years?) • PDL1+ gastroesophageal carcinomas • RR 10-15% • Duration of response > 1 year • Hepatocellular carcinoma • RR 20% • impressive OS (> 2 years in TKI naive patients) • ? Promising: cholangiocarcinoma, ? high grade NET/NEC • Problems: MSS CRC, pancreas cancer • Need better biomarker / predictors • TMB, immune infiltrate, PDL1 status, gamma-IFN signature Alunbrig (brigatinib): Ariad Pharmaceuticals; For the treatment of advanced ALX-positive metastatic lung cancer, Approved April 2017 **New** cancer drugs approved by the FDA in 2017 Rydapt (midostaurin); Novartis; For the treatment of FLT3 positive acute myeloid leukemia and mastocytosis, Approved April 2017 Vyxeos (deumonublish and cytarblers) (Jazz Pharma; For the treatment of newly-diagnosed therapy-related AML or AML with mystodroplasia-related changes, Approved August 2017 Xermelo (teloristat ethyl): Lexicon Pharmaceuticals, For the treatment of carcinoid syndrome distribus, Approved February 2017 FDA approvals in oncology: 2017

Colon Cancer: - FOLFOX +/- PD1 (MSI-H) - FOLFOX +PD1 +IDO - FOLFIRI + VEGF/DLL4 - FOLFIRI + MEK (kras mutated) - BRAF inhibitor ("paradox breaker") - Immunotherapy combinations	Pancreas Cancer: Preoperative chemo Gem/ABI +/- olaratumab Gem/ABI + PD1 + IDO Gem/ABI + BBI668	Cholangiocarcinoma: FGFR inhibitor IDH1 inhibitor anti-C0166 ADC ("probody")	Hepatocellular: SBRT (unresectable) anti-FGFR4/FGF19 anti-PD1 + bevacizumab
Gastroesophageal: • Chemo +/- PD1 • MEK ADC • Immunotherapy combinations	Neuroendocrine: anti-DLI ADC ("Rova-T") anti-PD1 (high grade) anti-PD1 + anti-LAG (well-differentiated)	GIST: • novel KIT inhibitors	All-comers: immunotherapies: STING anti-TGFb +/- anti-PD1 anti-PD1 "probody" targeted therapies: NTRK DDR

Genomic profiling and immunotherapies: summary

Standard:

Colon: kras, nras, braf, MSI
Gastric/esophagus: Her2,
PDL1
Pancreas:
Billary:
HCC:
NET:
Other (ampullary, small
bowel, appendix, etc.):
ALL: ? MSI

Promising:

Colon: HER2
Gastric/esophagus:
Pancreas: BRCA, NTRK
Biliary: FGFR, IDH1, HER2
HCC: FGFR4/FGF19
NET: Other (ampullary, small bowel, appendix, etc.):
ALL: MSI

Experimental:

Colon: immunotherapy combinations
Gastric/esophagus: MEK
Pancreas: Pancreas:
Biliary:
HCC:
NET:
Other (ampullary, small bowel, appendix, etc.):
ALL: rare actionable mutations (other DDR, eg ATM, PALB2, POLE, STK11, CHEK2), immunotherapies
PROBLEMS: ras, TP53, APC, braf

