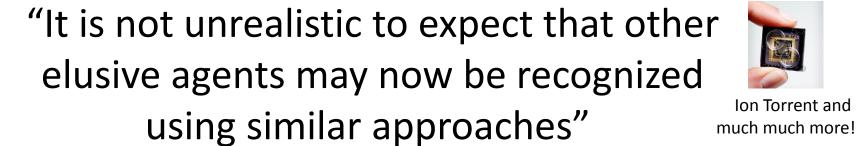
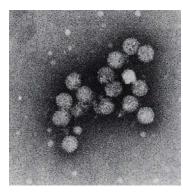
The Changing Landscape of Hepatitis C Testing and Therapy

David R Hillyard MD Professor, Pathology University of Utah School of Medicine 9-30-2015

Hepatitis C Virus (HCV)

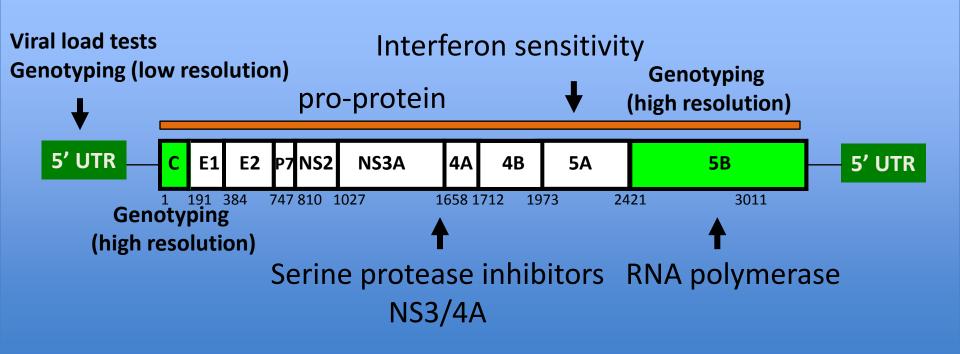

- Flaviviridae family
- Recent widespread human transmission
 - Transfusion services
 - ID drug use
- Chronic HCV Infection
 - 3.8 million U.S.
 - >130 million worldwide



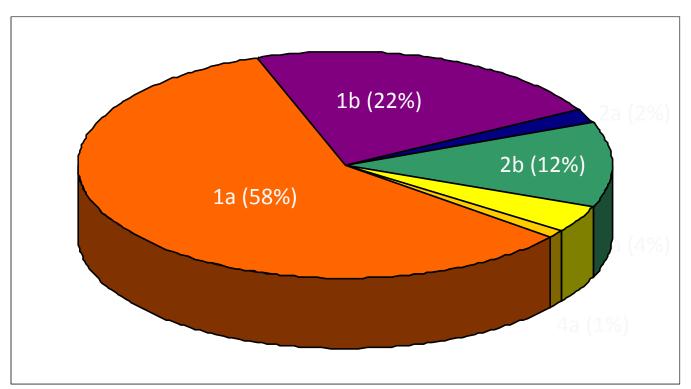
Most chronic infection undiagnosed

Discovery HCV

- Search for basis of non-A, non-B hepatitis
 - 85% of blood transfusion hepatitis
 - DNA or RNA virus?
- Purify nucleic acid from infected chimpanzee
- Copy and clone into bacteriophage λgt11
- Identify clones expressing viral proteins using antibodies from non-A, non-B patient



Ron Davis


- -Genome ssRNA
- -Replicates in hepatocytes
- -HCV genome does not integrate into host genome allowing spontaneous clearance and therapeutic cures

Envelope

HCV Genotypes 1-7

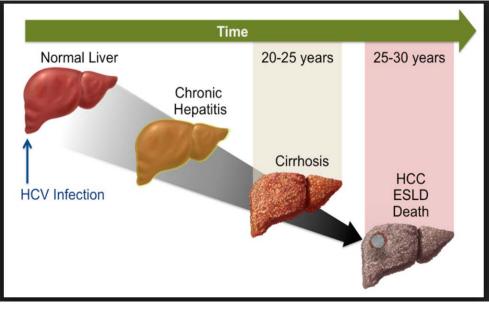
- -Multiple Subtypes (a,b,c ...)
- -Type 1 virus most common in the US and most challenging to treat
- -Assays and therapies optimized to type 1 virus

Genotype and subtype used to inform:

- -Selection of therapy
- -Length/duration of therapy
- -Likelihood of resistance mutations

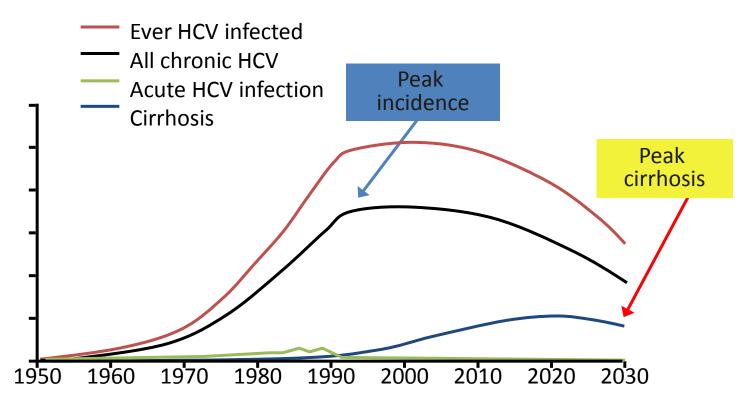
GENOTYPE			SUBTYPE (total=84)				
	1		a,b c,d,e,f,g,h,i,j,k,l,m (13)				
	2		a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r (18)				
	3		a,b,c,d,e,f,g,h,i,k (10)				
	4		a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u (21)				
	5		a (1)				
	6		a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t (20)				
	7		a (1)				

Confirmed subtypes


Provisional subytpes

Provisional subtypes added since 2005

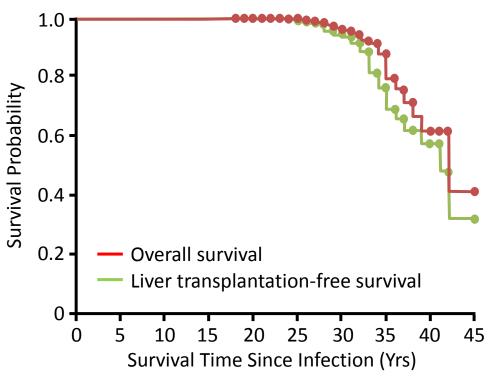
Combet et al. 2007; http://euhcvdb.ibcp.fr/euHCVdb


Natural History of Hepatitis C

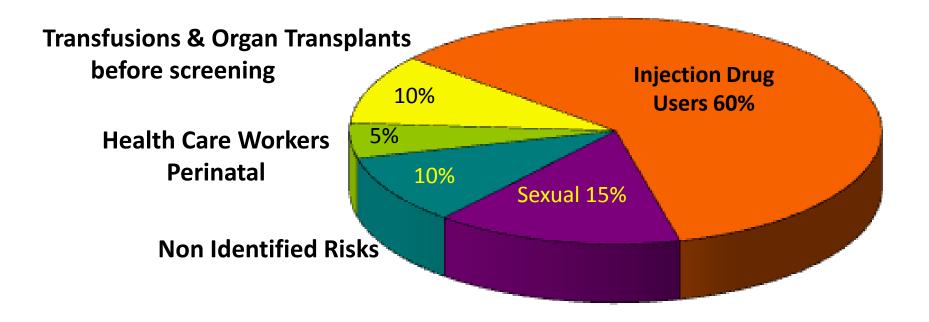
Acute Hepatitis C (rarely diagnosed) 85% Chronic Hepatitis C 20% Cirrhosis 1-5% Liver cancer

- #1 cause of cirrhosis
- #1 cause of liver failure
- 10,000 death per year
- #1 cause for liver transplant in the US

The Changing Face of HCV in the US

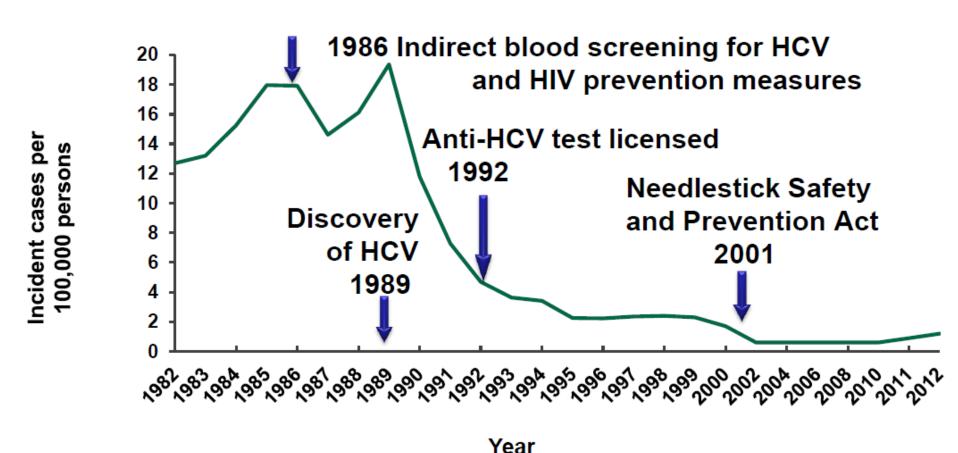

Reprinted from Gastroenterology, 138, Davis GL, et al, Aging of hepatitis C virus (HCV)-infected persons in the United States: a multiple cohort model of HCV prevalence and disease progression, 513-521, Copyright 2010, with permission from Elsevier. **Clinical Care Options 2010.**

Natural History of Chronic HCV Progression


 Chart review of 485 plasma donors infected in Austria during 1970s (mean follow-up: 31 yrs)

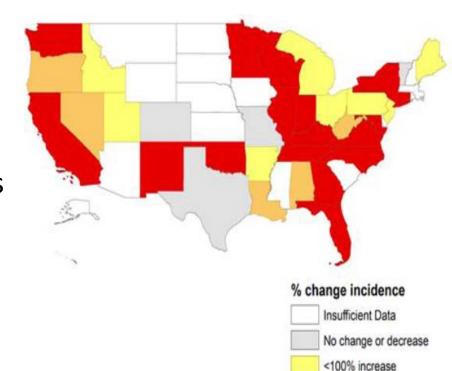
- First liver transplant: 18 yrs after infection
- First death: 28 yrs after infection

Reprinted from J Hepatol, v47, Ferenci P, Ferenci S, Datz C, Rezman I, Oberaigner W, Strauss R, Morbidity and mortality in paid Austrian plasma donors infected with hepatitis C at plasma donation in the 1970s, pp31-36. Copyright 2007, with permission from Elsevier. Clinical Care Options 2011.


Risk Factors - HCV Transmission

Source: Centers for Disease Control and Prevention

HCV Prevention

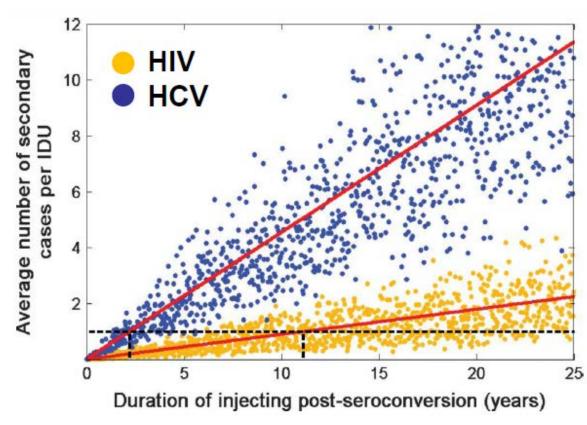

22,000 new cases reported in 2012

Jagger J, J Infect Dis Pub Health 2008. Ward JW. Clin Liver Dis, 2013. CDC.gov/hepatitis

Recent Increase in HCV Infection

- Between 2007 to 2012
 - 50% increase in case reporting
 - 200% increase in 17 states
- Risk factors
- ~ 70% persons who inject drugs
- Previous oral prescription narcotic use
- Equally male to female
- Young, ages 18-29 years
- Rural and suburban
- White

J. Ward http://www.cdc.gov/cdcgrandrounds/archives/2014/june2014.htm



100-199% increase

≥200% increase

Transmission Among Persons Who Inject Drugs

- Transmission risks
 - injection duration
 - Injection frequency
 - Equipment sharing
- HCV prevalence
 - 27 to 51%

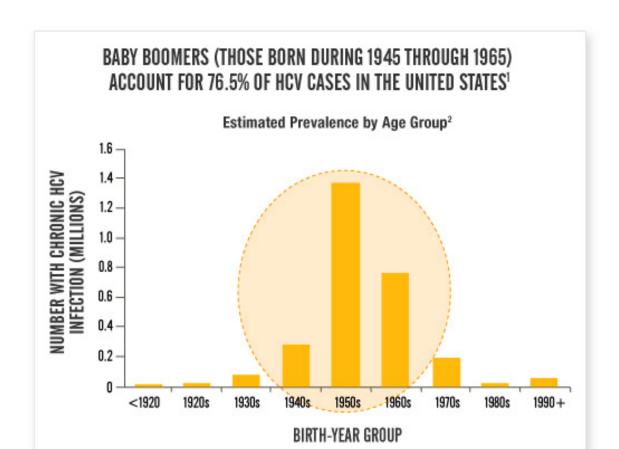
 Incidence declined in response to HIV harm reduction (syringe access programs)

Burt, J Urban Health 2007. Garfein R, J Urban Health 2013. Keen L, Addict Behav 2014. Amon JJ, Clin Infect Dis 2008 Kwon J, AIDS 2009.

Other Modes HCV Transmission

- Accidental needle stick in healthcare setting
 - HCV risk is 1.3%, HIV risk is 0.3%
- 18 healthcare-associated outbreaks from 2008 to 2013
 - 223 cases involving over 90,550 at-risk persons notified
- Non-injecting drug use (e.g., intranasal cocaine use)
- Perinatal-infants born to HCV infected mothers
 - ~4% risk if mother infected with HCV
 - ~25% risk if mother co-infected with HCV and HIV
- Sexual transmission is rare
 - HIV infected MSM at highest risk
- Miscellaneous reported
 - Unregulated tattooing

From J. Ward http://www.cdc.gov/cdcgrandrounds/archives/2014/june2014.htm
Scheinmann, *Drug and Alcohol Dependence* 2006. Weinbaum, *MMWR* 2003. Gough, *BMC Public Health* 2010. Mast, *J Infect Dis*, 2005. Marincovich B, *Sex Transm Infect* 2003. Yaphe S, *Sex Transm Inf* 2012. Bottieau, *Eurosurveillance* 2010. Ackerman Z, *J Viral Hepat* 2000. Tohme RA, *CID* 2012. *MMWR* 2001. CDC/hepatitis.gov


Bending the HCV Outcomes Curve

- Estimated 45% to 85% of HCV persons with chronic HCV are unaware of infection
- Screening strategies have been based on risk*
 - Blood transfusion before 1992, IV drug exposure
 - Many in highest risk cohort do not identify themselves
- Recent treatments only ~ 50% effective, expensive
 - Many identified persons have elected to wait for better drugs which are now available (Combination DAAs)

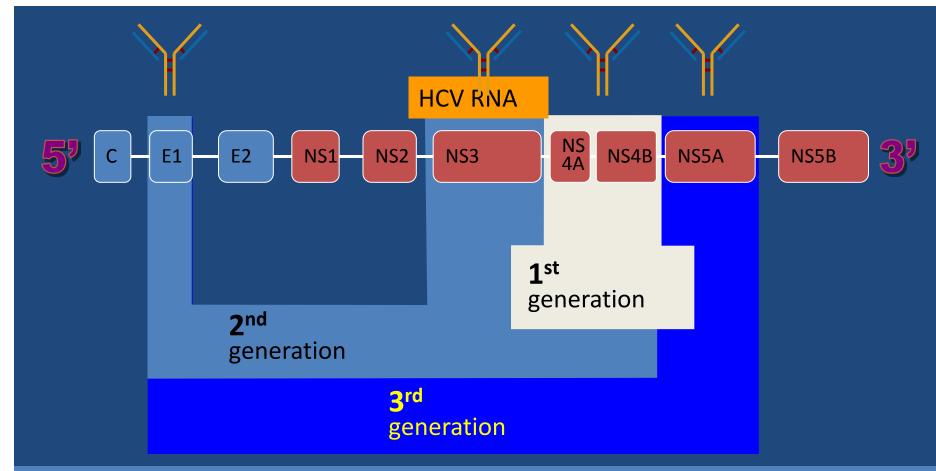
 In 2012 the CDC issued guidelines recommending a one-time anti-HCV antibody test for all baby boomers (those born during 1945 through 1965), although those at high risk should be tested regularly
 MMWR Recomm Rep. 2012;61(RR-4):1-32.

Other Screening Indications

- Persons who have injected drugs (once)
- Persons with conditions associated with HCV
 - HIV
- Elevated aminotransferase (ALT)
- Hemodialysis
- Transfusions/organ transplants prior to 1992
- Children of HCV infected mothers
- Exposed healthcare workers
- Sexual partners of HCV infected individuals *

Laboratory Testing for HCV Infection

 Serology - anti-HCV antibodies screening test (EIA or CIA)

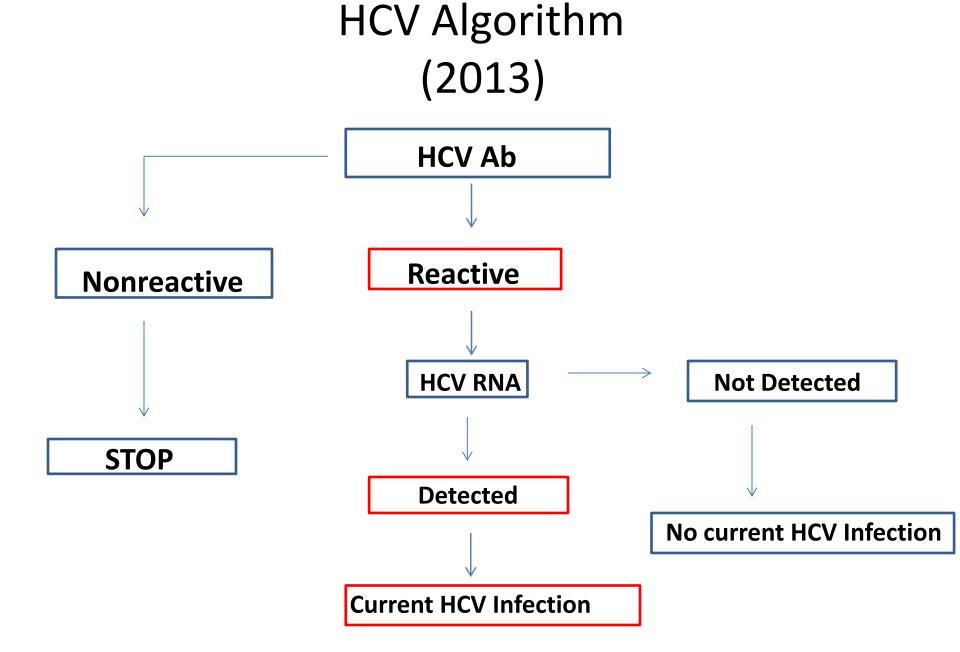


Virus Detection - HCV RNA qualitative PCR or TMA quantitative real-time PCR

HCV Immunoassay (IA)

HCV IA detects antibodies to 3 or more viral proteins




Signal to Cutoff Ratios (S/Co)

Screening Test Kit Name	Manufacturer	Assay	Signal-to-cut-off Format ratio predictive itive > 95% ne
Ortho HCV Version 3.0 ELISA Test	Ortho	EIA	<u>≥</u> 3.8
System			S/CO predicts HCV viremia
Abbott HCV EIA 2.0	Abbott	EIA	≥ 3.8 S/CO guide to choosing screening confirmation
VITROS Anti-HCV	Ortho	CIA	≥ 8.0 (RIBA vs PCR) testing algorithm
AxSYM Anti- HCV	Abbott	MEIA	≥ 10.0 now obsolete
Architect Anti- HCV	Abbott	CMIA	≥ 5.0
Advia Centaur HCV	Siemens	CIA	<u>></u> 11.0

anti-HCV RIBA 3.0

Reagent manufacture discontinued 2013

Result Interpretation

Anti-HCV HCV RNA Interpretation **Positive Positive** Acute or chronic HCV depending on clinical context **Positive Negative** Past, resolved HCV infection; False **Positive Screen Positive Negative** Early acute HCV infection; chronic HCV in setting of immunosuppressed state; false positive HCV RNA test Absence of HCV infection **Negative Negative**

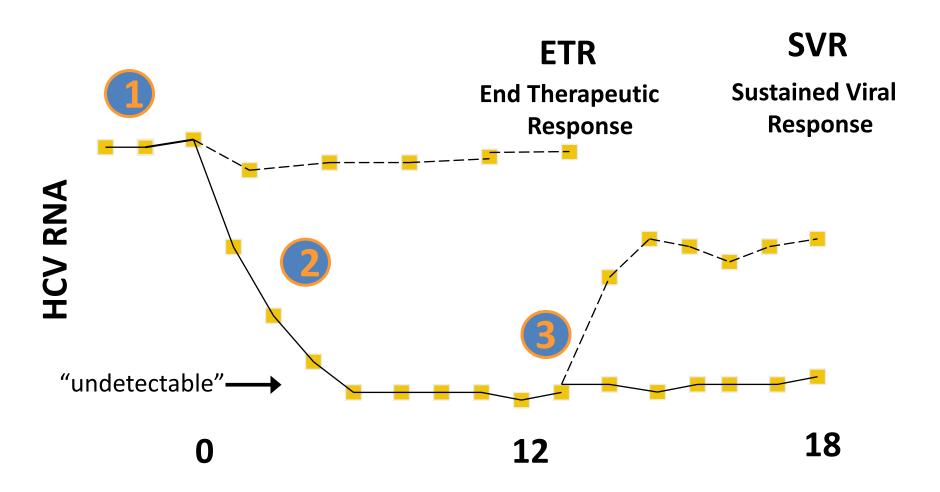
HCV Molecular Confirmation Issues

- Confirm with "sensitive" HCV RNA test
 - COBAS AmpliPrep/ COBAS Taqman, quantitative (Roche)
 - RealTime HCV, quantitative (Abbott)
 - APTIMA HCV RNA, qualitative (Hologic) FDA approved for diagnosis HCV
- Both HCV Viral Load tests are very sensitive but none are FDA approved for diagnosis (still confirmation standard)
- Confirmation with quantitative assay is both process and cost efficient (baseline for therapeutic monitoring)

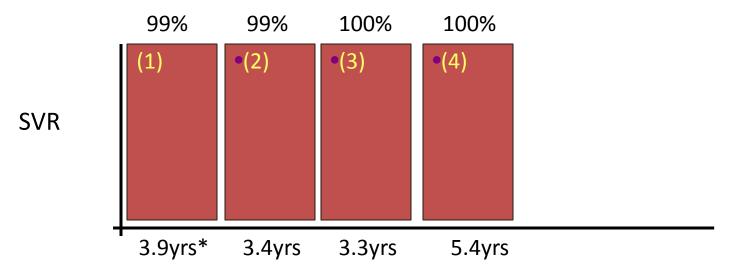
Issues for Timely Confirmatory Testing

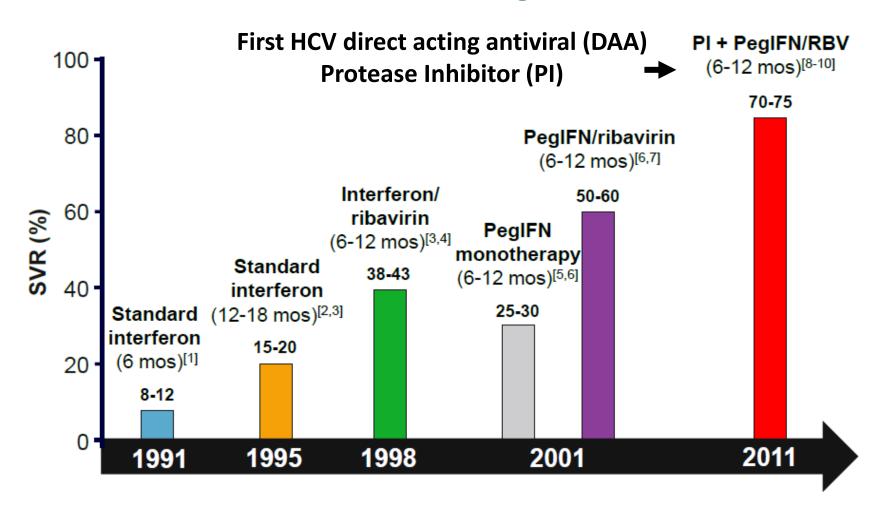
- Time gap in Screening vs PCR confirmation
 - Patients at risk for follow up.
- Re-testing screening sample by PCR condoned by CDC, however, potential contamination risk?
 - Reflex PCR testing of 2nd tube for sero-positives?
 - Pre-aliquoting samples prior to serologic and potential molecular testing?
- Unmet need: Rapid, unified screening/assay process (POC?)

Candidates for Therapy and Outcome Predictors


- >18 years
- Antibody & RNA *
- Liver bx (chronic hepatitis), not required
- Stage of disease appropriate
- No Rx contraindications

- VL < 400,000 I.U./ml
- Age
- Sex
- Race
- Weight
- Fibrosis
- Steatosis
- Insulin resistance
- Alcohol consumption
- All less predictive than IL28 (traditional intereferon Rx)*
- New treatment options (DAAs)
 effective for previous difficult to
 treat patients

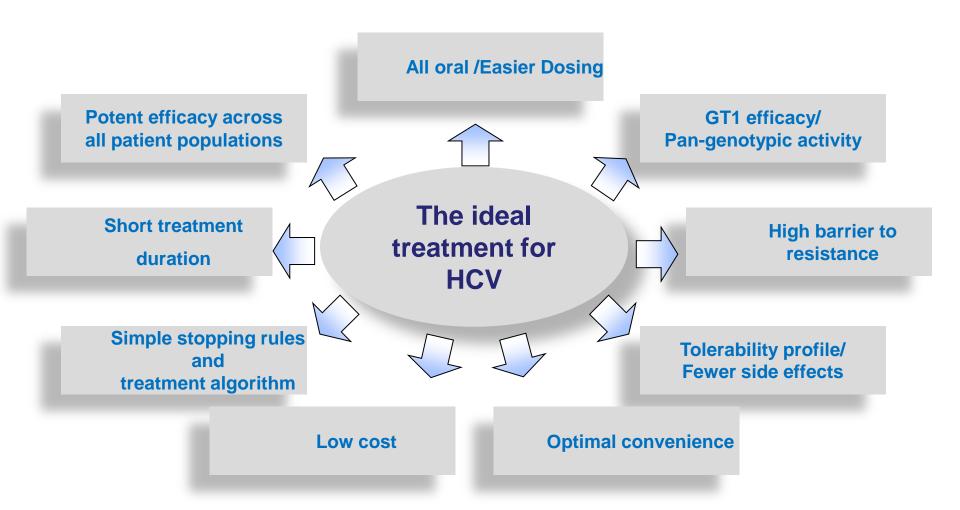

HCV Treatment: Goal is Sustained Viral Response (SVR)


SVR = Improved Outcomes!

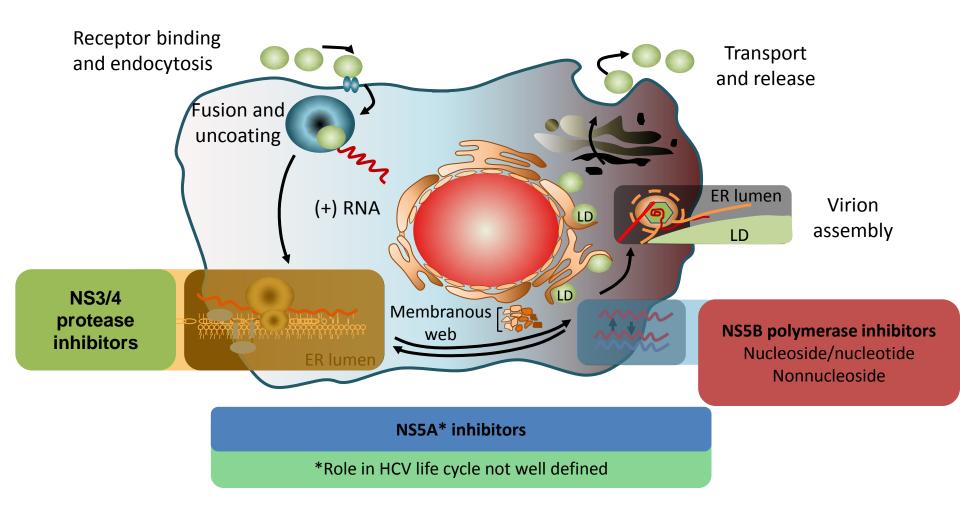
- SVR virologic "cure"
 - Durable
 - Leads to improved histology
 - Leads to clinical benefits
 - > Decreases decompensation
 - Decreases risk of hepatocellular carcinoma
 - > Decreases mortality

Bruno S, et al. Hepatology. 2010;51:2069-2076. Veldt BJ, et al. Ann Intern Med. 2007;147:677-684. Maylin S, et al. Gastroenterology. 2008;135:821-829. 1. Swain MG, et al. Gastroenterology. 2010;139:1593-1601. 2. Giannini EG, et al. Aliment Pharmacol Ther. 2010;31:502-508. 3. Maylin S, et al. Gastroenterology. 2008;135:821-829. 4. George SL, et al. Hepatology. 2009;49:729-738.

Treatment of Chronic Hepatitis C (Pre-2011)



Carithers RL Jr., et al. Hepatology. 1997;26(3 suppl 1):83S-88S. 2. Zeuzem S, et al. N Engl J Med. 2000;343:1666-1672. 3. Poynard T, et al. Lancet. 1998;352:1426-1432. 4. McHutchison JG, et al. N Engl J Med. 1998;339:1485-1492.
 Lindsay KL, et al. Hepatology. 2001;34:395-403. 6. Fried MW, et al. N Engl J Med. 2002;347:975-982. 7. Manns MP, et al. Lancet. 2001;358:958-965. 8. Poordad F, et al. N Engl J Med. 2011;364:1195-1206. 9. Jacobson IM, et al. N Engl J Med. 2011;364:2405-2416. 10. Sherman KE, et al. N Engl J Med. 2011;365:1014-1024.


HCV Therapies Continue to Evolve:

Unmet needs driving drug development

Direct Acting Antivirals (DAA) Basis for New Therapies

Adapted from Manns MP, et al. Nat Rev Drug Discov. 2007;6:991-1000.

DAA Class Characteristics

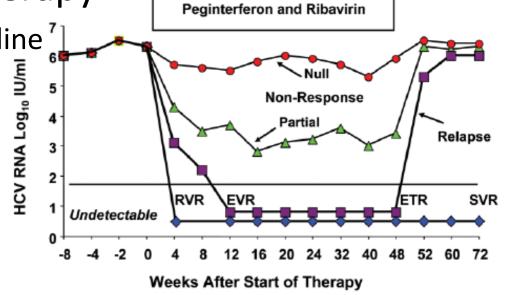
Characteristic	Protease inhibitors	Nucleos(t)ide Polymerase inhibitors	Nonnucleoside Polymerase inhibitors	NS5A inhibitors
Potency	High; Variable among HCV genotypes	Moderate-high; Consistent across genotype, subtype	Variable; Variable among HCV genotypes	High; multiple HCV genotypes
Barrier to Resistance	Low 1a < 1b	High; 1a = 1b	Very Low 1a < 1b	Low 1a < 1b
Drug Interaction Potential	High	Low	Variable	Low to moderate
Toxicity	Rash Anemia ↑Bilirubin	Mitochondrial Nuc interactions (ART, RBV)	Variable	Variable
Pharmacokinetics	Variable; QD to TID	QD	Variable; QD to TID	QD
Comments	2 nd gen PIs: better barrier, pangenotypic	Single target Active site	Allosteric; Many targets Paul Poc	Multiple antiviral MOA kros 2013

New Therapies (Post-2011)

- Greatly increased likelihood of sustained viral response (SVR)
- Better Tolerated
- Shorter Treatment Regimens
- Simpler Treatment and Monitoring Algorithms
- More Drug Options
- Expensive

HCV Treatment: Tests for Selection and Guidance of Therapy

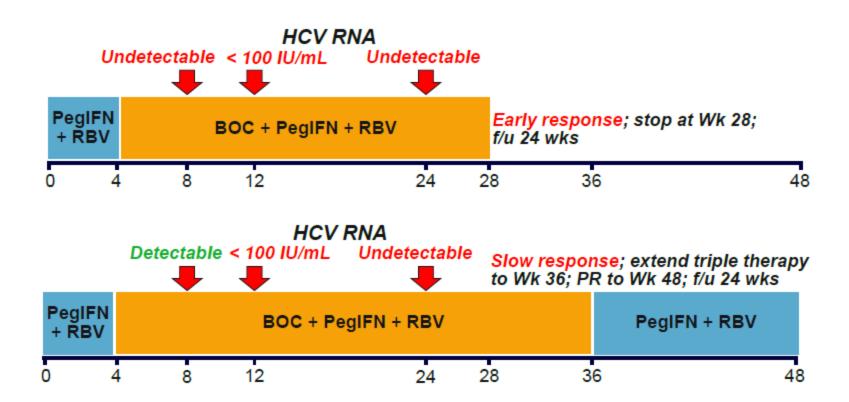
- Selection
 - Genotype and subtype
 - Stage of disease
 - Past treatment history
- Guidance
 - Genotype and subtype guided
 - how long to treat
 - Response guided
 - How long to treat/when to stop


Two Approaches to Guided Therapy

- Genotype Guided Therapy
 - Rx some genotypes shorter
 (GT2,3 interferon ribavirin therapy)
 - Rx other genotypes longer
 (GT1, 4, 5, 6 interferon ribavirin therapy)

Response Guided Therapy

Rx based on rate VL decline

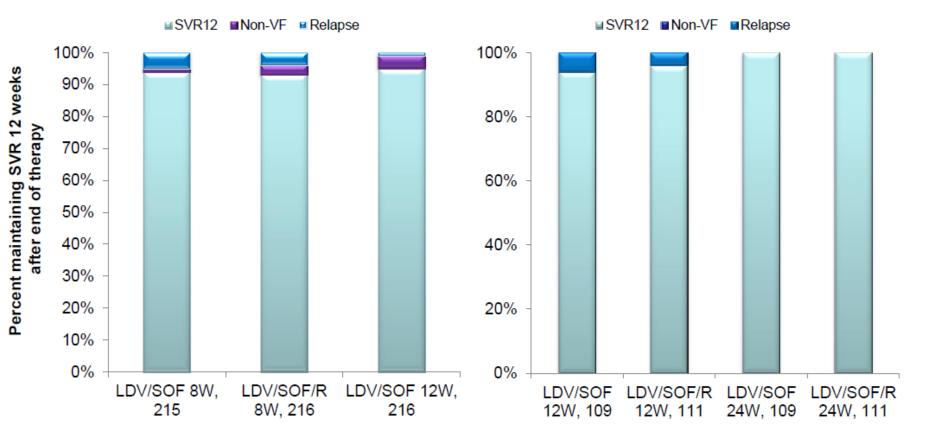

- Treatment duration
- Stopping rules

Response-Guided Therapy "First Generation Direct Acting Antivirals"

Boceprevir [package insert]. May 2011. Ghany MG, et al. Hepatology. 2011;54:1433-1444.

Recommended Regimens for Treatment-Naive GT1 HCV Pts

Subtype	Noncirrhotic		Compensated Cirrhotic	
	Regimen	Duration, Wks	Regimen	Duration, Wks
GT1a or 1b	LDV/SOF	12*	LDV/SOF	12
GT1a	OMV/PTV/RTV + DSV + RBV	12	OMV/PTV/RTV + DSV + RBV	(24)
GT1b	OMV/PTV/RTV + DSV	12	OMV/PTV/RTV + DSV + RBV	12
GT1a	SMV + SOF ± RBV	12	SMV + SOF ± RBV	24
GT1b	SMV + SOF	12	SMV + SOF	24

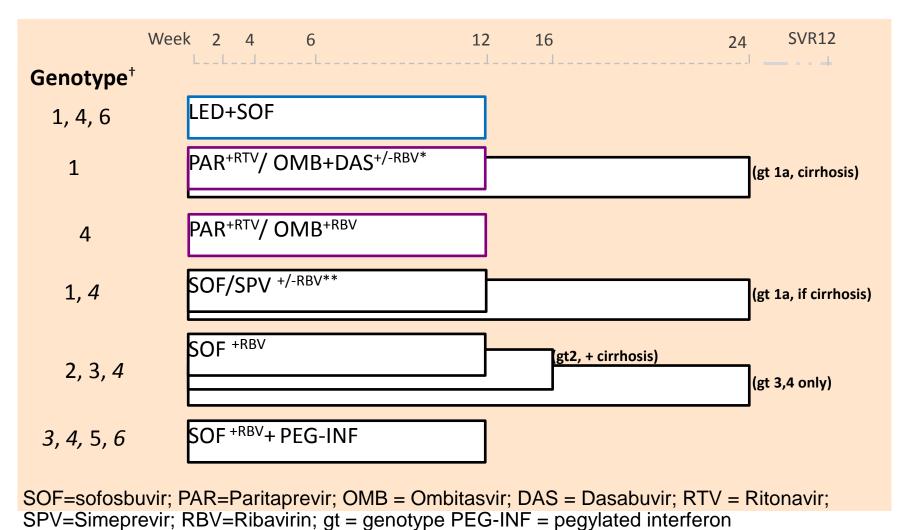

^{*}Shorter course can be considered in pts with pretreatment HCV RNA < 6 million IU/mL at provider's discretion but should be done with caution.

DSV dasabuvir ABT-333 NS5AI LDV ledipasvir GS-5885 NS5AI OMV ombitasvir ABT-267 PI PTV paritaprevir ABT-450 PI

RBV ribavirin RTV ritonavir SMV simeprevir TMC435 PI SOF sofosbuvir. GS-331007 NS5BI

Genotype 1 HCV Ledipasvir (LDV) and Sofosbuvir (SOF)

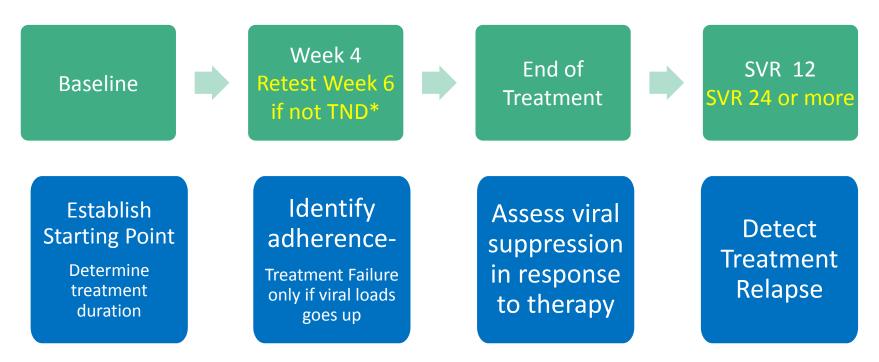
LDV/SOF naive F0-2, naive LDV/SOF prior treatment, 20% cirrhosis



Kowdley NEJM 2014. Afdhal, NEJM 2014

HCVCurrent Recommendations, New All Oral Therapies:

Treatment Naïve patients: HCV genotype, duration important



† Italics indicates alternative regimen recommendation * Genotype 1b: +RBV only if cirrhosis, 12 wks ** -RBV only for genotype 4

Note: For genotype 5, PEG-INF+RBV can be used as an alternative

AASLD-IDSA Recommendations on Treatment of Hepatitis C 2014, http://www.hcvguidelines.org/full-report/initial-treatment-hcv-infection accessed 5/19/2015

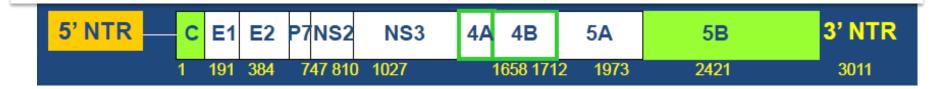
Evolving Landscape of HCV *Updated 2014 AASLD Guidelines*

^{*}If quantitative HCV viral load has increased by greater than 10-fold (>1 log_{10} IU/mL) on repeat testing at week 6 (or thereafter), then discontinuation of HCV treatment is recommended.

AASLD Guidelines www.HCVguidelines.org accessed May 19,, 2015

HCV Genotyping Considerations

- Patients with HCV genotype 1a tend to have higher relapse rates than patients with HCV genotype 1b with certain regimens.
- Genotype 1a patients may receive more aggressive therapy
- Genotype 1 HCV infection that cannot be subtyped should be treated as genotype 1a infection


AASLD/IDSA HCV Guidance 05-29-15c

HCV Genotyping Methods

- LiPA (reverse hybridization line probe)
 - (5'UTR, Core)
- Nucleic Acid Sequencing (Sanger or NGS)
 - (5'UTR, Core, NS5)
- Primer specific PCR (Abbott TaqMan) FDA approved
 - (5'UTR, NS5)
- GenMark
 - (5'UTR, Core)

HCV Genotyping Test Issues

- Tests targeting only 5' UTR do not reliably discriminate types 1a vs 1b or type 1 vs rare type 6 HCV
- Interrogation of core and NS5B associated with low percentage of no calls due to sequence variability of targets

HCV Genotyping for Drug Resistance

- Resistance Associated Variation (RAVs) arise due to selection (previous failed therapies)
- Spontaneous RAVs also present in untreated populations
- Mutations may confer fitness cost
- Barrier to resistance varies with drug class
- Evolving recommendations for resistance testing

HCV GT1a Infections with NS3 (protease) Q80K Polymorphism

- Efficacy of SMV/PEG/RBV substantially reduced*
- Sofosbuvir plus simeprevir**
 - 1a patients with Q80K mutation have lower rates of **SVR**
- Recommendations for testing for NS5A and other mutations are now emerging

*Simeprevir (OLYSIO™) Prescribing Information. Janssen Therapeutics, Titusville, NJ. November, 2013.

**Lawitz E, Matusow G, DeJesus E et al EASL 2015;S264 AASLD/IDSA HCV Guidance 05-29-15

New Indications for RAV Testing

- NS5A mutations likely detected in setting of virologic breakthrough post DAA treatment
 - ledipasvir, ombitasvir, and daclatasvir
- NS5A inhibitor mutations likely stable and detectable as long as 2 years after treatment.
- NS3 region mutations may also occur (protease inhibitors)
 - Paritaprevir and simeprevir
- Treatment examples
 - ledipasvir/sofosbuvir
 - ombitasvir/paritaprevir/ritonavir/dasabuvir
 - Daclatasvir/sofosbuvir

- Indication for RAV testing: Treatment is urgent and previous treatment with NS5A/NS3 inhibitors has failed
- Test NS5A and NS3 regions
- Indications NS5B polymerase testing less clear
- Testing currently limited to a few specialty labs
- Field new and rapidly evolving

Evaluating the Cost Effectiveness of New Therapies

- In 2011, average wholesale acquisition costs of drugs alone were \$32,000 to over \$100,000
- Quality adjusted life years for those regimens considered reasonable
- New regimens are \$100,000 to \$175,000 in U.S.
- Incremental cost benefits have been demonstrated
- Evaluating cost effectiveness of new regimens also has to reflect the increased efficacy of the treatment (cost/cure)
- Will competition and or regulation bend the cost curve?

Rein *Ann Intern Med* 2012 and unpublished data. Younoussi, *J Hepatol* 2014. Hagan, *Hepatology* 2014. Linas, *AIDS* 2014. Deuffic-Burban, *J Hepatol* 2014. Brogan, Plos One 2014.

The HCV Revolution

- Viral discovery
- Advancing therapeutics
- Evolving laboratory technology
- Convergence on use of high quality molecular tests for detection and genotyping (VL considered)
- Broad population screening
- Education, screening, resource availability, team based management
- Economic models to bring affordable care for chronic HCV infection

Department of Pathology

© 2015 ARUP Laboratories