Molecular Diagnosis in Neonatal Hereditary Hemolytic Anemia

Archana M Agarwal, MD

Associate Professor of Pathology, University of Utah School of Medicine Medical Director: Hematopathology and Special Genetics, ARUP Laboratories

Learning Objectives

List the causes of neonatal hereditary hemolytic anemia (HHA)

Identify the limitations of routine diagnostic tests in these disorders

Discuss the association of HHA with neonatal hyperbilirubinemia/acute bilirubin encephalopathy

3

Recognize the advantages of molecular diagnostic tests in these disorders

What is Hemolytic Anemia?

- Characterized by premature destruction of red blood cells (RBC's) within the circulatory system
 - » RBC'S normally survive 60-120 days
 - » Bone marrow has the capacity to increase the production of RBCs 6-8 times than normal
- Anemia develops when the bone marrow cannot adequately compensate for the shortened life span of the red blood cells in the circulation

Causes of Hereditary Hemolytic Anemia (HHA)

» RBC membrane defects

- Hereditary spherocytosis
- Hereditary elliptocytosis/Hereditary pyropoikilocytosis
- Hereditary stomatocytosis
- » Red cell enzyme deficiencies
 - G6PD deficiency
 - Pyruvate kinase deficiency
- » Hemoglobin synthesis abnormality
 - Thalassemias

AR PLABORATORIES

Hemoglobin S, C and E disorders

Red Cell Membrane Cytoskeleton

PMID: 28698843 Slide courtesy Dr Coumarane, ARUP

Hereditary Spherocytosis (HS)

- Common inherited hemolytic anemia (1/1000 -1/3000)
- All ethnic groups; common in Northern Europeans
- AD (75%) and AR (25%)

• The disease is diagnosed in only one third of affected infants during the first year of life

HS: Clinical Presentation

- Highly variable depending on the underlying defect
- 60%- intermediate-severity phenotype
 - » Moderate hemolysis (Hb 8-11 g/dL)
 - » Reticulocyte count > 8%
 - » Normal hemoglobin at birth that may sharply and transiently decline in the first
 3 weeks of life
- 20% -mildly affected/asymptomatic
 - » May not be identified until there is a hemolytic crisis in childhood
 - » Often triggered by viral infection
 - » May be diagnosed due to aplastic crisis with parvovirus B19
- 20% -have severe disease
 - » Usually, AR inheritance due to abnormality of $\alpha\mbox{-spectrin}$

Hereditary elliptocytosis (HE)/ Hereditary pyropoikilocytosis(HPP)

HE/HPP

- HE /HPP- heterogenous clinical presentations
- HE- mostly asymptomatic, but HPP is a severe form of HE that presents with hemolytic anemia and jaundice during the infantile period
- Erythrocyte morphology in HPP resembles that of blood smears in thermal burns with poikilocytes, red blood cell fragments, microspherocytes, and elliptocyte
- HE AD while HPP is an AR disorder

Hereditary Elliptocytosis

https://imagebank.hematology.org/image/61156/hereditary-elliptocytosis

Hereditary Pyropoikilocytosis

HE/HPP Pathophysiology

- Principal defect is mechanical weakness or fragility of the erythrocyte membrane skeleton
- Due to defects in various membrane proteins, including α and β spectrin, protein 4.1, and glycophorin C
- Spectrin integrity is dependent on the self-association of heterodimers of α and β -spectrin into mature spectrin molecules that are critical for membrane stability and erythrocyte shape and function

Hereditary Stomatocytosis

- Stomatocytosis is associated with abnormalities in red cell cation permeability
- A mouthlike or slitlike pattern replaces the normal central zone of pallor » Only seen in a subset
- Changes in red cell volume, which may be either increase (overhydrated) or decreased (xerocytosis), or, in some cases, near normal

• The pathobiology of the stomatocytic shape is poorly understood

Dehydrated Hereditary Stomatocytosis (DHST)

- Also known as hereditary xerocytosis most common inherited red cell cation permeability disorders
- Characterized by a mild increase in potassium permeability that is sufficient to lead to the gradual loss of red cell K⁺ and water, and to red cell dehydration, stiffness, and hemolysis
- High MCHC, and **resistant** osmotic fragility are characteristics
- Hemoglobin and hematocrit values are often normal (compensated hemolysis) and patient blood smears are surprisingly normal, featuring mostly a few target
- Unexplained iron overload

<u>Albuisson J, et al.</u> Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. <u>Nat Commun.</u> 2013;4:1884.

Hereditary Stomatocytosis: Genetic Etiology

- Most reported DHS cases are caused by gain-of-function mutations in the gene *PIEZO1* (16q24.3) which encodes part of a mechanosensitive ion channel
- Rarely *KCNN4* gene that encodes a Gardos channel

Diagnosis of HS, HE/HPP and Stomatocytosis

- Peripheral blood smear- elliptocytes, spherocytes, stomatocytes and fragmented cells (in HPP) are seen
- Osmotic fragility
 - » A laboratory test used in the diagnosis of HS, is sensitive but not specific. The test measures the *in vitro* lysis of RBCs suspended in solutions of decreasing osmolarity
 - » Spherocytes are characterized by membrane loss and less redundancy
 » Not very specific for any of these disorders

Osmotic Fragility Test

Osmotic Fragility Graph

% NaCl

Diagnosis Continued!

- Flow cytometry
 - » Measures the fluorescent intensity of intact red blood cells labelled with EMA (eosin-5-maleimide)
 - » EMA binds specifically with band 3 protein
 - » EMA binding is affected by all sorts of membrane protein abnormalities, not just band 3 deficiency
 - » Greater than 95% sensitive and specific for HS

Ektacytometry

 Briefly, RBC are subjected to a defined value of shear stress and an osmotic gradient, and the laser diffraction pattern generated by the RBC suspension is recorded

Osmolality (mOsm/kg)

Bryce Canyon

Enzyme deficiency

Enzymopathies

Table 1. Clinical phenotypes and associated genes in inherited hemolytic anemia.

Clinical phenotypes	Genes	Location	Inheritance
RBC enzymopathies			
G6PD deficiency	G6PD	Xq28	XR
Pyruvate kinase deficiency	PKLR	1q22	AR
Enolase deficiency	ENO1	1p36.23	AD
Adenylate kinase deficiency	AKT	9q34.11	AR
Glucose phosphate isomerase deficiency	GPI	19q13.11	AR
Pyrimidine 5' nucleotidase (UMPH1) deficiency	NT5C3A	7p14.3	AR
Gamma-glutamylcysteine synthetase deficiency	GCLC	6p12.1	AR
Glutathione peroxidase deficiency	GPX1	3p21.31	AR
Glutathione reductase deficiency	GSR	8p12	AR
Glutathione synthetase deficiency	<i>CSS</i>	20q11.22	AR
Hexokinase deficiency	НК1	10q22.1	AR
Bisphophoglycerate mutase deficiency	BPGM	7q33	AR
Phosphoglycerate kinase 1 deficiency	PGK1	Xq21.1	XR
Triosephosphate isomerase deficiency	TPI1	12p13.31	AR

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; XR, X-linked recessive.

PMID: 28698843

Glucose 6 phosphate Dehydrogenase Deficiency

- The most common human enzyme defect! >400-600 million people
- X linked
- Most prevalent in populations with endemic malaria
- Enzyme deficiency leading to ↓ NADPH-glutathione (GSH) depletion
 * ↑ Oxidative stress, ↑ Hemolysis

• Diagnosis

- » \downarrow G6PD (false negative with \uparrow reticulocytes)
- » Heinz bodies (denatured Hb) and Bite cells in PB smear

Heinz (denatured Hb) and bite cells

Pyruvate Kinase Deficiency

- Common cause of congenital non-spherocytic chronic hemolytic anemia
- Autosomal recessive disorder
- Found in north Europeans; high frequency in Pennsylvania Amish population
- Diagnosis
 - » Direct measurement of enzyme activity in RBCs- \downarrow PK activity
- Severe disease may require frequent red cell transfusion throughout infancy and into adulthood.
- Splenectomy ameliorates the severity of hemolysis

PK Deficiency

- Treatment supportive
- Data from a phase II study in PK deficiency patients treated with AG-348 showed that approximately half of treated subjects experienced a rise in hemoglobin (Hb)

RF, Rose C, Layton M. Safety and efficacy of Mitapivat in pyruvate kinase deficiency. *N Engl J Med.* 2019; 381(10):933-944tained hemoglobin increase in adults

Arches National Park, Utah

Clinical Features of HHA

- Onset may be acute or chronic
- Symptoms and signs of anemia-pallor, fatigue
- <u>RBC break down-increased bilirubin (hyperbilirubinemia)</u> » Jaundice and gall stones
 - » Neonatal toxicity
- Crises (chronic hemolytic disease)

 Hemolytic (increased splenic activity)
 Aplastic (B19 Parvo-virus)
 Megaloblastic

Hyperbilirubinemia and Its Consequences

- Bilirubin needs to be conjugated and excreted in bile
- Conjugation in the liver happens by the enzyme uridine diphosphogluconurate (UDP) glucuronyltransferase
- Gene involved in *UGT1A1*
 - » Gilbert (usually due to additional TA repeats) and Crigler-Najjar syndrome (due to AR mutations)
- Solute carrier organic anion transporter family members 1B1 and 1B3 (*SLCO1B1* and *SLCO1B3*)
 - » Rotor syndrome

AR PLABORATORIES

Hyperbilirubinemia: Neonates

- Increased unconjugated bilirubin can pass blood brain barrier- neurotoxicity in neonates
- Pathophysiology
 - » Increased bilirubin production (twice/kg body weight as adults)
 - » Delayed UGT1A1 induction

• Risk factors:

Genetic factors	Maternal/Perinatal/Other neonatal factors
G6PD deficiency	Diabetes, Rh incompatibility, Age, Race
RBC membrane defects (HS, HE)	Mode of delivery, birth trauma, delayed cord clamping
Hemoglobinopathies	Congenital infections
	Nutritional deficiencies
Gilbert's syndrome (UGT1A1 deficiency)	
Crigler-Najjar syndrome (UGT1A1 deficiency)	

Park City, Utah

Why Do We Need Molecular Testing? Utility of this testing during neonatal period

- HS of AR variant without family history
- Screening tests not that useful during neonatal period
- Spherocytes on the blood smear are not specific for HS and peripheral smear findings are not informative in all cases
- Some patients may require transfusion, making the biochemical testing unreliable and uninformative
- G6PD/PK deficiency of mild-to-moderate severity can be missed in neonates when reticulocyte counts are high
- To diagnose complex interactions (HHA +Bilibrubin metabolism disorders)

Molecular Approach

- Focused targeted Next-generation sequencing (NGS) provides a costeffective and relatively rapid approach
- Evaluated since 2012 with gene counts on these panels varying from 28-70 Page 2 of 4 Bianchi et al. NGS in congenital diagnosis of hemolytic anemias

 Table 1 Recent studies performed by targeted NGS panels in patients with hemolytic anemias. Number of the genes included in the panel, patients studied, overall sensitivity and, when available, sensitivity of panels in patient with undefined hemolytic anemia are reported

 Output
 Output

• Diagnostic yield - 30-75%

Studies	No. of genes analysed	o. of genes analysed No. of cases		no previous diagnosis	
Chonat et al., 2019 (21)	32 (membrane defects)	11 (HS)	100%	Not studied	
van Vuren <i>et al.</i> , 2019 (16)	7 (membrane defects)	95 (HS)	89%	Not studied	
Xue et al., 2019 (1)	10 (membrane defects)	10 (HS)	90%	Not studied	
Peng et al., 2018 (20)	n.a.	51 (HS)	72%	Not studied	
Li et al., 2018 (17)	217	46 (CHA)	60.9%	n.a.	
Russo et al., 2018 (14)	34 and 71	74 (CHA)	64.9%	45.8%	
Agarwal <i>et al.</i> , 2016 (18)	28	17 (CHA)	70%	70%	
Roy et al., 2016 (13)	33	57 (CHA)	38.6%	11%	

CHA, chronic hemolytic anemias; HS, hereditary spherocytosis; n.a., not available

Targeted NGS Panels: Importance

- Russo et al. 74 patients with HHA with an emphasis on congenital dyserythropoietic anemia (CDA)
- One of their interesting findings was CDA misdiagnosed as enzyme deficiency particularly PK deficiency
 - » Out of 22 patients initially diagnosed as CDA, 10/22 were later diagnosed with enzyme deficiencies

RESEARCH ARTICLE | 🔂 Free Access

Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias

Roberta Russo 🔀, Immacolata Andolfo, Francesco Manna, Antonella Gambale, Roberta Marra, Barbara Eleni Rosato, Paola Caforio, Valeria Pinto, Piero Pignataro, Kottayam Radhakrishnan ... See all authors 🗸

described so far. We obtained an overall diagnostic yield of 64.9%. Despite 54.2% of cases showed conclusive diagnosis fitting well to the clinical suspicion, the multi-gene analysis modified the original clinical diagnosis in 45.8% of patients (nonmatched phenotype-genotype). Of note, 81.8% of nonmatched patients were clinically suspected to suffer from CDA. Particularly, 45.5% of the probands originally classified as CDA exhibited a conclusive diagnosis of chronic anemia due to enzymatic defects, mainly due to mutations in *PKLR* gene. Interestingly, we also identified a syn-

Genes Involved in Hereditary Membrane Disorders

Condition				Condition		
Hereditary spherocytosis	ry spherocytosis ANK1, SLC4A1, SPTB, EPB42, SPTA1	AD/AR		Glucose 6 phosphate dehydrogenase deficiency	G6PD	XR
				Pyruvate kinase deficiency	PKLR,	AR
Hereditary	SPTA1, SPTB,	AD/AR		Glucose phosphate	GP1	AR
tosis				isomerase deficiency		
Hereditary stomatocytosi	ry stomatocytosis <i>PIEZO1, KCNN4</i>	AD		Glutathione reductase deficiency	GSR	AR
				Phosphoglycerate kinase	PGK1	XL
				deficiency		
				Triosephosphate	TPI1	AR
Liver Related				isomerase def		
SLCO1B1 Hyperbilirubinemia, rotor type AR SLCO1B3 Hyperbilirubinemia, rotor type AR		AR (digenic) AR (digenic)	Adenylate kinase 1	AK1	AR	
Gilbert syndrome	Gilbert syndrome Crigler-Najjar syndrome, types I and II Hyperbilirubinemia, transient familial neonatal		AR	Pyrimidine 5' nucleotidase	NT5C3	AR
Hyperbilirubinemi				Hexokinase 1	НК1	ΔR
UGT1A6				LIIXI		

Our Recent Findings:

https://doi.org/10.1182/blood-2018-99-112589

- 268 patients evaluated using targeted NGS panel with 28 genes
- Age newborn to 62 years
- Mild lifelong anemia to severe hemolytic anemia with extreme hyperbilirubinemia

101. RED CELLS AND ERYTHROPOIESIS, STRUCTURE AND FUNCTION, METABOLISM, AND SURVIVAL, EXCLUDING IRON: POSTER II | NOVEMBER 29, 2018

Use of Next Generation Sequencing Panel for Routine Diagnosis of Hereditary Hemolytic Anemias

Archana M Agarwal, MD, Jay L Patel, MD, Adam Clayton, PhD, Noel Scott Reading, PhD

Continued!

- We identified pathogenic and likely pathogenic variants in 64/268 (24%) patients that were clearly responsible for the disease phenotype (eg, moderate to severe HA)
- Complex interactions (12/64)
- 11% (29/268)- *UGT1A1* gene

Received: 15 January 2019	Revised: 27 February 2019	Accepted: 1 March 2019			
DOI: 10.1111/ijlh.13014					
SUPPLEMENT A	RTICLE		WILEY	() ISLH	International Journal of Laboratory Hematology

Molecular diagnostic update in hereditary hemolytic anemia and neonatal hyperbilirubinemia

Anton Rets^{1,2} | Adam L. Clayton² | Robert D. Christensen³ | Archana M. Agarwal^{1,2}

Recently, our group evaluated 268 patients with HA and identified pathogenic and likely pathogenic variants in 64/268 (24%) patients that were clearly responsible for the disease phenotype (eg, moderate to severe HA). Interestingly, half of the variants were novel mutations.⁴¹ Complex interactions between variants in the *SPTA1* gene and the common alpha-LELY and alpha-LEPRA alleles were predicted to be associated with HPP and AR HS in 12/64 patients. Overall, 29/268 (11%) of patients were homozygous for a promoter polymorphism in the UGT1A1 gene A(TA)7TAA (UGT1A1*28), which leads to reduced expression of the UGT1A1 gene and Gilbert syndrome. Moreover, 4/29 UGT1A1 polymorphism cases were associated with hyperbilirubinemia along with pathogenic mutations in spectrin genes.

Case Study

Novel mutation in SPTA 1 gene associated with severe hemolytic anemia

James Polega,¹ Jennifer Stumph,² Archana Agarwal,³ Chi L Braunreiter⁴

- Caucasian ethnicity, lacking regular well child visits
- Presented at 3.5 yrs -with mild anemia and splenomegaly
- The peripheral blood smear—anemia with many spherocytes
- Past history-significant for hyperbilirubinemia in the newborn period
- Parents declined childhood immunizations and transfusions; the patient's anemia and splenomegaly worsened
- Genetic testing was permitted

» after dilated cardiomyopathy developed

Case Study: Continued

• Two variants - *SPTA1* gene identified

- A novel mutation (c.7134+2T>G, p.?), predicted to cause abnormal splicing of SPTA1 gene, was identified in addition to heterozygous low expression variants α^{LEPRA}
- α^{LEPRA} in *trans* to a pathogenic *SPTA1* variant- associated with autosomal recessive HS
- A third heterozygous variant in the *SPTB* gene (c.4564-4G>A)
 - » *SPTB* variant one child with HS and reduced *SPTB* mRNA level.
 - » Previous computational study predicted this *SPTB* variant would result in abnormal splicing of *SPTB* gene; however its effect on splicing remains to be determined experimental

Case Study: Continued

- Given the genetic testing results, the parents consented to immunizations, and splenectomy
- Four months after splenectomy, the patient's hemoglobin improved to 15.2g/dL and echocardiogram changes were resolving

Summary

- Our results demonstrate that many patients with hemolytic anemia harbor complex combinations of known and novel mutations in RBC cytoskeleton/enzyme genes
- Their clinical significance can be further augmented by polymorphisms of UGT1A1 gene contributing to severe neonatal hyperbilirubinemia and its consequences in pediatric population
- Molecular diagnosis can be helpful to understand the pathophysiology

Lake Powell, Utah

ARUP is a nonprofit enterprise of the University of Utah and its Department of Pathology.

© 2021 ARUP LABORATORIES