#### Update in Red Blood Cell Membrane Disorders

Archana M Agarwal, M.D.

Associate Professor, Department of Pathology, Medical Director Special Hematology Laboratory University of Utah Health/ARUP Laboratories, Salt Lake City, UT

# **Program Objectives**

- List different types of RBC membrane defects
- To be able to suggest appropriate tests and to correlate results of laboratory testing with specific RBC membrane defects
- Describe the principles of different technologies used for the diagnosis of RBC membrane defects
- Discuss the utility of NGS in diagnosis of these disorders

#### **Definition of Anemia**

- From Greek meaning "without blood"
- Condition where capacity of blood to transport oxygen to tissues is reduced
  - Decreased hemoglobin, RBC count, and hematocrit
- Anemia is not a disease but a *manifestation* of disease
- Treatment depends on discovering underlying cause

# What is Hemolytic Anemia?

Characterized by premature destruction of red blood cells

- Anemia develops when the bone marrow cannot adequately compensate for the shortened life span of the red blood cells in the circulation
- Laboratory confirmation of hemolysis
  - Increased reticulocyte count
  - Signs of RBC destruction e.g. increased lactate dehydrogenase, low haptoglobin, increased unconjugated bilirubin

#### **Classification of Hemolytic Anemia**

- Intrinsic
  - Red blood cell membrane defects
  - Red blood cell enzyme defects
  - Hemoglobinopathies

- Extrinsic
  - Immune
    - Autoimmune
    - Alloimmune
  - Drugs and toxins
  - Physical damage to red blood cells like toxins, thermal injury and mechanical disruption

Practical Diagnosis of Hematologic Disorders (Kjeldsberg, Practical Diagnosis of Hematologic Disorders)

#### **Classification of Hemolytic Anemia**

#### Hereditary

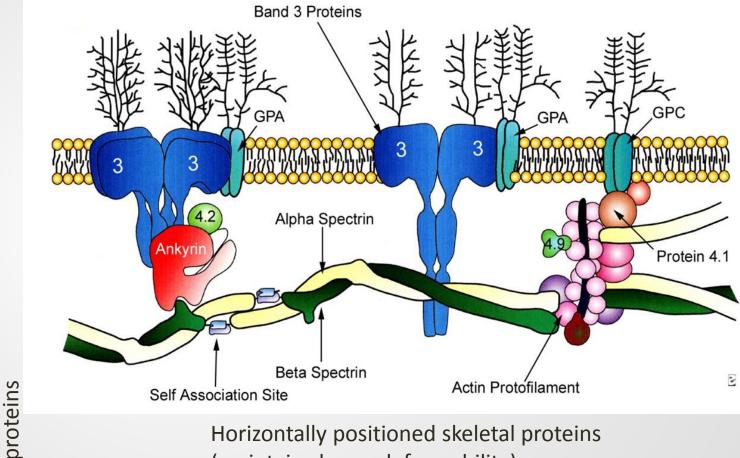
- Membrane defects
- Red cell enzyme def
- Hemoglobin synthesis abnormality
  - Thalassemia
  - Sickle cell disease

#### Acquired

- Immune
  - Infections
  - Alloantibodies
  - Autoantibodies
- Non-immune
  - Mechanical damage
  - Physiochemical damage

#### Let's Elaborate on the RBC Membrane Defect

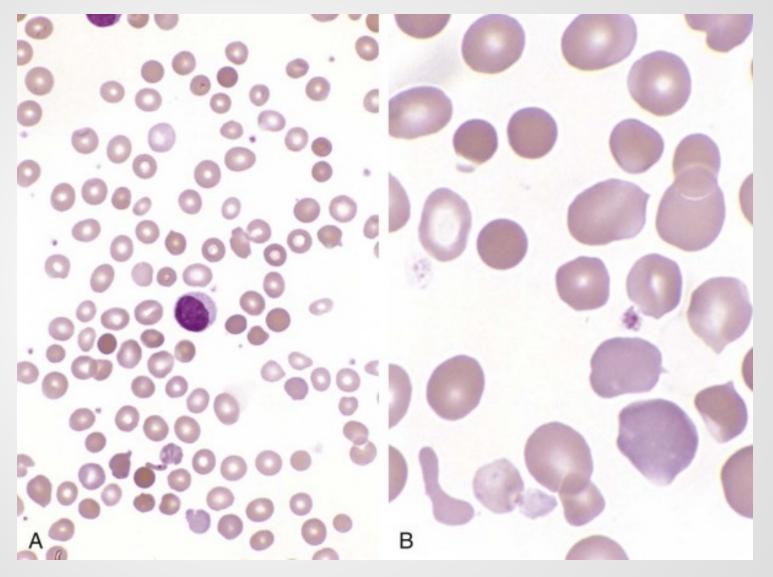
- RBC Membrane Defect
  - Defects intrinsic to RBC membrane
    - Hereditary spherocytosis
    - Hereditary elliptocytosis/Hereditary Pyropoikilocytosis


- RBC volume defects
  - Overhydrated and dehydrated stomatocytosis

# Hereditary Spherocytosis (HS)

- Most common hemolytic anemia due to red cell membrane defect
- Alteration of one of the five genes which encode for proteins involved in the vertical association
- Occurs in all racial groups and is particularly common in individuals of northern European ancestry, affecting approximately one person in 3000

#### **RBC** membrane structure


Vertically positioned transmembrane



(maintain shape, deformability)

http://www6.ufrgs.br/favet/imunovet/molecular\_immunology/blood.html

#### Peripheral Smear of Hereditary Spherocytosis

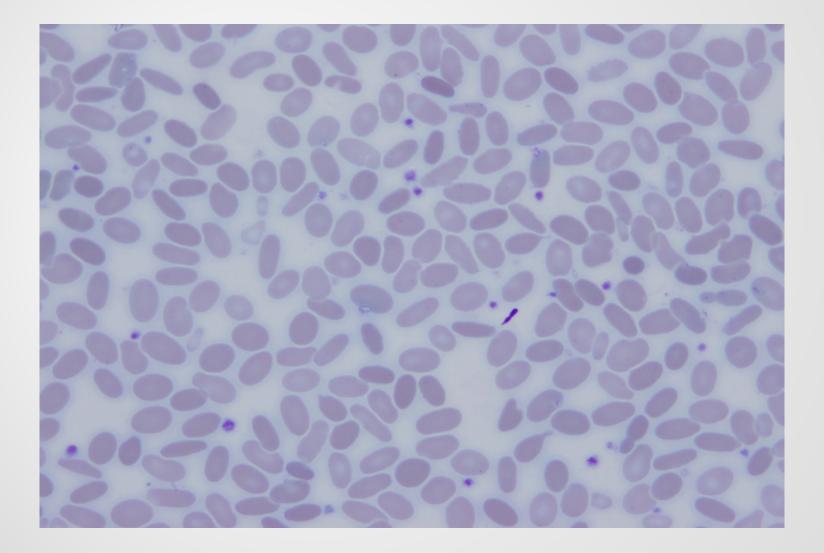


#### Hereditary Spherocytosis, Continued

- Dominant inheritance (75%)
- Recessive inheritance (25%) and de novo have also been described
- The clinical manifestations of HS vary widely
- Mild, moderate, moderately severe

#### Hereditary Spherocytosis, Continued

- Spectrin deficiency is often present in HS
- Ankyrin mutation is the most common cause of HS in Northern European populations accounting for approximately 50–60% of cases but it is found in only 5–10% of HS cases in Japan
- Even in those conditions where primary mutation is in nonspectrin protein as alteration in these proteins adversely affect the assembly of spectrin onto the membrane protein
- The clinical severity is correlated well with the spectrin deficiency


#### Hereditary Elliptocytosis/Hereditary Pyropoikilocytosis

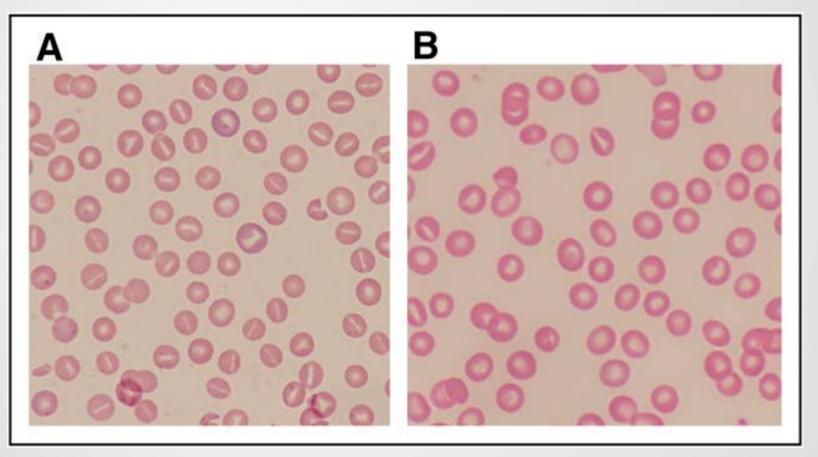
- Not uncommon, clinically and genetically heterogeneous disorder
  - Elliptically-shaped red cells on peripheral blood smear to marked anisopoikilocytosis in HPP
- HE has a worldwide distribution but is more common in malaria endemic regions with prevalence approaching 2% in West Africa
- Inheritance of HE is autosomal dominant and AR in HPP

#### Hereditary Elliptocytosis/Hereditary Pyropoikilocytosis

- HE is a relatively common disorder (1:1000-1:3000)- mild clinical phenotype
- HPP- usually presents with moderate to marked hemolytic anemia and significant anisopoikilocytosis
- Neonates are commonly affected

### Hereditary Elliptocytosis (HE)



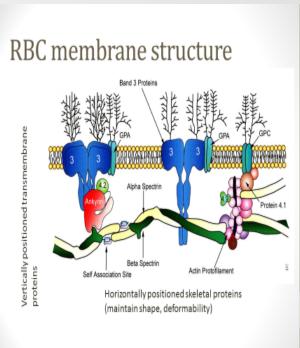

#### Hereditary Pyropoikilocytosis (HPP)



# Hereditary Stomatocytosis

- Overhydrated and dehydrated stomatocytosis/xerocytosis
- <u>Dehydrated stomatocytosis/xerocytosis</u>
  - High MCHC, and resistant osmotic fragility
  - Hemoglobin and hematocrit are often normal
  - Iron overload
  - Splenectomy contraindicated due to an increased risk of thromboembolic complications
  - Most of them are due to mutations in *PIEZO1*
  - PIEZO1 proteins are mechanically activated cation channels
- Overhydrated is very rare and due to mutation in Rhassociated glycoproteins.

#### Hereditary Stomatocytosis




BLOOD, 21 DECEMBER 2017 x VOLUME 130, NUMBER 25

# **Genetic Etiology**

Table 1. Molecular characteristics of RBC membrane and volume disorders associated with HAA.AR, autosomal recessive; AD, autosomal dominant

| RBC Disorders                                              | Gene<br>Symbol | Inheritance<br>Pattern | Percentage of Mutations |  |
|------------------------------------------------------------|----------------|------------------------|-------------------------|--|
| Hereditary spherocytosis                                   | ANK1           | AD/AR (rarely)         | 40-65                   |  |
|                                                            | SLC4A1         | AD                     | 20-35                   |  |
|                                                            | SPTB           | AD                     | 15-30                   |  |
|                                                            | SPTA1          | AR                     | 5                       |  |
|                                                            | EP4B2          | AR                     | 5                       |  |
| Hereditary elliptocytosis/Hereditary<br>pyropoikilocytosis | SPTA1          | AD/AR                  | 65                      |  |
|                                                            | SPTB           | AD/AR                  | 30                      |  |
|                                                            | EPB41          | AD/AR                  | 5                       |  |
| Dehydrated stomatocytosis                                  | PIEZO1         | AD                     | Majority                |  |
|                                                            | KCNN4          | AD                     | Few cases               |  |
| Overhydrated stomatocytosis                                | RHAG           | AD                     | Very few cases          |  |



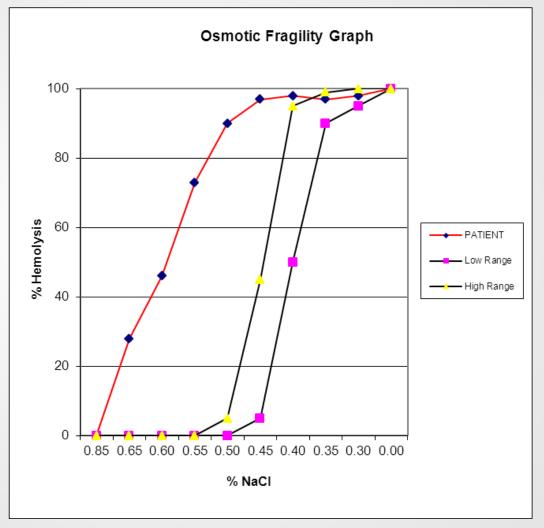
http://www6.ufrgs.br/favet/imunovet/molecular\_immunology/blood.html

# Diagnosis of HS, HE and HPP

- Family history
- <u>Peripheral blood smear-</u>Spherocytes, elliptocytes and fragmented cells (in HPP), ovalocytes are seen
- Complete blood count (CBC), retic count and RBC indices
- <u>HS MCHC  $\geq$  36.</u> normal to slightly low MCV
- <u>HE/HPP-</u>Profound microcytosis (MCV 30 to 50 fL), high MCHC, and/or abundant microspherocytes with RBC fragmentation are consistent with HPP or severe (hemolytic) HE

#### **Diagnosis of HS:Confirmatory test**

- Flow cytometric analysis of eosin-5'-maleimide-labeled intact RBC
  - Preferred test
- Osmotic fragility
  - a laboratory test used in the diagnosis of HS, but not specific
  - The test measures the *in vitro* lysis of RBCs suspended in solutions of decreasing osmolarity
  - 60-80% sensitive


# **Diagnosis Continued: Flow**

- EMA binds specifically with band 3 protein
- Reduction in fluorescence
- EMA binding is affected by all sorts of membrane protein abnormalities, not just band 3 deficiency

#### Advantages

- High sensitivity and specificity >95%
- Rapid turnaround time
- Small amount of blood

# **Osmotic Fragility Test**



#### Other tests for HS

- Osmotic gradient ektacytometry generates a profile of osmotically induced RBC shape change (deformability) across an osmotic gradient
- Glycerol lysis GLT and the acidified GLT (AGLT) are similar to osmotic fragility that add glycerol (in the GLT) or glycerol plus a <u>sodium phosphate</u> (to lower the pH to 6.85, in the AGLT) to the hypotonic buffered salt solutions in which the patient's RBCs are incubated
- Cryohemolysis RBCs are suspended in a hypertonic solution, briefly heated to 37°C, then cooled to 4°C for 10 minutes

# Confirmatory tests for HE/HPP and stomatocytosis

- HE/HPP are morphological diagnosis
- EMA binding could be markedly decreased
- Osmotic gradient ektacytometry might be helpful
- Molecular testing

Why Do We Need Molecular Testing? Utility of this testing during neonatal period

- HS of AR variant without family history
- Screening tests not that useful during neonatal period
- Spherocytes on the blood smear are not specific for HS and peripheral smear findings are not informative in all cases
- Some patients may require transfusion, making the biochemical testing unreliable and uninformative
- To diagnose complex interactions (HHA +Bilibrubin metabolism disorders)

# **Targeted NGS Panels**

- Evaluated since 2012 with gene counts on these panels varying from 28-70
- We also evaluated 268 patients using our 28 gene NGS panel (ARUP#2012052)
  - The age of the patients ranged from newborn to 62 years
  - These patients presented with symptoms ranging from mild lifelong anemia to severe hemolytic anemia with extreme hyperbilirubinemia

# **Continued!**

 We identified pathogenic and likely pathogenic variants in 64/268 (24%) patients that were clearly responsible for the disease phenotype (eg, moderate to severe HA)

| Inheritance Pattern | Homo/Compound<br>heterozygous | Heterozygous | Hemizygous |
|---------------------|-------------------------------|--------------|------------|
| SPTB (AD)           |                               | 14           |            |
| SPTA1(AR)           | 12                            |              |            |
| ANK1 (AD)           |                               | 9            |            |
| SLC4A1 (AD)         |                               | 5            |            |
| PIEZO1 (AD)         |                               | 6            |            |
| PKLR (AR)           | 10                            |              |            |
| G6PD(X-Linked)      |                               |              | 7          |
| GP1 (AR)            | 1                             |              |            |
| UGT1A1 (AR)         | 29                            |              |            |

# Case Study #1

- Caucasian ethnicity and lacking regular well child visits, initially presented at 3.5 years of age with mild anemia associated with splenomegaly
- PS marked erythrocyte poikilocytosis
- Hyperbilirubinemia in the newborn period
- No family history
- Genetic testing was ordered after dilated cardiomyopathy developed

# Case Study; Continued

- Three variants in SPTA1 gene were identified by NGS including a novel mutation (c.7134+2T>G, p.?)
  - Consistent with HPP
- Four months after splenectomy, the patient's hemoglobin improved to 15.2 g/dL and echocardiogram changes are resolving

# Case example #2

- 2year old female with congenital hemolytic anemia
- At baseline, HB <6gm/Dl
- Retic anywhere from 10-20
- Transfusion dependent with significant hepatosplenomegaly and iron overload

# Further testing's

- R/O RBC membrane defect: osmotic fragility normal. MCHC's are normal. Peripheral smear shows normal RBC morphology
- R/O RBC enzyme defect: a full RBC enzyme panel was normal
- R/O unstable hemoglobinopathy: No Heinz bodies. Hb electrophoresis did not demonstrate evidence of unstable Hb's.
- R/O thalassemia: Alpha thal mutation analysis negative. Hb electrophoresis consistent only with sickle cell trait. Beta globin gene sequencing identified only sickle cell trait, otherwise negative
- Extensive evaluation had also ruled out occult bleeding (GI as well as pulmonary)

### We reported these results

- EMA-Borderline
- NGS Panel picked up mutations:
  - Two mutations in ANK1

# Follow up...

- She had a splenectomy performed a few months ago and since then her baseline hemoglobin is 10-11
- She has been doing ok for last 6 months

# Summary

- Relatively common disorder with varied etiology
- Can cause significant morbidity and mortality if not diagnosed
- Can also cause significant neonatal hyperbilirubinemia
- Diagnosis requires
  - Family history, CBC and peripheral smear
  - EMA and osmotic fragility combination
- NGS can be used for the diagnosis of unexplained causes of hemolytic anemia

