BEST PRACTICES IN THE APPLICATION OF IMMUNOHISTOCHEMISTRY TO DIAGNOSTIC UROLOGIC PATHOLOGY:

LESSONS FROM USES & ABUSES

Mahul B. Amin
Professor and Chairman,
Gerwin Endowed Professor for Cancer Research
Department of Pathology & Lab Medicine
Professor, Department of Urology
University of Tennessee Health Science Center,
Memphis, TN
mamin5@uthsc.edu

The slides and syllabus are provided here exclusively for educational purposes and cannot be reproduced or used without the permission from Dr Mahul B. Amin
mamin5@uthsc.edu

Toward Best Practice IHC use in routine practice

• When IHC stains exceed H&E stain
 - Complex case or
 - Lack of best practice approach
Toward Best Practice IHC use in routine practice

Surgical Pathology
- Foundation is the integration of clinical history, gross examination & microscopy
- Cornerstone is still the H&E with appropriate and judicious IHC support – IHC guides; does not dictate the diagnosis
- Practice made considerably more objective by ancillary techniques e.g. IHC

Toward Best Practice IHC use in routine practice
- Serious misdiagnoses are made by inappropriate use of IHC or incomplete knowledge of antibody/ies
 - More is not necessarily better
- IHC adjunctive method, histology key
 - If you have no idea, don’t mark it
- Start with a question based on morphology
- Apply a judiciously constructed panel based on the differential diagnosis generated by the case

Toward Best Practice IHC use in routine practice
- Panel should include expected positive and expected negatives
- There are no absolutely specific or sensitive antibodies
 - Anomalous stuff happens
 - Sensitivity and specificity is not inherent to the antibody, but to the antibody applied in a given setting
- Evaluate the stain paying attention to pattern (nuclear, cytoplasmic, membranous, etc.)
- ALWAYS evaluate the controls (positive and negative)
- Diagnose the case after review of IHC only in the context of the morphology and the clinical situation
GOWN’S LAWS OF IMMUNOCYTOCHEMISTRY

- There is no perfect marker of any tumor
- There is no perfect fixative for all antibodies
- If everything in the tissue section appears positive, nothing is actually positive
- All that turns brown (or black, or red, etc.) on the slide is not positive
- Under inappropriate conditions, any antibody can be made to appear positive on any tissue
- In any given immunocytochemical run involving multiple slides, tissue will fall off the slide corresponding to the most critical antibody
- The diagnostic power of any immunocytochemical preparation is no greater than the knowledge and wisdom of the pathologist interpreting it

Best “Special Studies” in Surgical Pathology

- Good thin section and well stained H&E slides
- Additional sections, recuts and levels
- A phone call to the clinician (or reviewing the electronic medical records)
- Another trust-worthy pair of eyes (colleague)
- Placing the diagnostic dilemma in context of the clinical situation and management considerations
- Having a best practice approach immunohistochemistry

SELECT BEST PRACTICE IHC APPLICATIONS IN UROLOGIC PATHOLOGY

- **Bladder:**
 - Proving origin/differentiation in unusual primary or at a metastatic site
 - IHC in flat intraepithelial lesions
- **Prostate:**
 - Proving origin at a metastatic site
 - Issues related to triple cocktail use in prostate biopsies
- **Kidney:**
 - Proving renal origin at a metastatic site
- **Testis:**
 - Screening panels for tumors involving testis – primary or metastatic sites
 - Characterizing the various germ cell components
PROVING UROTHELIAL DIFFERENTIATION

Carcinoma of unknown origin or patient with history of bladder/renal cancer:
- Lymph node
- Lung
- Liver
- Bone
- Prostate

“Unusual carcinoma” in the bladder

Metastatic tumors to the bladder:
- Melanoma
- Prostate
- Colorectal
- Cervix
- Ovary
- Renal

Primary urothelial carcinoma:
- UCa with small tubules
- Plasmacytoid
- Micropapillary
- Etc

Challenges:
- Poorly differentiated carcinoma
- “Characterless”: solid, nested & trabecular architecture

Hallmarks:
- Frequent squamous and / or glandular diff.
- Cells with nuclear grooves
- Nuclear atypia obvious +/- anaplasia

Approach
- Clinical history (invasive, usually high stage carcinoma)
- Compare with primary
- Judicious IHC: ? Best markers
URINARY BLADDER - IHC

- **Diagnosis of metastatic urothelial cancer**
 - CK7 (+) (>90%)
 - CK20 (+) (40-70%)
 - p63 (+) (60-90%)
 - High molecular weight cytokeratin 34BE12 (+) (60-90%)
 - GATA3 (60-70%)
 - Uroplakin II (+) (50-80%)
 - S100P (70-80%)
 - Uroplakin III (+) (20-50%)
 - Thrombomodulin (+) (60-75%)
 - CEA, Leu-M1 (±) (minimal value)

- **Histogenesis-associated markers**
 - Plasmacytoid U Ca
Plasmacytoid U.Ca - CK20

S100P

GATA3

Nuclear staining

lower sensitivity but higher specificity than S100P for urothelium
GATA3 – Wide Range of Expression

- Positive in
 - Breast, trophoblastic tumors, paragangliomas, salivary gland neoplasms, squamous carcinomas, basal cell carcinomas, yolk sac tumors, pancreatic ductal adenocarcinomas

Uroplakins – II and III

- Protein constituents of the urothelial plaques in vesicles of urothelium
- Vital role in expansion and contraction through vesicle cycling
- Subunits uroplakins Ia, Ib, II, and IIIa
- Unique and characteristic feature of urothelium
- Previous data for UP3, new data for UP2

Uroplakin 2 versus Uroplakin 3

- Among UC metastases, UP2 showed greater intensity and proportion, (both p<0.001), with higher sensitivity (73% vs 37%, respectively, p=0.001).

Smith et al. Histopathology. In press
Uroplakin 2 versus Uroplakin 3

Villoglandular variant simulates colorectal carcinoma

Smith et al. Histopathology. In press
IMMUNOHISTOCHEMISTRY IN FLAT LESIONS OF THE BLADDER

Panel: p53, CD44 (standard isoform), CK20

Indications:
- Marked denudation – residual basal cells vs “clinging” CIS
- Distinction between reactive atypia and CIS (large cell non-pleomorphic or “small” cell)
- Pathologist favors CIS but has reservations making diagnosis
- CIS with unusual morphology – Pagetoid, undermining, etc.

Caveats:
- Not applicable for dysplasia vs CIS
- Greater caution while evaluating post-treatment biopsies
p53: 55-80% of CIS

CD44: 96-100% of CIS

CK20:
CK20 (+) : 50-100% of CIS

p53

CD44(-)
CD44

UROTHELIAL ASSOCIATED-MARKERS

Prostate vs. Urothelial Carcinoma
- Often in bladder neck specimens
- Therapeutically critical differential

- PSA
- PSAP
- NNX1.3
- Prostein (P501S)
- ERG-TMPRSS2
- PSMA

- CK20
- P63 or MWCK
- GATA3
- Uroplakin 2
- S100p
- Uroplakin 3

CAUTION: Both may coexist!

?Urothelial Carcinoma vs. ?Prostatic Carcinoma
Urothelial Carcinoma vs. Prostatic Carcinoma

UCa

PCa

GATA3

CK5/6

S100P

P501S

PSMA

NKX3.1
ERG IHC

Concurrent PCa & UCa

Virtually any tumor from the body can spread to the bladder on occasion. Problem areas:

Enteric morphology: Colon and appendiceal primary vs. bladder primary

- Morphologically identical
- May have a surface well-differentiated “villous adenoma” surface component
- Helpful features: - Clinical history of high-stage colon cancer
- Absence of intestinal metaplasia
- Immunohistochemistry (CK7, CK20, CDX2) not helpful (β-catenin, nuclear positivity, limited role)
Nephrogenic adenoma
Clear cell adenoCa of bladder
Urothelial Ca with glandular morphology
Prostatic adenoCa

Pax2/8
90% 10-20% 0% 0%

AMACR
100% 75% Frequently positive 70-100%

S100A1 94% 10% 0% 0%

Ki67 % + nuclei
2-5% 40-50% 30-40% 2-25%

PSA 0-2% 0 0 70-100%

Spindle cell lesions
Benign (PMP) vs. Malignant - H&E diagnosis

- PMP / PSFMT
 keratin (+/-), SMA (+), desmin (+/-), p63 (-), Alk-1 (+)

- Sarc. Ca
 keratin (+/-), SMA (-), desmin (-), p63 (+/-), Alk-1 (-), HMCK & CK5/6 (+)

- LMS
 keratin (-/+), SMA (+), desmin (+), Alk1 (-/+), p63 (-)
The slides and syllabus are provided here exclusively for educational purposes and cannot be reproduced or used without the permission from Dr Mahul B. Amin

mamin5@uthsc.edu
• To confirm focus as cancer
• Confirm benignity in ASAP felt to be benign
• Unusual patterns
 • Atrophic
 • Pseudohyperplastic
 • Double – layer
 • PIN-like

Indications for IHC – Needle Biopsy

Atypical small cell proliferations

- To confirm focus as cancer
- Confirm benignity in ASAP felt to be benign
- Unusual patterns
 - Atrophic
 - Pseudohyperplastic
 - Double – layer
 - PIN-like

Atypical large acinar proliferations (intraductal patterns)

Post – treatment setting
IHC in Prostate Needle Bxs.

- **Basal cell cocktail**
 - p63 and 34βE12
- **Triple cocktail “PIN cocktail”**
 - p63/34βE12/AMACR
- **ERG immunohistochemistry**
 - Additional marker, only if triple not conclusive

PSA – to prove prostate origin – NA, Cowper’s glands

Triple cocktail

- ** Expected reactions
 - PCa: p63(-), HMCK(-), AMACR(+)
 - Benign small cancer mimics: p63, HMCK(+), AMACR(-)
 - HGPIN: p63, HMCK(+), AMACR(-/+)
 - Ductal cancer:
 - Invasive component: p63, HMCK(-), AMACR(+)
 - Intraductal component: p63, HMCK(+), AMACR(+)
 - Urothelial cancer: p63, HMCK(+/-), AMACR(+)}
P63, HMWCK and AMACR cocktail
EQUIVOCAL IHC

- Results not entirely complimentary
- Unexpected basal cell layer staining
- Results supportive but all glands in an already small or difficult focus not represented in the IHC
60% of PCa harbor any ETS-rearrangement
50% of PCa – TMPRSS2-ERG
Detection by IHC or FISH
 * High concordance in hormone naïve
 * IHC detection in ~30% in needle setting
Do we need a 4th marker?
 * Helps in about 5% of cases with equivocal triple cocktail
Additional: Marker of prostate histogenesis

ERG Immunohistochemistry
IHC in a pt. with one (+) core

- Confirm bilaterality: clinical staging - almost 50% patients with prostate cancer treated with RT
- Accurate assessment of # of cores involved – Active surveillance
- Quantitation of cancer – Active surveillance (>50% may exclude)
Work-up of Atypical Foci with Definite Cancer in Other Parts

Patient with Gleason score 3+4 or higher grade cancer on at least one part.

Work up other parts with small foci of possible 3+3=6

Generally, not indicated, as additional IHC confirmation will likely not change management

Abberant expression p63 in Prostate cancer
IHC IN KIDNEY SURGICAL PATHOLOGY

- Confirming Renal origin
- *Histologic subtyping of RCC*

Metastatic sites
Primary tumors
Small biopsies and FNAS
CONFIRMING RENAL ORIGIN

Carcinoma of unknown origin or patient with history of RCC:
- Lymph node
- Lung
- Liver
- Bone
- Other

"Unusual carcinoma" in the kidney
- Epithelioid PEComa
- Urothelial Carcinoma
- Metastatic carcinoma to the kidney versus
- Poorly differentiated, high grade RCC (unclassified) versus
- Lymphoma, sarcoma, melanoma, other

APPROACH TO APPLICATION OF IHC IN RENAL TUMORS

Is the neoplasm a carcinoma?:
rule out Epi AML (PEComa), lymphoma, sarcoma, melanoma etc

Is the carcinoma a renal primary?:
rule out urothelial carcinoma, metastasis

Can you subtype the renal cell carcinoma?:
Clear cell vs papillary vs chromophobe vs oncocytoma vs translocation associated Ca …..
RCC antigen

Monoclonal antibody against brush border of healthy PCT

<table>
<thead>
<tr>
<th>RCC types</th>
<th>Other tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear cell RCC (85%)</td>
<td>Breast ca</td>
</tr>
<tr>
<td>Papillary RCC (95%)</td>
<td>Parathyroid ca</td>
</tr>
<tr>
<td>Oncocytoma & Chromophobe (-/+</td>
<td>Embryonal ca, testis</td>
</tr>
<tr>
<td>Collecting duct Ca (-/+</td>
<td>Lung</td>
</tr>
</tbody>
</table>

- Prostate |
- Ovary |
- Melanoma |
- Epididymal cystadenoma |
- Mesothelioma

PAX8

Paired box transcription factor, similar to PAX2

Predominantly data from polyclonal antibody – new monoclonal

<table>
<thead>
<tr>
<th>RCC types</th>
<th>Other tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear cell RCC (>95%)</td>
<td>Similar to Pax2</td>
</tr>
<tr>
<td>Papillary RCC (>95%)</td>
<td>Thyroid neoplasms</td>
</tr>
<tr>
<td>Wilms tumor</td>
<td>Extensive GYN positivity</td>
</tr>
<tr>
<td>Metanephric (+) adenoma</td>
<td></td>
</tr>
<tr>
<td>Oncocytoma (+)</td>
<td></td>
</tr>
<tr>
<td>Chromophobe RCC (+/-)</td>
<td></td>
</tr>
<tr>
<td>Collecting duct Ca (-/+</td>
<td></td>
</tr>
<tr>
<td>Translocation assoc. Ca (-/-)</td>
<td></td>
</tr>
</tbody>
</table>
Metastatic Clear cell RCC (Bone)

85% of met RCC are PAX 8 (+)

Parathyroid Carcinoma

Positive in RCC
- Clear cell RCC (60%)
- Pap RCC (80%)
- Clear cell-pap RCC
- Oncocytoma
- Translocation assoc RCC
- Chromophobe RCC (-)

Other tumors
- Ovarian Ca (serous, clear)
- Endometrial Ca

S100A1

Among the 13 member S100 protein family.
Expressed in numerous cell types, not well studied
Carbonic anhydrase IX

Family of zinc containing metalloproteinase that regulates cell proliferation, adhesion and metastasis

<table>
<thead>
<tr>
<th>Kidney tumors</th>
<th>Other tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear cell RCC (+)</td>
<td>Most carcinomas of endometrium, stomach, lung, cervix, liver, breast etc.</td>
</tr>
<tr>
<td>Papillary RCC (-/+)</td>
<td></td>
</tr>
<tr>
<td>Chromophobe RCC (-)</td>
<td></td>
</tr>
<tr>
<td>Oncocytoma (-)</td>
<td></td>
</tr>
<tr>
<td>Urothelial Ca (+/-)</td>
<td></td>
</tr>
</tbody>
</table>

Prognostic utility of CA IX in clear cell RCC
Ksp-cadherin in distal convoluted tubules
Cathepsin K

- Expression is related to overexpression of MiTF
- PEComas: moderate to strong and diffuse cytoplasmic staining is seen in all variants
 - co-expressed with other melanocytic markers (more diffuse than HMB-45)
- MiTF-TFE3 translocation associated carcinomas
 - t(X;1): >85% cases, diffuse
 - t(X;17): 0%
 - t(6;11): 100% of cases, diffuse

Other renal tumors: Negative except nonspecific in necrotic areas

CONFIRMING RENAL ORIGIN

Is the neoplasm a carcinoma?:
- Renal “related”
 - AE1/AE3 (+)
 - EMA (+)
 - Vimentin (+)
 - CK7 (-), CK20 (-)

Is the carcinoma a renal primary?:
- Renal associated
 - “RCC marker” (80%)
 - PAX8 (>90%)
 - S100A1
 - CD10 (+) (94%)
If history of renal mass and renal histogenesis markers are negative?

- **Consider: Chromophobe carcinoma**
 - CD117 (+) and Ksp-Cadherin (+)

- **Consider: Epithelioid PEComa and translocation carcinoma**
 - Cathepsin K, MelanA/HMB45

Renal Clear and Papillary Tumors

<table>
<thead>
<tr>
<th>Clear cell RCC</th>
<th>Clear –Papillary RCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-9 (+)</td>
<td>CK 7(+)</td>
</tr>
<tr>
<td>RCC (+)</td>
<td>Racemase (-)</td>
</tr>
<tr>
<td>Pax8 (+)</td>
<td>HMCK (+)</td>
</tr>
<tr>
<td>Vimentin (+)</td>
<td>RCC, CD10(-)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Papillary RCC</th>
<th>Metanephric adenoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCC (+)</td>
<td>RCC (+)</td>
</tr>
<tr>
<td>CK7 (+)</td>
<td>CK7 (+)</td>
</tr>
<tr>
<td>Racemase (+)</td>
<td>Racemase (+)</td>
</tr>
</tbody>
</table>

- **Oncoctyoma**
- **Chromophobe RCC**
Renal Oncocytic Tumors

<table>
<thead>
<tr>
<th>Oncocytoma</th>
<th>Chromophobe RCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK 7 (- / +)</td>
<td>CK 7 (+ / -)</td>
</tr>
<tr>
<td>S100 A1 (+)</td>
<td>S100A1 (-)</td>
</tr>
<tr>
<td>Barttin (cytoplasmic)</td>
<td>Barttin (membranous)</td>
</tr>
</tbody>
</table>

Not adequately studied: preliminary data
Not tested in hybrid oncocytic tumors

Amylase 1A (AMY1A), EPCAM, Claudin and Caveolin 1
Investigational

HLRCC-RCC

<table>
<thead>
<tr>
<th>Renal medullary ca.</th>
<th>Urothelial carcinoma</th>
</tr>
</thead>
</table>

IHC FOR HIGH GRADE DISTAL NEPHRON CA

<table>
<thead>
<tr>
<th>Renal Cell CA incl. CDC</th>
<th>Renal Medullary CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAX8</td>
<td>OCT3/4 (+)</td>
</tr>
<tr>
<td>RCC</td>
<td>INI1 lost (-)</td>
</tr>
<tr>
<td>S100 A1</td>
<td>PAX8</td>
</tr>
<tr>
<td>CK 7 & 20 (-)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urothelial CA</th>
<th>HLRCC-RCC/FH deficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>GATA 3</td>
<td>FH lost (-)</td>
</tr>
<tr>
<td>S100P</td>
<td>2SC positive</td>
</tr>
<tr>
<td>HMCK</td>
<td></td>
</tr>
<tr>
<td>P63</td>
<td></td>
</tr>
<tr>
<td>Uroplakin 2</td>
<td></td>
</tr>
<tr>
<td>CK 7 & 20 (+)</td>
<td></td>
</tr>
</tbody>
</table>

CAIX and Vimentin immunoreactivity can be seen in UCa
TESTIS IHC: Screening panels

<table>
<thead>
<tr>
<th>Germ cell tumors</th>
<th>Sex cord tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT 3/4</td>
<td>SF1</td>
</tr>
<tr>
<td>SALL4</td>
<td>Melan A</td>
</tr>
<tr>
<td>PLAP</td>
<td>Inhibin</td>
</tr>
<tr>
<td>EMA(-)</td>
<td>Calretinin</td>
</tr>
<tr>
<td>Vimentin (-)</td>
<td>CD99</td>
</tr>
<tr>
<td></td>
<td>Synaptophysin</td>
</tr>
<tr>
<td></td>
<td>S-100</td>
</tr>
<tr>
<td></td>
<td>FOXL2</td>
</tr>
</tbody>
</table>

- **Lymphoma:** CD-45, CD3, L26
- **Visceral malignancy:** EMA (+), vimentin (±)

LEYDIG CELL TUMOR

INHIBIN

SERTOLI CELL TUMOR

CALRETININ
IHC in characterizing the different germ cell components

- There is no substitute to well (overnight) fixed sections
- Adequate sampling is key - the # of IHCs should *NEVER* exceed the H&E slides
- Remember what matters in germ cell tumors

GERM CELL TUMOR – What really matters?

One does not necessarily have to characterize every morphologically different focus

- Pure classic Seminoma vs. non-seminomatous components
- Mixed germ cell tumor
 - Specify components (as accurately as you can)
 - >80% or pure embryonal carcinoma (↑)
 - >50% teratoma (↑)

Vascular-lymphatic invasion – pathologic stage
Margin status
IHC IN GERM CELL TUMORS

• **GCNIS**: Oct3/4, c-kit, SALL4, Podoplanin, PLAP - all (+)
• **Seminoma**: Oct3/4, c-kit, Podoplanin – all (+)
• **Embryonal Ca**: Oct3/4, CD30, SOX2, Keratin weak, – all (+)
• **YST**: Glypican, AFP, Keratin strong
• **CC**: HPL, βHCG, Glypican-syncytiotrophoblasts
• **SS**: CD117, SAL4 (weak)

Cytokeratin AE1/AE3: E Ca, YST, T, CC
Oct 3/4: Seminoma, E Ca
PLAP: Minimal / no value – except in GCNIS
OCT3/4

Glypican

THANK YOU