<u>Principles of Cytogenetics</u> <u>Categorical Course</u> Introduction to Cytogenetics 1

Erica Andersen, PhD Section Chief, Cytogenetics and Genomic Microarray ARUP Laboratories Associate Professor, Department of Pathology University of Utah Email: erica.f.andersen@aruplab.com

What is Cytogenetics?

 The study of chromosomes and genomic structure, function, and variation and their role in human disease and heredity

Constitutional versus cancer cytogenetics

 Constitutional cytogenetics: diagnosis of heritable genetic abnormalities in children, adults, pregnancy, and fetal loss

- Abnormalities may be inherited or de novo

 Cancer cytogenetics: detection of acquired or somatic (versus germline/constitutional) genetic abnormalities for the diagnosis, prognosis, therapy, and/or monitoring of many types of cancer, esp. hematologic

Indications for Cytogenetic Analysis (Constitutional)

- Postnatal, childhood growth and development
 - Perinatal/newborn: Birth defects, malformations, dysmorphisms, ambiguous genitalia
 - Growth: failure to thrive, growth delay, short stature
 - Developmental delay (fine and gross motor, speech)
 - Cognitive: intellectual disability, learning disability
 - Neurological: hypotonia, seizures, ataxia
 - Behavioral: autism, OCD, psychiatric illness

Tissues studied: Peripheral blood, buccal swab, skin biopsy

Indications for Cytogenetic Analysis (Constitutional)

- Adolescent, adult sexual development and fertility
 - Amenorrhea, primary or secondary ovarian failure, premature menopause
 - Azoospermia, oligospermia, hypogonadism
 - History of infertility or spontaneous abortions
 - Birth of a child with a chromosomal abnormality

Tissues studied: Peripheral blood

Indications for Cytogenetic Analysis (Constitutional)

- Prenatal
 - Abnormal maternal serum screening (first or second trimester)
 - Abnormal cell-free DNA testing (cfDNA), non-invasive prenatal testing (NIPT)/screening (NIPS)
 - Abnormal ultrasound findings: cystic hygromas/hydrops, cardiac defects, other malformations, IUGR, etc.
 - Advanced maternal age (AMA), generally \geq 35 yrs
 - Parental or familial chromosome/genomic abnormality
- Fetal or neonatal demise (products of conception, POC)

Tissues studied: Amniotic fluid, chorionic villus sampling, fetal tissues

Indications for Cytogenetic Analysis (Cancer)

- Hematologic oncology
 - Myeloid diseases: AML, CML, MDS, MPNs
 - Lymphoid diseases: ALL, CLL, NHL, PCNs/MM
- Bone marrow transplant
- Other areas of oncology (solid tumors)

Tissues studied: Bone marrow, peripheral blood, lymph nodes, solid tumor, pleural fluid, spinal fluid

Introduction to Cytogenetics I

- DNA and Chromosomal Structure
- Cell Cycle, Mitosis and Meiosis
- Gametogenesis
- Nondisjunction and Aneuploidy
- Polyploidy and Errors at Fertilization
- Imprinting and Uniparental Disomy
- Sex Chromosomes
- Karyotyping and Nomenclature

DNA Structure and Organization

Watson and Crick (May 1953) Nature v171

Role of the Centromere in Cell Division

Metaphase

Anaphase

Images modified, source: http://learn.genetics.utah.edu/content/chromosomes/readchromosomes/

Chromosome Structure and Classification

Acrocentric Chromosomes

- Chromosomes 13, 14, 15, 21, 22
- Small p arm composed of a stalk (pstk) and a satellite (ps)
- Stalk: contains multiple copies of ribosomal DNA genes
 - Stalks associate during interphase to form the nucleolus (also known as nucleolar organizing regions, NORs)
 - Nucleolus is the site of rRNA transcription and processing and ribosome assembly
- Satellite: a non-coding region
- Size of both regions is variable, or polymorphic

Chromosome Classification

Karyogram

DNA Classification

- Human genome comprises unique (75%) and repetitive (25%) DNA sequences
- Unique sequence occurs once per haploid (1n) set, includes genes and non-coding sequence
 - Genes: n= ~20,000, genome is 1.5% exonic, 26% intronic, ~8% regulatory, distribution is uneven
- Repetitive sequence includes tandemly arranged, satellite DNA: α-satellite, minisatellite, microsatellite and dispersed short or long elements (SINEs, LINEs)
 - α -satellite DNA: 171 bp, centromeres
 - Mini- (20-70 bp) and microsatellites (2-4 bp): variable across individuals, used for mapping and identity testing

Chromatin

- Euchromatin: loosely organized, contains active, early replicating genes
- Heterochromatin: highly contracted, contains late replicating genetically inactive sequence
 - Constitutive : located at centromeres and at the distal end of the Y chromosome long arm
 - Facultative: defines heterochromatin on the inactive X chromosome in females

Cell Division and The Cell Cycle

- Mitosis: division of somatic cells
- Meiosis: division of gametic cells
- Cell cycle: 4 phases: Mitosis (M), Gap1 (G1), Synthesis (S), Gap2 (G2)

Cell Division and The Cell Cycle

NCBI Bookshelf: Lodish, Berk, Zipursky, Molecular Cell Biology, 4th Ed 2000

<u>Mitosis</u>

- a) Interphase
- b) Prophase
- c) Metaphase*
- d) Anaphase
- e) Telophase
- f) Cytokinesis
- g) Interphase

* Stage observed in chromosome analysis

<u>Meiosis I</u>

- a) Prophase I:
 Homologs pair,
 cross-over
- b) Metaphase I
- c) Anaphase I
- d) Telophase I
- e) Daughter cells

Meiosis II

- a) Prophase II
- b) Metaphase II
- c) Anaphase II
- d) Telophase II
- e) Daughter cells

Prophase I Interaction of homologous chromosomes

Leptotene:

Chromosomes
 begin to
 condense but
 cannot yet be
 seen by light
 microscopy

Zygotene:

- Homologs appear as long thread-like structures and begin to pair (synapse)
- X and Y pair only at pseudoautosomal regions

Only one sister chromatid is involved in each crossover event

Pachytene:

Chromosomes continue to condense, synapsis completes and homologous recombination (crossing over) occurs

Slide modified courtesy of Sarah South

Prophase I Interaction of homologous chromosomes

Diplotene:

 Chromosomes continue to shorten and thicken, homologs begin to repel each other, only holding on at the regions of recombination (chiasmata)

Diakinesis:

- Chromosome completely condensed
- Centrioles have migrated to the poles and nuclear envelope begins to break down

Spermatogenesis vs Oogenesis

Spermatogenesis vs Oogenesis

Hassold and Hunt (2001) Nat Rev Genet

Down Syndrome and Maternal Age

Newberger (2000) Am Fam Physician

Battaglia et al., 1996

Errors in Meiosis, Mitosis and Cell Division Lead to Genomic Imbalance

- Euploid: normal chromosome complement

 Diploid: 2n, 23 pairs of chromosomes = 46 count
 Haploid: 1n, 23 chromosomes = 23 count
- Aneuploid: abnormal chromosome complement
 - Trisomy: 2n+1, additional chromosome = 47 count
 - Monosomy: 2n-1, missing chromosome = 45 count
- Polyploid: abnormal number of chromosome sets
 - Triploidy: 3n, 3 sets of chromosomes = 69 count
 - Tetraploidy: 4n, 4 sets of chromosomes = 92 count

Mechanism Leading to Aneuploidy: Chromosomal Nondisjunction (ND)

- Definition: the failure of homologous chromosomes or sister chromatids to separate (segregate) properly
 - Meiotic or mitotic ND can occur
- Proposed mechanisms for MI ND
 - True: homologs travel together to same pole
 - Achiasmate: homologs failed to pair and travel independently to the same pole
 - Premature separation of sister chromatids: chromatids, rather than homologs, segregate

Modes of Nondisjunction

Image from: W. H. Freeman Pierce, Benjamin. Genetics: A Conceptual Approach, 2nd ed. 2005.

Mitotic ND in a normal zygote

Monosomic cell line often has a growth disadvantage and is lost

Image from: http://www.medgen.ubc.ca/robinsonlab/mosaic/

Parental Origins of Aneuploidy

Trisomy	n	Maternal		Paternal		PZM (%)
		MI (%)	MII (%)	MI (%)	MII (%)	
Acrocentrics						
13	74	56.6	33.9	2.7	5.4	1.4
14	26	36.5	36.5	0.0	19.2	7.7
15	34	76.3	9.0	0.0	14.7	0.0
21	782	69.6	23.6	1.7	2.3	2.7
22	130	86.4	10.0	1.8	0.0	1.8
Non-acrocentrics						
2	18	53.4	13.3	27.8	0.0	5.6
7	14	17.2	25.7	0.0	0.0	57.1
8	12	50.0	50.0	0.0	0.0	50.0
16	104	100	0.0	0.0	0.0	0.0
18	150	33.3	58.7	0.0	0.0	8.0
XXX	46	63.0	17.4	0.0	0.0	19.6
XXY	224	25.4	15.2	50.9	0.0	8.5
Х		~30%		~70%		

^aAdapted from Hall *et al.* (6). MI, meiosis I; MII, meiosis II; PZM, postzygotic mitotic.

Hassold, Hall and Hunt, 2007, Hum Mol Genet

Chromosome size and gene content correlates with incidence of *postnatal* trisomy

Common constitutional numerical abnormalities)

Aneuploidy

- 47,XXY (Klinefelter syndrome)
- 45,X (Turner syndrome)
- 47,XX,+21 (Down syndrome)
- 47,XY,+18 (Edwards syndrome)
- 47,XY,+13 (Patau syndrome)
- 47,XX,+16
- 45,XX,-21

Polyploidy

Triploidy (e.g. 69,XXY)

Tetraploidy (e.g. 92,XXYY)

Mechanisms Leading to Aberrant Ploidy: Fertilization and Early Cell Division Errors

Image modified from: Van den Veyver I, and Al-Hussaini T Hum. Reprod. Update 2006;12:233-242

Other Fertilization and Early Cell Division Errors

Image modified from: Van den Veyver I, and Al-Hussaini T Hum. Reprod. Update 2006;12:233-242

Imprinting

Imprinted chromosomes and human disease due to uniparental disomy (UPD)

Image from: http://carolguze.com/text/442-10nontraditional_inheritance.shtml

Chromosome UPD and Inheritance	Associated Genetic Disease or Abnormalities
Paternal UPD 6	Transient neonatal diabetes mellitus
Maternal UPD 7	Silver-Russell syndrome
Paternal UPD 11	Beckwith-Wiedemann syndrome
Maternal UPD 14	Hypotonia, motor development delay, mild dysmorphic facial features, low birth weight, growth abnormalities
Paternal UPD 14	Severe mental and muscoskeletal abnormalities
Maternal UPD 15	Prader-Willi syndrome
Paternal UPD 15	Angelman syndrome
Maternal UPD 16	Intrauterine growth retardation
Maternal UPD 20	Intrauterine growth retardation and/or postnatal growth retardation

Velissariou, Balkan J Med Gen

Uniparental disomy (UPD)

- Biparental: one copy derived from each parent, the normal chromosome complement
- Uniparental disomy: both chromosomes are derived from a single parent
 - Uniparental Heterodisomy: homologous, non-identical copies or regions
 - Uniparental Isodisomy: identical copies or regions
 - Carries risk for recessive disease if a recessive mutation resides in the chromosome/segment

Biparental

Heterodisomy

Isodisomy

Mechanisms Leading to UPD: Chromosomal Nondisjunction

Incidence of aneuploidy detected in newborns

Abnormality	Rate/1000	Rate (1/n)	
Autosomal Trisomy	1.62	617	
+C (6,7, 8,9 ,10,11,12)	0.01	120,290	
+D (13 ,14,15)	0.04	24,058	
+E (16,17, 18)	0.21	4,812	
+G (21 ,22)	1.37	730	
Sex Chromosome Aneuploidies (All)	2.70	375	
45,X and variants	0.29	3,509	C
47,XXX and 47,XXX/46,XX	0.50	2,000	ŀ
47,XXY and variants	0.72	1,400	
47,XYY and 46,XY/47,XYY	0.53	1,887	

 Incidence of sex chromosome aneuploidy is higher

Data from: Milunsky and Milunsky, Genetic Disorders of the Fetus, 6th Ed. (2010). Benn, Chp. 6

True rates are underestimated, especially for sex chromosome aneuploidies, which may be unrecognized at birth

Sex chromosome aneuploidy

	Syndrome	Karyotype	Prevalence	Somatic features	Reproductive impact
	Turner	XO ^a	0.04%	Growth retardation	Humans: sterile
Do nc karyo	ot use XO in types!	(1/25	00 females)	Congenital heart disease Horseshoe kidney Visual impairment	Mice: fertile but reduced oocyte pool and reproductive lifespan
	Klinefelter	XXY ^b	0.1%	Variable	Humans and mice sterile unless spontaneous
		(1/500-1000 males)		Tall stature Gynecomastia Mild developmental and behavioral problems	X chromosome loss
	Double Y	XYY	0.1%	Tall stature	Humans: commonly fertile because of high
		(1/	'1000 males)		incidence of Y chromosome loss Mice: sterile because of low probability of Y chromosome loss
					chromosome loss Modified from Heard and Turne

* 99% of 45,X conceptuses result in spontaneous abortion

Sex Chromosomes

- X chromosome: 1000's of genes, one X is inactive in females
 - XIST: dosage compensation
- Y chromosome: main function is in male sexual development
 - SRY determines male phenotype
 - Other genes regulate sexual development
 - Yqh is inactive
- Pseudoautosomal (PAR) regions are required for pairing and recombination between the X and Y in males
 - Obligatory crossing-over occurs in PAR1
 - Errors in XY pairing lead to increased incidence of XY nondisjunction, higher rates sex chromosome aneuploidy

Dosage compensation: X-inactivation

- X-inactivation rescues the potential damaging effect of increased X gene dosage in 47,XXX and 47,XXY
- In female somatic cells, only one X is active, the second is condensed/inactive (appears as Barr body in interphase cells)
- Number of Barr bodies = n(X)-1 *
 - *Applies to diploid cells only
 - 46,XX (1 Barr body)
 - 47,XXY (1 Barr body)
 - 47,XXX (2 Barr bodies)
 - 45,X (0 Barr bodies)

Barr body (Xi) in a normal female cell

Image source: Wikipedia

Dosage compensation: X-inactivation

Lyon hypothesis (now Lyon Law) to explain X chromosome dosage:

- One X is inactivated in females
- X-inactivation occurs in early development
 - ~2 weeks after fertilization, ~100's cell stage/blastocyst
 - Must be re-activated in the germline
- X-inactivation is random
- X inactivation is clonal (females are essentially mosaics for Xlinked genes)

Image source:

http://www.scoop.it/t/molcyt/p/293460152/2011/07/14/50-years-of-the-lyon-hypothesis-and-x-inactivation-at-the-european-cytogeneticists-association-eca-conference-porto

Mechanism of X-inactivation

- X-inactivation specific transcript (XIST) at Xq13 is transcribed only from the inactive X
- XIST mRNA acts in cis, coating the inactive X, which triggers condensation, affecting replication
- Histone modification leads to inactivation

Xist RNA-FISH in a mouse metaphase spread

Avner and Heard, 2001, Nat Rev Genet

Ng et al., 2007, EMBO reports

Not all X-chromosome genes are inactivated

> Explains why 45,X is associated with an abnormal phenotype

Karyotyping

Metaphase spread

Karyogram

Preparation of metaphase chromosomes

Preparation of a karyotype. From Mueller and Young, 2001.

Overview of chromosome analysis

- Generally, 20 cells are analyzed from multiple cultures
- Definition of a clone:
 - At least two metaphase cells with the same extra chromosome or structural abnormality
 - At least three metaphase cells with the same chromosome loss
 - Abnormality must be observed in two independent cultures (r/o in vitro artifacts)

Dewald *et al.*, Cytogenetic Studies in Neoplastic Hematologic Disorders 2nd Ed.

Mixture of Cell Lines: Mosaicism versus Chimerism

- Mosaicism: the presence of at least two genetically distinct, but related cell lines (clones) arising in the same individual:
 - Somatic and/or germline mosaicism
 - e.g. constitutional, Turner syndrome: 45,X[15]/46,XX[5]
 - e.g. acquired, CML: 46,XX,t(9;22)(q34;q11.2)[9]/46,XX[11]
- Chimerism: the presence of at least two genetically distinct cell lines that are derived from different conceptions: e.g. twin-twin fusions or transfusions, tissue/organ transplants

e.g. Bone marrow transplant patient: 46,XX[3]//46,XY[17]

 Clinical presentation: may be variable or a milder clinical phenotype, may see skin pigmentation anomalies, may be suggestive by recurrent cytogenetic abnormality in offspring and normal constitutional result (i.e. gonadal mosaicism)

NOTE: there are special considerations when mosaicism is observed in a prenatal study

Standard Nomenclature for Karyotype Designation

General designation includes:

- Chromosome number (count)-based on #centromeres
 - Expressed relative to the ploidy level
- Sex chromosome constitution
 - Use +/- for acquired sex chromosome aneuploidy only
- List of abnormalities present
 - Ordered by chromosome number (sex chromosomes, then autosomes 1-22) and abnormality type (numerical abnormalities/aneuploidies, then structural abnormalities, listed alphabetically and by location/band, low to high)
- Multiple cell lines
 - Mosaicism: List abnormal clone(s) first, list multiple abnormal clones from largest to smallest in size
 - Chimerism: List recipient (individual's karyotype) first

Common symbols and abbreviated terms

additional normal or abnormal chromosome (trisomy) • + loss of a chromosome (monosomy) added material of unknown origin, typically resulting in a loss of add material distal to breakpoint del deletion derivative chromosome, due to structural rearrangement(s) der dic dicentric chromosome dup duplication de novo (not inherited) dn isochromosome (composed of two identical chromosome arms) isodicentric chromosome (isochromosome w/ two centromeres) idic • insertion ins • inversion inv • marker chromosome, unknown origin ٠ mar maternal origin mat • mosaic (multiple cell lines/clones present) mos ٠ paternal origin pat • ring chromosome r Robertsonian translocation, a whole arm translocation between rob acrocentric chromosomes translocation t separates clones (for mosaic karyotypes) separates clones (for chimeric karyotypes) //indicate number of cells (for mosaic or chimeric karyotypes)

Nomenclature Practice: Numerical Abnormalities

Karyotype: 46,XY

Karyotype: 45,X

12 cells 8 cells CONCERCION OF TOTOT: E. Tran Bill Conces And a state CONTRACT (CONTRACT) (THEO) Chester (DOM: NO CONTRACT OF CONCOL CO SUGAR STREET 「あい」の「「あい」 **新福** <u>8</u>6 Х Y Y Х

Karyotype: 45,X[12]/46,XY[8]

12 cells

Karyotype: 72,XXY,+2,+8,+13

- A REAL	Cupermann Cupermann 2	and the second		Converte .	4	aligned by the second s
2	solution Total	1 1 1 1 1 1 1 1 1 1	9	10	11	12
13	14	15		16	17	18
19	888 20	21	8 88 L 22	<u>6</u>	x	<u>8</u> Y

Abnormal, oncology, 9 extra chromosomes, 20 cell study, 3 normal male (BM donor) cells present

Abnormal, oncology, 9 extra chromosomes, 20 cell study, 3 normal male (BM donor) cells present

Karyotype: 55,XX,+X,+X,+4,+10,+11,+14,+17,+21,+21[17]//46,XY[3]

