Introduction to Cytogenetics

Part 2

Erica Andersen, PhD Section Chief, Cytogenetics and Genomic Microarray, ARUP Laboratories Associate Professor, Department of Pathology University of Utah

Introduction to Cytogenetics II

- Structural Chromosome Abnormalities
 - Underlying Mechanisms
 - Nomenclature
 - Deletions and Duplications
 - Translocations and Segregation Mechanisms
 - X-chromosome Abnormalities
 - Inversions and Recombinant Chromosomes
- Cytogenetics in Cancer
 - Hematologic malignancies overview
 - Cytogenetic abnormalities and nomenclature
 - Genetic basis of cancer: oncogenes, tumor suppressors

Structural Abnormalities

- Definition: Breakage and rejoining of chromosomes or chromosome segments
- May be either balanced or unbalanced
- Breakpoints can disrupt gene expression (within a gene or regulatory element)
- Can create gene fusions or affect gene expression (↑↓) by position effect
 - Common in cancer

Mechanisms Underlying Structural Rearrangements- Errors in...

- Recombination: exchanges between homologous, non-allelic sequences via non-allelic homologous recombination (NAHR)
- Repair: double-stranded breaks that are repaired incorrectly by non-homologous end-joining (NHEJ)
- Replication: discontinuous replication of the lagging strand leads to invasion into other replication forks: fork stalling and template switching (FoSTes)

Structural abnormalities (Abnormal is on the right)

Structural abnormalities (Abnormal is on the right)

Normal variable chromosomal features/ Heteromorphisms

(NOTE: generally, these are not included in the karyotype)

Variation in length (+ or -)

- 1qh+ Yqh+
- 9qh- 13ps+
- 16qh+ 21pstk-
- Variation in position
- inv(2)(p11.2q13)
- inv(9)(p12q13)
- Yqs

Normal 9's

Designation of Regions, Bands, Sub-bands

700

16.3 16.2

16.1 15.33

15.32

15.31

15.2

15.1

14

13

13.1

13.2

13.3 21.1

21.3

22.1

22.2 22.3

23

24

25

26

27

28.1

28.2

28.3

31.1

31.3

32.1

32.2

32.3 33-

34.1 34.2

34.3 35.1

31.23 31.22 31.21

21.21 21.22 21.23

12-

Differences in level of resolution by sample type

Standard Nomenclature for Karyotype Designation

General designation includes:

- Chromosome number (count)-based on #centromeres
 - Expressed relative to the ploidy level
- Sex chromosome constitution
 - Use +/- for acquired sex chromosome aneuploidy only
- List of abnormalities present
 - Ordered by chromosome number (sex chromosomes, then autosomes 1-22) and abnormality type (numerical abnormalities/aneuploidies, then structural abnormalities, listed alphabetically and by arm/band, low to high)
- Multiple cell lines
 - Mosaicism: List abnormal clone(s) first, list multiple abnormal clones from largest to smallest in size
 - Chimerism: List recipient (individual's karyotype) first

Common symbols and abbreviated terms (constitutional studies)

- + additional normal or abnormal chromosome (trisomy)
- loss of a chromosome (monosomy)
- add added material of unknown origin, typically resulting in a loss of material distal to breakpoint
- del deletion
- der derivative chromosome, due to structural rearrangement(s)
- dic dicentric chromosome
- dup duplication
- dn de novo (not inherited)
- i isochromosome (composed of two identical chromosome arms)
- idic isodicentric chromosome (isochromosome w/ two centromeres)
- ins insertion
- inv inversion
- mar marker chromosome, unknown origin
- mat maternal origin
- mos mosaic (multiple cell lines/clones present)
- pat paternal origin
- r ring chromosome
- rob
 Robertsonian translocation, a whole arm translocation between
 acrocentric chromosomes
- t translocation
- / separates clones (for mosaic karyotypes)
- // separates clones (for chimeric karyotypes)
- [] indicate number of cells (for mosaic or chimeric karyotypes)

Structural Abnormalities Description (Illustrated by Examples)

- Terminal vs interstitial
 - add(11)(q23)
 - del(4)(p16.3)
 - dup(17)(p11.2p13)
- Interchromosomal vs intrachromosomal
 - t(9;22)(q34;q11.2)
 - inv(3)(q21q26.2)
 - ins(2)(q13p11.2p14)
- Whole chromosome arm rearrangements
 - i(12)(p10)
 - der(1;7)(q10;p10)
 - rob(13;14)(q10;q10)
- Combination of abnormalities
 - 47,XY,+8,t(8;14)(q24;q32)
 - der(7)del(7)(p11.2)del(7)(q22)
 - mos 45,X[12]/46,X,idic(X)(p11.22)[8]

Nomenclature Practice: Structural Abnormalities

Male with Klinefelter syndrome

47,XXY,ins(13;12)(q32;q22q24.1)

Male with Klinefelter syndrome

45,XX,rob(14;15)(q10;q10)

Abnormal, constitutional 47,XX,+der(22)t(11;22)(q23.3;q11.2) Female q11.2 q23.3 -11 22

Structural abnormalities

Some recurrent deletions and duplications

Image modified from Gardner, Sutherland and Shaffer Chromosome Abnormalities and Genetic Counseling 4th ed (2011)

Incidence of Recurrent Deletion and Duplication Syndromes

Syndrome	Incidence	Cause	
1p36 deletion	1:7500	Terminal deletion	
1q21.1 deletion (distal)	1:500	Interstitial deletion (SD)	
4p-/Wolf-Hirschhorn	1:50,000	Terminal deletion	
5p-/Cri du chat	1:50,000	Terminal deletion	
7q11.23/Williams	1:7500	Interstitial deletion (SD)	
15q11q13/Prader willi	1:20,000	Interstitial deletion (pat)/mUPD/Me defect/mutation	
22q11.2/DiGeorge/VCFS	1:5000	Interstitial deletion (SD)	

Low copy repeats (LCRs) mediate many recurrent genomic rearrangements via NAHR

Key NAHR-prone regions Deletion disorders Del/dup disorders

Liu et al, 2012

Segmental duplication (low-copy repeat, LCR) architecture mediates recurrent CNVs/rearrangements

Emanuel and Saitta, Nat Rev Genet 2007

NAHR: misalignment and exchange occurs between non-allelic homologous sequences (LCRs)

Emanuel and Saitta, Nat Rev Genet 2007

NAHR underlies many recurrent genomic rearrangements

Liu et al., 2012

Multiple techniques are employed for the detection of different cytogenetic abnormalities

Technique	Resolution	Sensitivity (mosaicism)	Culturing required?	Global?	Unbalanced abs?	Balanced abs? Structural info?
G-banded chromosomes	3-5 Mb (550 bands)	10-15%	Yes	Yes	Yes	Yes
Metaphase FISH	100's kb	n/a	Yes	No	Yes	Yes
Interphase FISH	100's kb	1-5%	No	No	Yes	Yes
GMA	10-100's kb	10-20%	No	Yes	Yes	No

Sizes: kb=1x10³, Mb=1x10⁶

Structural abnormalities

Incidence of chromosome abnormalities detected in newborns

Abnormality	Rate/1000	Rate (1/n)	
Autosomal Trisomy	1.62	617	
Sex Chromosome Aneuploidies (All)	2.70	375	
Balanced Structural Rearrangements	2.04	490	
Translocations, insertions	0.97	1,028	
Inversions	0.16	6,331	
Robertsonians	0.91	1,099	
Unbalanced Structural Rearrangements	0.63	1,587	
Translocations, insertions, inversions	0.09	10,935	
Robertsonians	0.07	13,366	
Deletions, rings	0.06	17,184	
+Markers (e.g. isochromosomes)	0.41	2,455	

Data from: Milunsky and Milunsky, Genetic Disorders of the Fetus, 6th Ed. (2010). Benn, Chp. 6

~1/500 is a carrier of a balanced rearrangement

Effects of Translocations

- Constitutional carriers are at risk for infertility, recurrent miscarriage and/or birth of a child with a congenital anomaly syndrome
 - Most risk figures fall into the range of 0-30% for a liveborn child with an abnormality (higher end if previous child)
- May disrupt gene expression (breakpoint within a gene or regulatory element by position effect)

In prenatal setting and de novo, risk ~6% (Warburton '91)

- Create gene fusions and affect gene expression by position effect
 - Esp. in cancer ex. t(9;22) BCR-ABL1 chimeric transcript or t(11;14) CCND1 upregulation by translocation near the IGH locus regulatory region

Pachytene configuration (quadrivalent) in the balanced translocation carrier/translocation heterozygote

A, B: Normal chromosomes

A', B': Derivative chromosomes

Modes of Segregation During Gametogenesis in the Balanced Translocation Carrier

Only 2:2 alternate segregation will result in normal/balanced gametes

All other modes of segregation result in unbalanced gametes

Chromosome Abnormalities and Genetic Counseling. 4th ed. Gardner, Sutherland and Shaffer. 2012

Predicting clinical outcomes for the balanced translocation carrier

Factors that influence segregation and outcomes

- Location of the breakpoints, relative to chromosome size and the centromere
- Relative size of chromosomes involved

FIGURE 5–5 Prediction of likely viable segregant outcomes by pachytene diagram drawing and assessment of the configuration of the quadrivalent.

See also Table 5-4 in Gardner, Sutherland and Shaffer 2012

Gardner, Sutherland and Shaffer. 2012

Tertiary trisomy in the t(11;22)(q23;q11) carrier

46,t(11;22)

47,+der(22),t(11;22) (Emanuel syndrome)

Tertiary trisomy 3:1 segregation

Predicting clinical outcomes for the balanced translocation carrier

Factors that influence segregation and outcomes

- Location of the breakpoints, relative to chromosome size and the centromere
- Relative size of chromosomes involved
- Biological consequence of associated monosomy/trisomy
 - Least imbalanced, least monosomic is most likely to produce a viable conceptus

FIGURE 5–5 Prediction of likely viable segregant outcomes by pachytene diagram drawing and assessment of the configuration of the quadrivalent.

Gardner, Sutherland and Shaffer. 2012

Pedigree of a family carrying a translocation with a large centric segment

FIGURE 5–16 No unbalanced product viable. (*a*) Pedigree of a kindred in which mother and daughter have had multiple miscarriages, each having (*b*) the karyotype 46,XX,t(4;6)(q25;p23). (Case of A. J. Watt.) The presumed pachytene configuration during gametogenesis in the heterozygote would be as in Figure 5–5d (chromosome 4 chromatin, open; chromosome 6 chromatin, crosshatched) and, with large centric and translocated segments, the translocation has none of the features that enable viability of any unbalanced segregant combination.

Structural abnormalities

Robertsonian translocations

- Frequency ~1/1000, 95% are nonhomologous

 rob(13;14) is most common (1:1300)
- Homology and orientation of sequences in p-arm stalks of chrs
 13, 14 and 21 likely explain relative prevalence of rob(13;14) and rob(14;21) amongst carriers (via NAHR)

Table 7–1. The Frequency of Robertsonian Translocations

TRANSLOCATION	LITERATURE REVIEW	UNBIASED ASCERTAINMENT
13q13q	3%	2%
13q14q	33%	74%
13q15q	2%	2%
13q21q	2%	1%
13q22q	1%	2%
14q14q	1/2%	_
14q15q	2%	5%
14q21q	30%	8%
14q22q	1%	2%
15q15q	2%	_
15q21q	3%	1/2%
15q22q	1/2%	1%
21q21q*	17%	3%
21q22q	2%	1/2%
22q22q	1%	_

Robertsonian translocations: Meiotic segregation

Imprinted chromosomes and human disease due to uniparental disomy (UPD)

Image from: http://carolguze.com/text/442-10nontraditional_inheritance.shtml

Chromosome UPD and Inheritance	Associated Genetic Disease or Abnormalities	
Paternal UPD 6	Transient neonatal diabetes mellitus	
Maternal UPD 7	Silver-Russell syndrome	
Paternal UPD 11	Beckwith-Wiedemann syndrome	
Maternal UPD 14	Hypotonia, motor development delay, mild dysmorphic facial features, low birth weight, growth abnormalities	
Paternal UPD 14	Severe mental and muscoskeletal abnormalities	
Maternal UPD 15	Prader-Willi syndrome	
Paternal UPD 15	Angelman syndrome	
Maternal UPD 16	Intrauterine growth retardation	
Maternal UPD 20	Intrauterine growth retardation and/or postnatal growth retardation	

Velissariou, Balkan J Med Gen

Risk for uniparental disomy (UPD)

• Risk for expression of clinical phenotype if rob chromosome contains imprinting genes (differentially expressed genes based on parent of origin) (chrs. 14 and 15)

Images modified from from Shaffer et al., 2001, Genetics in Medicine

• Heterodisomy: two homologous copies or segments from the same parent

Risk for uniparental disomy (UPD)

• Risk for expression of clinical phenotype if rob chromosome contains imprinting genes (differentially expressed genes based on parent of origin) (chrs. 14 and 15)

Images from Shaffer et al., 2001, Genetics in Medicine

- Isodisomy: two identical copies or segments from the same parent
 - Risk for expression of two recessive alleles with isodisomy

Empiric risk estimates for offspring of Robertsonian translocation carrier

- Risk to have unbalanced is greater for females
 - 10-15% for chromosomes 21
- Risk for UPD is the same
- The risk to homologous rob carriers is ~100%
 - Very rare instances of post-zygotic correction are reported

Table 7–2. Estimates of Risks to Have a Child with Aneuploidy or with a Uniparental Disomy Syndrome, for the Heterologous rob Carrier

CARRIER PARENT

rob	MOTHER		FATHER	
	UNBAL.	UPD*	UNBAL.	UPD*
13q14q	1%	<1/2%	<1%	<1/2%
13q15q	1%	<1/2%	<1%	<1/2%
13q21q	10%-15%	_	<1%	_
13q22q	1%	-	<1%	_
14q15q	-	1/2%	-	<1/2%
14q21q	10%-15%	<1/2%	<1%	<1/2%
14q22q	-	<1/2%	-	<1/2%
15q21q	10%-15%	<1/2%	<1%	<1/2%
15q22q	-	<1/2%	-	<1/2%
21q22q	10%-15%	_	<1%	_

Note: Estimates for the uncommon rob translocations are extrapolated from data for the common robs.

Unbal., unbalanced, with a full aneuploidy for chromosome 13 or 21; UPD, uniparental disomy; UPD*, abnormal child with syndrome of UPD 14 or UPD 15.

Gardner, Sutherland and Shaffer. 2012

Modes of X-inactivation

Morey and Avner, 2001

- Most X-inactivation occurs randomly
 - Random X-inactivation often protects against (masks) pathogenic (recessive) mutations in females
- Non-random (skewed) X-inactivation may occur by chance (primary) or through cell selection (secondary)
 - Can lead to expression of X-linked recessive mutations in females
 - Can protect against an otherwise dominant-acting mutation

Non-random X-inactivation can rescue effects of X-chromosome abnormalities in females

Most structural abnormalities and some mutations lead to non-random inactivation

- Active X = White
- Inactive X = Gray
- * = XIST

Translocation X;A in females-balanced carriers may also be affected, dependent on X-inactivation

- There is an inherent risk to the balanced female carrier if X inactivation is not skewed to preferentially inactivate the normal X
 - Risk for functional disomy (double expression of X-linked genes relative to their normal level) of the translocated X segment on the der(A)
 - Risk for functional monosomy of the translocated autosomal segment on the der(X)

<u>Key</u>

- Active X = White
- Inactive X = Gray
- Autosomal material = hashed
- * = XIST

Structural abnormalities

Recombinant chromosome arises from a parental pericentric inversion

Cytogenetics in Cancer

- Information from cytogenetic testing is used to:
 - Establish diagnosis
 - Guide therapy
 - Predict outcome
 - Monitor response to therapy or engraftment postbone marrow transplant (BMT)

Basic terminology for classifying hematologic malignancies

- Leukemia: cancer of the blood and/or bone marrow
- Lymphoma: cancer in the lymphatic tissue (nodal or extranodal)
- **Myeloid**: cells that arise and differentiate in the bone marrow (RBC's, platelets, WBCs: granulocytes)
- Lymphoid: cells that arise in the bone marrow and differentiate and/or function in the lymphatic system (WBC types: B-cells, T-cells, NK cells)

Blood Cell Lineages

Image source: http://www.allthingsstemcell.com/wp-content/uploads/2009/02/hematopoiesis_simple1.png

Types of Chromosome Abnormalities in Cancer

- Numerical
 - Aneuploid: 2n or + chromosomes
 - Monosomy or trisomy
 - Polyploid: 1n, 2n, 3n, 4n, etc. where n=23 chr.
- Structural
 - Deletions
 - Duplications/amplifications
 - Translocations: balanced or unbalanced
 - Inversions
- Copy-neutral loss of heterozygosity (LOH)
 - Mitotic recombination
 - Mitotic malsegregation: uniparental disomy

Comparing technologies...

Image modified from Albertson et al., 2003, Nature Genetics

Defining clonality/acquired changes in oncology studies

- Karyotyping:
 - At least two metaphase cells with the same extra chromosome, structural abnormality
 - At least three metaphase cells with the same chromosome loss
- FISH:
 - Abnormality observed in a percentage of cells (usually >1-5%), 200 interphase FISH cells are examined
- Genomic microarray:
 - Evidence of mosaicism in the sample as shown by the copy number and/or SNP-containing probes
 - Cannot determine whether multiple mosaic abnormalities represent different clones/evolution (clonal diversity)

Karyotyping in Cancer

e.g. Clinical Utility of Karyotype in ALL

Cytogenetic subtype distribution by age

Harrison. ASH Education Program (2013) 118-125

The Genetic Basis of Cancer

Types of genes involved in cancer

Types of genes in cancer

- Oncogenes: mutant forms of genes (protooncogenes) that positively regulate cell proliferation and survival
 - Dominant, gain-of-function type mutations

Image source: http://www.scq.ubc.ca/images/oncogeneformation.gif

Mechanisms of oncogene activation

- Chromosomal rearrangements (translocations, inversions)
 - A gene fusion creating a chimeric protein
 - Upregulation of gene expression by position effect
- Copy number gains
 - Trisomy, tetrasomy, etc.
 - Gene amplification

Image modified from Albertson et al., 2003, Nature Genetics

Oncogene Activation by Gene Fusion

t(9;22) in chronic myelogenous leukemia (CML)

- First chromosomal abnormality associated with cancer, discovered in 1960
- Abnormal Chr. 22 named the Philadelphia (Ph) chromosome

Image source: http://atlasgeneticsoncology.org/Anomalies/t0922CML.html

The t(9;22)(q34;q11) reciprocal translocation

BCR/ABL1 protein is a constitutively active tyrosine kinase

- The N-terminal cap regulates controlled ABL kinase activity
- Fusion to 5' BCR
 - Increases cell proliferation
 - Inhibits programmed cell death
 - Increases invasiveness
 - Inhibits DNA repair

Goldman and Melo, NEJM, 2003

Targeted Therapy: Inhibitors of tyrosine kinase (TKIs)

- Imatinib mesylate (Gleevec) was the first TKI approved by the FDA in 2001
- Mechanism: Competes with ATP for binding sites
- Inhibits progression of CML in the majority of patients
- Drug resistance can develop over time

BCR-ABL1 kinase inhibited by Imatinib

Image source:

http://upload.wikimedia.org/wikipedia/commons/c/ca/Bcr _abl_STI_1IEP.png

Oncogene Activation by Position Effect

c-MYC rearrangements in Burkitt lymphoma

- Cell of origin is a peripheral memory B-cell
- c-MYC at 8q24 is a protooncogene is a transcription factor that induces cell proliferation
- Immunoglobulin genes are strongly expressed in B-cells
- Translocation juxtaposes c-MYC with IG enhancers
- t(8;14)(q24;q32) in 75-85% cases
- t(8;22)(q24;q11) in ~10% cases
- t(2;8)(p12;q24) in ~5% cases

Image source: http://atlasgeneticsoncology.org/Anomalies/t0814ID1050.h tml

C-Myc influences the transcription of a variety of proteins involved in the cell cycle

Blum et al., Blood. 2004

Selected Rearrangements in Cancer

Neoplasm	Translocation	Percentage of Cases	Oncogene	
Chronic myelogenous Ieukemia	t(9;22)(q34;q11)	100% (includes variant fusions)	BCR-ABL1	
Acute lymphocytic leukemia	t(9;22)(q34;q11)	10-15%	BCR-ABL1	
Acute lymphocytic leukemia	t(4;11)(q21;q23)	5-10%; 40% <1y	KMT2A-AFF1	
Acute promyelocytic leukemia	t(15;17)(q22;q21)	100%	PML-RARA	
Acute myeloid leukemia	t(8;21)(q22;q22)	5-10%	RUNX1T1-RUNX1	
Acute myeloid leukemia	inv(16)(p13.3q22) or t(16;16)(p13;q22)	5-10%	CBFB-MYH11	
Burkitt lymphoma	t(8;14)(q24;q32)	75-85%		
	t(8;22)(q24;q11)	10-15%	MYC	
	t(2;8)(q11;q24)	2-5%		

Types of genes in cancer

- Tumor suppressors: genes that block tumor development by negatively regulating cell growth and proliferation
 - Recessive, loss-of-function type mutations

Image modified from UW Cytogenetics Lab

Mechanisms of tumor suppressor inactivation

- Copy number losses
 - Monosomy
 - Deletions
 - Note: copy number loss may in itself be pathogenic or may unmask a recessive mutant allele
- Loss of heterozygosity (LOH)
 - Somatic recombination
 - Uniparental disomy

Image modified from Albertson et al., 2003, Nature Genetics

Nomenclature in Cancer

Common symbols and abbreviated terms

additional normal or abnormal chromosome (trisomy) + loss of a chromosome (monosomy) add added material of unknown origin, typically resulting in a loss of material distal to breakpoint constitutional С composite (clonal, but variable across cells) ср del deletion der derivative chromosome, due to structural rearrangement(s) dic dicentric chromosome double minute chromosome dmin • duplication dup isochromosome (composed of two identical chromosome arms) isodicentric chromosome (isochromosome w/ two centromeres) idic insertion ٠ ins inversion inv marker chromosome, unknown origin mar ring chromosome r s stemline (used with clonal evolution) sideline (used with clonal evolution) sdl translocation t ? designates uncertainty (used in place of, or in front of a finding) / separates clones (for mosaic karyotypes) separates clones (for chimeric karyotypes) //indicate number of cells (for mosaic or chimeric karyotypes)

Case 1: CHR BM for a patient after treatment for AML shows disease persistence

46,XY,t(6;11)(p21.1;q23)[2]/46,XY[18]

Rearrangement involving 11q23 (MLL/KMT2A) associated w/ a poor prognosis in AML

Case 2: AML, CHR BM reveals complex karyotype with multiple related abnormal clones, shows clonal evolution

46,XX,add(5)(q15),del(9)(q31),del(20)(q11.2q13.1)[4]/46-47,sl,+8,ins(11;?)(q13;?),2-12dmin[cp13]/46,XX[3]

Complex karyotypes are associated w/ a poor prognosis in AML

Case3: CHR BM reveals trisomy 21 in a newborn male with pancytopenia (uncertain if patient has Down syndrome) 47,XY,+21[20]?c

- Careful with abnormalities present in every cell ?constitutional
- DS patients have an increased risk of transient myeloid disease and ALL
 - Trisomy 21 is a recurrent acquired change in hematologic disease
- Test PB lymphocytes to see whether abnormality is constitutional/clonal

Case 4: CHR BM on a patient with multiple myeloma (MM) reveals a complex karyotype

44-45,XY,+3,-13,-14,der(16)t(16;17)(q11.2;q21),-17[5]/46,XY[19]

Loss of Chromosome 17 (TP53 gene) is associated with unfavorable prognosis in MM (and virtually all other cancers)

<u>Principles of Cytogenetics</u> <u>Categorical Course</u> Introduction to Cytogenetics 2

Erica Andersen, PhD Medical Director, Cytogenetics and Genomic Microarray, ARUP Laboratories Assistant Professor, Department of Pathology University of Utah