Non-neoplastic Kidney Pathology for the General Surgical Pathologist

Marc Barry MD Department of Pathology University of Utah and ARUP Labs 2/12/20

Learning Objectives

- To appreciate the most common pathologic findings in the nonneoplastic component of a nephrectomy or partial nephrectomy specimen (a component which is part of the CAP kidney tumor template), and to understand the potential clinical significance of these findings.
- To understand the role of pathology in the workup of the donor kidney for transplantation, and to appreciate common findings at frozen section, and the clinical significance of these findings.
- To appreciate common pathologic findings in the autopsy kidney, and to be able to differentiate between acute tubular injury and tubular autolytic artifact.

Tumor Nephrectomy Specimens

• Renal cell carcinoma:

- 74,000 new cases per year in the US currently
- SEER Registry (2005-11)
 - Localized: 65% (most stage 1)
- Steady decrease in tumor size at presentation likely due to incidental detection on CT/MRI (stage migration)
- 5 year survival has greatly improved over 50 years, especially good for stage 1 (95-100%)
- We are seeing more nephrectomy/partial nephrectomy specimens!

End stage renal disease

• Despite dialysis, mortality from ESRD is high

•

- Medicare patients >65 yo, on dialysis: - Substantially higher mortality than similar patients with cancer, diabetes, cardiovascular disease
- cancer, diabetes, cardiovascular disease

 Kidney cancer and chronic kidney disease share risk
- factors (hypertension, diabetes, smoking...) - 25% of patients have CKD \rightarrow risk for ESRD \rightarrow risk of death
- Implications for the importance of the assessment of the non-neoplastic component of the kidney:
- In some patients the medical kidney disease may be the most consequential finding...may allow earlier intervention/preventive measures

Pathology assessment of nonneoplastic kidney

- 1. Diagnosis of specific pathologic entities
 - Bijol (2006): pathologic abnormalities in 60% of tumor nephrectomies
 - Mostly vascular sclerosing disease with parenchymal scarring, diabetic renal disease
 - Salvatore (2013) found similar prevalence
 - Henriksen (2007): 24/246 tumor nephrectomies had non-neoplastic disease
 - Mostly diabetic renal disease and vascular pathology
 - (including thrombotic microangiopathy, atheroembolism)
 - 88% of these diagnoses were initially missed!

Pathology assessment of nonneoplastic kidney

Spectrum of findings:

- Hypertensive kidney disease (30%)
- Diabetic kidney disease (20%)
- Thrombotic microangiopathy
- Focal segmental glomerulosclerosis
- IgA nephropathy
- Amyloidosis
- Etc.

Pathology assessment of nonneoplastic kidney

- 2. Help predict risk of progressive renal failure
 - >20% Global glomerulosclerosis or advanced diffuse diabetic glomerulosclerosis predict significant decline in kidney function at six months Bijol (2006)
 - For each 10% increase in glomerulosclerosis, estimated GFR decreased by 9% from baseline Gautam (2010)
- →NB implications for preventive measures

Progression of kidney disease

- Concept of structural and functional adaptations to loss of kidney mass
- Once enough damage has been done, kidney will progress to failure even if the initial disease is no longer active – a final common pathway to chronic injury
- Kidney injures itself trying to compensate
- Nephron loss → hyperfiltration of remaining
- nephrons→segmental/global glomerulosclerosis • Secondary focal segmental glomerulosclerosis
- Particular issue for neprectomy is patient with CKD
- Motivates: nephron sparing surgery, ablation etc (remember 25% with RCC already have CKD)

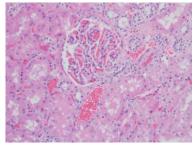
CAP Cancer protocols: renal cancer, and ureter and renal pelvis cancers

Pathologic Findings in Nonneoplastic Kidney (select all that apply) ____ Insufficient tissue

None identified

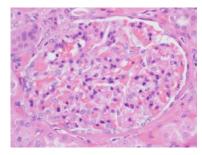
- Glomerular disease (specify type):
- Tubulointerstitial disease (specify type):

Vascular disease (specify type):

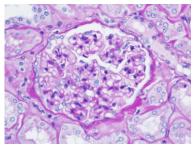

Quick Tour of Renal Pathology!

- Kidney pathology is esoteric
- Terminologically difficult
- Various special stains used routinely
- Specific modalities (IF, EM) used routinely
- Clinical-pathologic correlation is very important

But remember:


- Common things are common (esp. HTN, DM)
- In this session I try to approach from the H&E (maybe PAS...) vantage point
- Cover some of the most common patterns

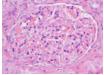
Normal Kidney



Four compartments: glomeruli, tubules, interstitium, vessels

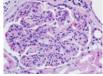
Normal Kidney (H+E)

Normal Kidney (PAS)


The most helpful stain for assessing glomerular basement membranes and mesangium (stains glycoproteins particularly well)

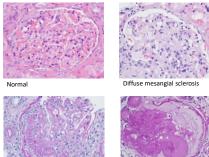

Terminology

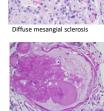
Glomerular:


- Segmental, Global: @ glomerulus level
- Focal, Diffuse: @ biopsy level
- Endocapillary proliferation: glomerular capillary loops filled with cells
- Mesangial proliferation: too many cells in the little mesangial areas (>3 cells on a nice section)
- Extracapillary proliferation: Crescent formation

Glomerular Proliferative Patterns

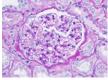
Norma



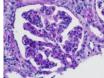

Endocapillary Proliferation

Extracapillary Proliferation / Crescent

Glomerular Sclerosing Patterns

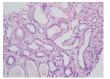


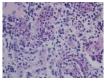
Segmental sclerosis



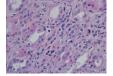
Global sclerosis

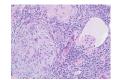
Thickened Glomerular Basement Membranes



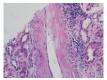

Membranoproliferative GN

Other Causes include: Advanced Diabetic glomerulosclerosis Amyloidosis Chronic thrombotic microangiopathy

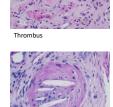

Tubulo-interstitial patterns of injury


Acute Tubular Injury

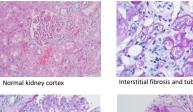
Acute pyelonephritis (neutrophils)

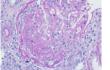


Allergic Interstitial Nephritis (Eosinophils)


Granulomatous Interstitial Nephritis

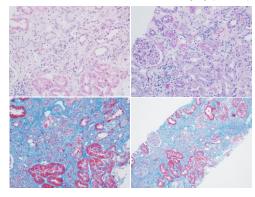
Vascular patterns of injury


Vascular sclerosis



Atheroembolism

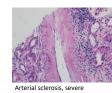
Chronic Parenchymal Damage



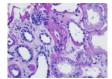
(Secondary focal segmental sclerosis)

) Global sclerosis

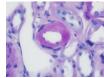
Interstitial fibrosis and tubular atrophy ("IFTA")



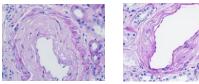
Hypertension and the kidney


- Commonest disease in tumor nephrectomies (30%)
 - Areas of subcapsular scarring (grossly granular)
 - Fibrosis of intima
 - Thinning or hypertrophy of media
 - Hyalinosis of arterioles
- Accelerated/malignant hypertension
 - Fibrinoid necrosis of vessel walls
 - Mucoid change of intima
 - Hyperplastic change of small arteries/arterioles ("onionskinning")
 - Thrombi

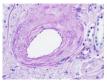
Hypertensive Kidney Disease



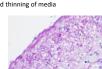
Arterial sclerosis, moderate



Arteriolosclerosis

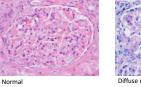


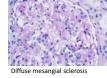
Arteriolar hyalinosis


Hypertensive Arterial Disease

Fibrosis of intima and thinning of media

Reduplication of internal elastic lamina

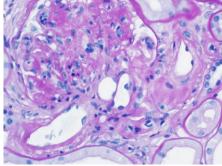



Hypertrophy of media

Diabetes and the kidney

- Second commonest disease in tumor nephrectomies
- All compartments involved
- Most characteristic (but not completely specific): glomerular findings
 - Diffuse mesangial sclerosis
 - Nodular sclerosis (Kimmelstiel-Wilson nodules)
- Associated with prominent arteriolar hyalinosis (esp. involvement of both afferent and efferent arterioles)
- Increased risk for arterial sclerosis
- Chronic parenchymal damage (IFTA)

Diabetic Glomerulosclerosis

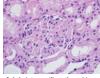


Nodular Glomerulosclerosis

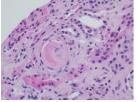
Diabetic Kidney Disease

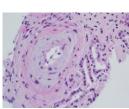

Hyalinosis of afferent and efferent arterioles

Thrombotic Microangiopathy (TMA)


- Microvascular endothelial injury and thrombosis
- May have important systemic implications
- Many causes (HUS, TTP, DIC, APLA, scleroderma, malignant hypertension, drug etc)
- Acute TMA:
 - "Bloodless glomeruli", endothelial swelling, mesangiolysis, thrombi, intimal mucoid change, fragmented red cells
- Chronic TMA:
 - Glomerular basement membrane reduplication (double contours/tram-tracking)
 - Concentric intimal fibrosis ("onion-skinning" of arteries)

Acute Thrombotic Microangiopathy


Thrombus at vascular pole, fragmented RBCs



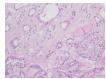
Subtle intracapillary thrombi

Arterial/arteriolar thrombus

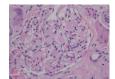
Mucoid intimal change of artery

Chronic Thrombotic Microangiopathy

Hyperplastic arteriolosclerosis / "onion skinning


Amyloidosis

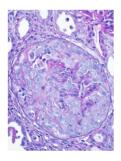
- May have important systemic implications also (e.g. myeloma, chronic inflammatory disease etc)
- Many causes: AL, AA, ALECT2, etc
- May deposit in glomeruli, vessels, interstitium and tubular basement membranes
- H&E: eosinophilic, PAS: pale, Congo Red positive (with green birefringence on polarized microscopy)
- Can send for typing by Mass Spectrometry (FFPE)


Amyloidosis

Amyloid involving glomerulus

and interstitium

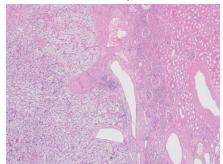
Amyloid involving interstitium



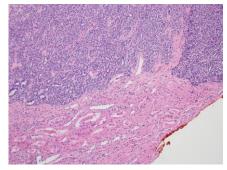
Amyloid involving glomerulus, simulating nodular diabetic GS

Don't forget Congo Red stain if suspicious!

Crescentic Glomerulonephritis

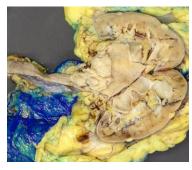


- The most severe manifestation of glomerular disease
 - Anti-GBM disease - Pauci-immune (ANCA-
 - associated)
 - Associated with immune complex deposition
- IF and EM are key in diagnosis (can do on FFPE material)

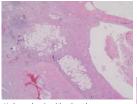

Direct Tumor Effects

- 1. Tumor capsule/pseudocapsule formation
 - Underlies the recommendation to sample away from tumor
 - Localized chronic parenchymal damage
 - May have surrounding zone of acute tubular injury
- 2. Consequences of obstruction due to tumor
 - Chronic pyelonephritis
 - May be significant chronic parenchymal damage associated specifically with this (rather than other intrinsic kidney disease)
- →These findings do not generalize to the contralateral kidney

Tumor capsule

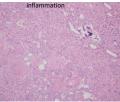


Benign tumors may lack capsule



Above: metanephric adenoma Another characteristic example is oncocytoma

Obstruction due to tumor



Obstruction due to tumor

Hydronephrosis with calyceal dilatation, and parenchymal atrophy and inflammation

Parenchymal chronic damage: global glomerulosclerosis, and marked interstitial fibrosis and tubular atrophy Interstitial chronic inflammation

Reporting

Pathologic Findings in Nonneoplastic Kidney (select all that apply) ____ Insufficient tissue

None identified

- Glomerular disease (specify type): Tubulointerstitial disease (specify type):
- ____ Tubulointerstitial disease (specify type) ____ Vascular disease (specify type): _____
- ____ Other (specify): _____

Tumor Nephrectomy Summary

- Take section of non-neoplastic kidney at least 1 cm away from tumor if possible
- Consider ordering PAS (or Jones silver) up front
- Systematically approach pathology (4 compartments)
- Use synoptic reports
- Don't forget to assess in **benign** tumor specimens!
- Use PAS, Congo Red, other stains as needed
- Remember, IF and EM can be performed on FFPE tissue
- The pathologist can be a **conduit** between urologist and nephrology

Donor Kidney Assessment

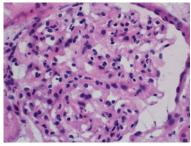
- Previous donor criteria
 - SCD: "standard criteria donor"
 - ECD: "expanded criteria donor"
- Currently "KDPI" (Kidney Donor Profile Index)
 - Score based on multiple clinical and some laboratory values
 - Low score: shorter graft survival
- · Consequence: seeing more donor biopsies!

Initial Approach to Specimen

- Wedge (usually) or needle biopsy
- For frozen section (usually) or rapid processing
- Gently blot tissue dry
- Freeze all tissue
- Try to embed perpendicular to capsule
- Multiple levels (donor services request some)
- Adequate:
 - 25 or more glomeruli
 - 2 or more vessels
- Donor services provide form to fill out

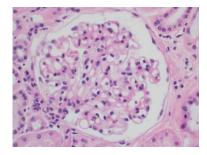
General Approach to Assessment

- Assessment of degree of chronic damage
 - Percentage global glomerulosclerosis (excluding subcapsular scarring)
 - Amount of IFTA
- Assessment of vessels for sclerosis, hyalinosis
- ?Glomerular thrombi
- ?Acute tubular injury
- Other features (if seen)

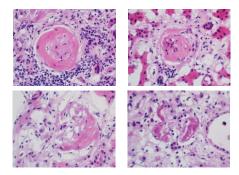

Remember:

- Degree of chronic damage and vascular sclerosis may help predict graft survival
- Acute diseases less common, may not impact graft survival (may have delayed function)
- BUT
- "Histopathologic assessment of preimplantation biopsies is one component of donor organ assessment and is not an exclusive determinant... Rigidly defined cutoffs...should not be used in isolation..." Banff consensus (Liapis 2017)

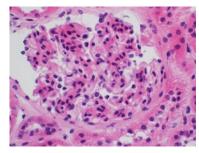
Frozen Section Artifacts


- Glomeruli:
 - Normal may appear hypercellular, pathology may be difficult to assess (e.g. diabetic glomerulosclerosis)
- Tubules:
 - Retraction normal may appear like acute injury or atrophy
- Interstitium:
 - Can look "edematous", "atrophic"
- Vessels:
 - Arteriolar hyalinosis may be difficult to see

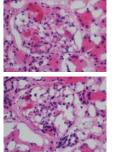
Glomerulus: Frozen Section

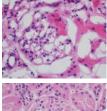


Is it hypercellular?

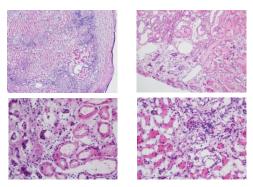

Glomerulus: Permanent (same case)

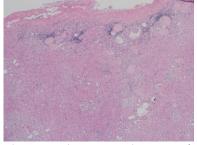
Global Glomerulosclerosis



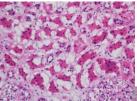

Diabetic Glomerulosclerosis

May not always be easy to appreciate, esp. earlier stage

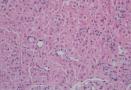

Glomerular Thrombi



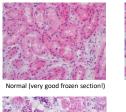
Interstitial Fibrosis and Tubular Atrophy

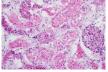


Pitfall for assessment of chronic damage: subcapsular scarring with hypertension

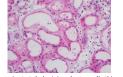

Subcapsular scarring seen in hypertension may not be representative of IFTA in the sample, and is excluded from IFTA quantification (it is noted separately)

Tubular Frozen Section Artifact

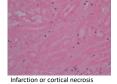


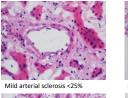

Frozen section

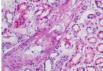
Same case - permanent section



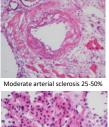
Acute Tubular Injury/Necrosis/Infarction



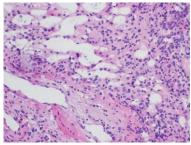

Acute tubular necrosis



Acute tubular injury (not usually this easy!)



Arterial Sclerosis and Arteriolar Hyalinosis



Severe arterial sclerosis >50%

Arteriolar hyalinosis: may be difficult to see

May receive "Lesion" biopsies for frozen

Angiomyolipoma

How do we do?

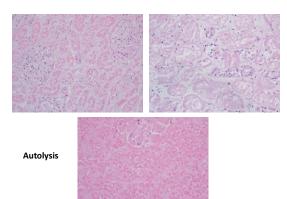
- Banff consensus (Liapis 2017), included study of pathologist interobserver variability
- Good-to-fair reproducibility for scoring of
 - Percentage glomerulosclerosis
 - Arterial intimal fibrosis
 - Interstitial fibrosis
- Arteriolar hyalinosis: poor reproducibility
- Acute tubular injury: poorer reproducibility
- Wedge biopsy: associated with better reproducibility for scoring of #glomeruli, glomerulosclerosis, interstitial fibrosis and tubular atrophy

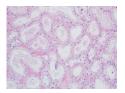
Reporting

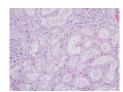
None	Mild	Moderate	Severe
<5%;	6-25%	26-50%	>50% of cortex involved
None	Mild	Moderate	Severe
0%;	<25%	26-50%	>50% of cortical tubules involved
None <10%;	Mild 10-25%		
None	Mild	Moderate	Severe
0%;	<25%	26-50%	>50% vascular narrowing
None	Mild *	' Moderati	* Severe *
	<5%; None 0%; None <10%; None 0%;	<5%; 6-25% None Mild 0%; <25% None Mild <10%; 10-25% None Mild 0%; <25%	<5%:

Banff Consensus (Liapis 2017)

	None	Mild *	Moderate*	Severe*
mild <10% of capillaries oc evaluate in the most severely			% occlusion; severe:	>25% occlusion
Acute tubular injury/neo	crosis 1	lone† Mi	d† Moderate†	Severe†
Mild: ATI – epithelial flattening COAGULATIVE TYPE necrosis; 5			opout, loss of brush bor	der; Moderate – focal
Other findings: (FSGS,	nodular g	omerulos	clerosis, tumor, e	tc.)

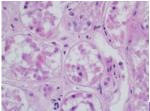

Banff Consensus (Liapis 2017)


Autopsy Kidney

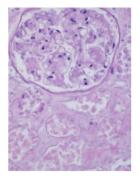

- More than 90,000 die of kidney disease in US per year
- Kidney findings are common at autopsy (Perrone 2018) — ~31% in 140 autopsies over 2 years at UChicago)
 - ~31% in 140 autopsies over 2 years at UChicago
 60% of these had been missed at initial review
- Commonest findings in that series:
 - Diabetic nephropathy, bile cast nephropathy, thrombotic microangiopathy, infection-related GN, focal necrotizing/crescentic GN, LCCN etc (long tail of rarer cases)
 - Missed: Diabetic nephropathy (11/22), TMA (3/5), infection–related GN (3/4), LCCN (2/2)
- A key issue in pathology assessment is autolysis

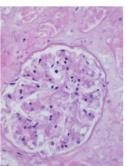
Autolysis versus Acute Tubular Injury


- Autolysis
 - Nuclear pyknosis (tubules and other compartments)
 - Degenerative changes of tubular cells (prox and distal)
 - Detachment of tubular cells from basement membranes
- · Acute tubular injury
 - Proximal tubules particularly affected, distal tubules may be relatively preserved
 - Luminal dilatation, signs of regeneration

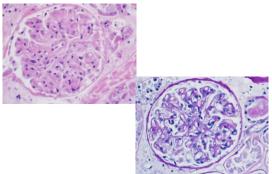



Acute tubular injury

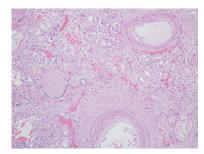


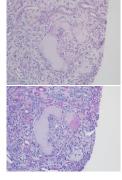


Autolysis



Diabetic Glomerulosclerosis




TMA (Chronic in this case)

IFTA and Vascular Sclerosis



Monoclonal Immunoglobulin (Light Chain) Cast Nephropathy

- PAS pale (vs typical tubular casts)
- May be associated with giant cell and neutrophilic reaction
- "Shatter artifact" Associated acute tubular injury
- (Light chain restriction on IF)

Bile Cast Nephropathy

- Associated with severe liver dysfunction •
- Causes acute tubular injury
- Red/yellow/green tubular casts Differential diagnosis for pigmented casts:
 - Hemoglobin
 - Myoglobin
 - LCCN
 - Hemosiderin

Autopsy Kidney Summary

- Many autopsy cases have kidney disease
- Most disease can be at least suspected on H&E
- IF and EM can be performed on FFPE tissue (but consider triaging fresh tissue if there is a suspicious clinical history)

Thank you!