### Non-neoplastic Kidney Pathology for the General Surgical Pathologist

Marc Barry MD Department of Pathology University of Utah and ARUP Labs 2/12/20

# Learning Objectives

- To appreciate the most common pathologic findings in the nonneoplastic component of a nephrectomy or partial nephrectomy specimen (a component which is part of the CAP kidney tumor template), and to understand the potential clinical significance of these findings.
- To understand the role of pathology in the workup of the donor kidney for transplantation, and to appreciate common findings at frozen section, and the clinical significance of these findings.
- To appreciate common pathologic findings in the autopsy kidney, and to be able to differentiate between acute tubular injury and tubular autolytic artifact.

# **Tumor Nephrectomy Specimens**

- Renal cell carcinoma:
  - 74,000 new cases per year in the US currently
  - SEER Registry (2005-11)
    - Localized: 65% (most stage 1)
  - Steady decrease in tumor size at presentation likely due to incidental detection on CT/MRI (stage migration)
  - 5 year survival has greatly improved over 50 years, especially good for stage 1 (95-100%)
- We are seeing more nephrectomy/partial nephrectomy specimens!

## End stage renal disease

- Despite dialysis, mortality from ESRD is high
- Medicare patients >65 yo, on dialysis:
  - Substantially higher mortality than similar patients with cancer, diabetes, cardiovascular disease
- Kidney cancer and chronic kidney disease share risk factors (hypertension, diabetes, smoking...)
  - 25% of patients have CKD  $\rightarrow$  risk for ESRD  $\rightarrow$  risk of death
- Implications for the importance of the assessment of the non-neoplastic component of the kidney:

 In some patients the medical kidney disease may be the most consequential finding...may allow earlier intervention/preventive measures

## Pathology assessment of nonneoplastic kidney

- 1. Diagnosis of specific pathologic entities
  - Bijol (2006): pathologic abnormalities in 60% of tumor nephrectomies
    - Mostly vascular sclerosing disease with parenchymal scarring, diabetic renal disease
    - Salvatore (2013) found similar prevalence
  - Henriksen (2007): 24/246 tumor nephrectomies had non-neoplastic disease
    - Mostly diabetic renal disease and vascular pathology (including thrombotic microangiopathy, atheroembolism)
    - 88% of these diagnoses were initially missed!

## Pathology assessment of nonneoplastic kidney

Spectrum of findings:

- Hypertensive kidney disease (30%)
- Diabetic kidney disease (20%)
- Thrombotic microangiopathy
- Focal segmental glomerulosclerosis
- IgA nephropathy
- Amyloidosis
- Etc.

## Pathology assessment of nonneoplastic kidney

- 2. Help predict risk of progressive renal failure
  - >20% Global glomerulosclerosis or advanced diffuse diabetic glomerulosclerosis predict significant decline in kidney function at six months Bijol (2006)
  - For each 10% increase in glomerulosclerosis, estimated GFR decreased by 9% from baseline Gautam (2010)
- $\rightarrow$  NB implications for preventive measures

# Progression of kidney disease

- Concept of structural and functional adaptations to loss of kidney mass
- Once enough damage has been done, kidney will progress to failure even if the initial disease is no longer active – a final common pathway to chronic injury
- Kidney injures itself trying to compensate
- Nephron loss→hyperfiltration of remaining nephrons→segmental/global glomerulosclerosis
- Secondary focal segmental glomerulosclerosis
- Particular issue for neprectomy is patient with CKD
- Motivates: nephron sparing surgery, ablation etc (remember 25% with RCC already have CKD)

# CAP Cancer protocols: renal cancer, and ureter and renal pelvis cancers

Pathologic Findings in Nonneoplastic Kidney (select all that apply)

- \_\_\_\_ Insufficient tissue
- \_\_\_ None identified
- \_\_\_\_ Glomerular disease (specify type): \_\_\_\_\_
- \_\_\_\_Tubulointerstitial disease (specify type): \_\_\_\_\_
- \_\_\_\_ Vascular disease (specify type): \_\_\_\_\_
- \_\_\_\_ Other (specify): \_\_\_\_\_

# Quick Tour of Renal Pathology!

- Kidney pathology is esoteric
- Terminologically difficult
- Various special stains used routinely
- Specific modalities (IF, EM) used routinely
- Clinical-pathologic correlation is very important

But remember:

- Common things are common (esp. HTN, DM)
- In this session I try to approach from the H&E (maybe PAS...) vantage point
- Cover some of the most common patterns

## Normal Kidney



Four compartments: glomeruli, tubules, interstitium, vessels

## Normal Kidney (H+E)



## Normal Kidney (PAS)



The most helpful stain for assessing glomerular basement membranes and mesangium (stains glycoproteins particularly well)

# Terminology

Glomerular:

- Segmental, Global: @ glomerulus level
- Focal, Diffuse: @ biopsy level
- Endocapillary proliferation: glomerular capillary loops filled with cells
- Mesangial proliferation: too many cells in the little mesangial areas (>3 cells on a nice section)
- Extracapillary proliferation: Crescent formation

#### **Glomerular Proliferative Patterns**



Normal



**Endocapillary Proliferation** 



**Mesangial Proliferation** 



**Extracapillary Proliferation / Crescent** 

#### **Glomerular Sclerosing Patterns**



Normal



Segmental sclerosis



Diffuse mesangial sclerosis



**Global sclerosis** 

#### **Thickened Glomerular Basement Membranes**



Normal





Membranous nephropathy

Other Causes include:

Advanced Diabetic glomerulosclerosis Amyloidosis Chronic thrombotic microangiopathy

Membranoproliferative GN

#### Tubulo-interstitial patterns of injury



Acute Tubular Injury



Acute pyelonephritis (neutrophils)



Allergic Interstitial Nephritis (Eosinophils)



**Granulomatous Interstitial Nephritis** 

#### Vascular patterns of injury



Vascular sclerosis



Thrombus



Vasculitis



Atheroembolism

#### **Chronic Parenchymal Damage**



Normal kidney cortex



Interstitial fibrosis and tubular atrophy



(Secondary focal segmental sclerosis)



**Global sclerosis** 

#### Interstitial fibrosis and tubular atrophy ("IFTA")



# Hypertension and the kidney

- Commonest disease in tumor nephrectomies (30%)
  - Areas of subcapsular scarring (grossly granular)
  - Fibrosis of intima
  - Thinning or hypertrophy of media
  - Hyalinosis of arterioles
- Accelerated/malignant hypertension
  - Fibrinoid necrosis of vessel walls
  - Mucoid change of intima
  - Hyperplastic change of small arteries/arterioles ("onionskinning")
  - Thrombi

#### Hypertensive Kidney Disease



Arterial sclerosis, moderate



Arteriolosclerosis



Arterial sclerosis, severe



Arteriolar hyalinosis

#### Hypertensive Arterial Disease





Fibrosis of intima and thinning of media



Reduplication of internal elastic lamina



Hypertrophy of media

# Diabetes and the kidney

- Second commonest disease in tumor nephrectomies
- All compartments involved
- Most characteristic (but not completely specific): glomerular findings
  - Diffuse mesangial sclerosis
  - Nodular sclerosis (Kimmelstiel-Wilson nodules)
- Associated with prominent arteriolar hyalinosis (esp. involvement of both afferent and efferent arterioles)
- Increased risk for arterial sclerosis
- Chronic parenchymal damage (IFTA)

#### **Diabetic Glomerulosclerosis**



Normal



Nodular Glomerulosclerosis



Diffuse mesangial sclerosis



**Global sclerosis** 

#### **Diabetic Kidney Disease**



Hyalinosis of afferent and efferent arterioles

## Thrombotic Microangiopathy (TMA)

- Microvascular endothelial injury and thrombosis
- May have important systemic implications
- Many causes (HUS, TTP, DIC, APLA, scleroderma, malignant hypertension, drug etc)
- Acute TMA:
  - "Bloodless glomeruli", endothelial swelling, mesangiolysis, thrombi, intimal mucoid change, fragmented red cells
- Chronic TMA:
  - Glomerular basement membrane reduplication (double contours/tram-tracking)
  - Concentric intimal fibrosis ("onion-skinning" of arteries)

#### Acute Thrombotic Microangiopathy



Thrombus at vascular pole, fragmented RBCs



Subtle intracapillary thrombi



Thrombus



"Bloodless" appearance, fragmented RBCs

#### Acute Thrombotic Microangiopathy



Arterial/arteriolar thrombus



Mucoid intimal change of artery

#### Chronic Thrombotic Microangiopathy





Glomerular basement membrane reduplication: aka peripheral capillary loop "double contouring" or "tram-tracking"





Hyperplastic arteriolosclerosis / "onion skinning"

# Amyloidosis

- May have important systemic implications also (e.g. myeloma, chronic inflammatory disease etc)
- Many causes: AL, AA, ALECT2, etc
- May deposit in glomeruli, vessels, interstitium and tubular basement membranes
- H&E: eosinophilic, PAS: pale, Congo Red positive (with green birefringence on polarized microscopy)
- Can send for typing by Mass Spectrometry (FFPE)

#### Amyloidosis



Amyloid involving glomerulus and interstitium



Amyloid involving interstitium



Amyloid involving glomerulus, simulating nodular diabetic GS



Don't forget Congo Red stain if suspicious!

## **Crescentic Glomerulonephritis**



- The most severe manifestation of glomerular disease
  - Anti-GBM disease
  - Pauci-immune (ANCAassociated)
  - Associated with immune complex deposition
- IF and EM are key in diagnosis (can do on FFPE material)

# **Direct Tumor Effects**

- 1. Tumor capsule/pseudocapsule formation
  - Underlies the recommendation to sample away from tumor
  - Localized chronic parenchymal damage
  - May have surrounding zone of acute tubular injury
- 2. Consequences of obstruction due to tumor
  - Chronic pyelonephritis
  - May be significant chronic parenchymal damage associated specifically with this (rather than other intrinsic kidney disease)
- →These findings do not generalize to the contralateral kidney

#### Tumor capsule


#### Benign tumors may lack capsule



Above: metanephric adenoma Another characteristic example is oncocytoma

#### Obstruction due to tumor



#### Obstruction due to tumor



Hydronephrosis with calyceal dilatation, and parenchymal atrophy and inflammation

Parenchymal chronic damage: global glomerulosclerosis, and marked interstitial fibrosis and tubular atrophy Interstitial chronic



# Reporting

#### Pathologic Findings in Nonneoplastic Kidney (select all that apply)

- \_\_\_\_ Insufficient tissue
- \_\_\_ None identified
- \_\_\_\_ Glomerular disease (specify type): \_\_\_\_\_
- \_\_\_\_ Tubulointerstitial disease (specify type): \_\_\_\_\_
- Vascular disease (specify type):
- \_\_\_\_ Other (specify): \_\_\_\_\_

# Tumor Nephrectomy Summary

- Take section of non-neoplastic kidney at least 1 cm away from tumor if possible
- Consider ordering **PAS** (or Jones silver) up front
- **Systematically** approach pathology (4 compartments)
- Use synoptic reports
- Don't forget to assess in **benign** tumor specimens!
- Use PAS, Congo Red, other stains as needed
- Remember, IF and EM can be performed on FFPE tissue
- The pathologist can be a conduit between urologist and nephrology

# Donor Kidney Assessment

- Previous donor criteria
  - SCD: "standard criteria donor"
  - ECD: "expanded criteria donor"
- Currently "KDPI" (Kidney Donor Profile Index)
  - Score based on multiple clinical and some laboratory values
  - Low score: shorter graft survival
- Consequence: seeing more donor biopsies!

# Initial Approach to Specimen

- Wedge (usually) or needle biopsy
- For frozen section (usually) or rapid processing
- Gently blot tissue dry
- Freeze all tissue
- Try to embed perpendicular to capsule
- Multiple levels (donor services request some)
- Adequate:
  - 25 or more glomeruli
  - 2 or more vessels
- Donor services provide form to fill out

# General Approach to Assessment

- Assessment of degree of chronic damage
  - Percentage global glomerulosclerosis (excluding subcapsular scarring)
  - Amount of IFTA
- Assessment of vessels for sclerosis, hyalinosis
- ?Glomerular thrombi
- ?Acute tubular injury
- Other features (if seen)

# Remember:

- Degree of chronic damage and vascular sclerosis may help predict graft survival
- Acute diseases less common, may not impact graft survival (may have delayed function)
  BUT
- "Histopathologic assessment of preimplantation biopsies is one component of donor organ assessment and is not an exclusive determinant..... Rigidly defined cutoffs...should not be used in isolation..." Banff consensus (Liapis 2017)

# **Frozen Section Artifacts**

- Glomeruli:
  - Normal may appear hypercellular, pathology may be difficult to assess (e.g. diabetic glomerulosclerosis)
- Tubules:
  - Retraction normal may appear like acute injury or atrophy
- Interstitium:
  - Can look "edematous", "atrophic"
- Vessels:
  - Arteriolar hyalinosis may be difficult to see

# **Glomerulus: Frozen Section**



Is it hypercellular?

#### Glomerulus: Permanent (same case)



#### **Global Glomerulosclerosis**









## **Diabetic Glomerulosclerosis**



May not always be easy to appreciate, esp. earlier stage

## Glomerular Thrombi









Perm

#### Interstitial Fibrosis and Tubular Atrophy









# Pitfall for assessment of chronic damage: subcapsular scarring with hypertension



Subcapsular scarring seen in hypertension may not be representative of IFTA in the sample, and is excluded from IFTA quantification (it is noted separately)

#### **Tubular Frozen Section Artifact**



Same case - permanent section

**Frozen section** 



#### Acute Tubular Injury/Necrosis/Infarction



Normal (very good frozen section!)



Acute tubular necrosis



Acute tubular injury (not usually this easy!)



Infarction or cortical necrosis

#### **Arterial Sclerosis and Arteriolar Hyalinosis**



Mild arterial sclerosis <25%



Severe arterial sclerosis >50%



Moderate arterial sclerosis 25-50%



Arteriolar hyalinosis: may be difficult to see

#### May receive "Lesion" biopsies for frozen



Angiomyolipoma

# How do we do?

- Banff consensus (Liapis 2017), included study of pathologist interobserver variability
- Good-to-fair reproducibility for scoring of
  - Percentage glomerulosclerosis
  - Arterial intimal fibrosis
  - Interstitial fibrosis
- Arteriolar hyalinosis: poor reproducibility
- Acute tubular injury: poorer reproducibility
- Wedge biopsy: associated with better reproducibility for scoring of #glomeruli, glomerulosclerosis, interstitial fibrosis and tubular atrophy

# Reporting

| Interstitial fibrosis                                                                                                       | None<br><5%;  | Mild<br>6-25%  | Moderate<br>26-50% | evere<br>•50% of cortex in | volved                  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|---------------|----------------|--------------------|----------------------------|-------------------------|--|--|--|
| Tubular atrophy                                                                                                             | None<br>0%;   | Mild<br><25%   | Moderate<br>26-50% | Severe<br>>50% of co       | rtical tubules involved |  |  |  |
| Interstitial inflammation                                                                                                   | None<br><10%; | Mild<br>10-25% | Moderat<br>26-50%  | Severe<br>>50% of co       | rtex involved           |  |  |  |
| Arterial intimal fibrosis                                                                                                   | None          | Mild           | Moderate           | Severe                     |                         |  |  |  |
|                                                                                                                             | 0%;           | <25%           | 26-50%             | >50% vasc                  | ular narrowing          |  |  |  |
| <b>Arteriolar hyalinosis</b><br>hyalin restricted to<br>subendothelial layer                                                | None          | Mild *         | * Moderate         | Severe *                   |                         |  |  |  |
| *Mild: at least one arteriole<br>Moderate: more than one arteriole<br>Severe: multiple arterioles affected, circumferential |               |                |                    |                            |                         |  |  |  |

Banff Consensus (Liapis 2017)

| Glomerular thrombi                                                                                           | None   | Mild *     | Moderate*    | Severe* |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|--------|------------|--------------|---------|--|--|--|--|--|
|                                                                                                              |        |            |              |         |  |  |  |  |  |
| *mild <10% of capillaries occluded; moderate: 10-25% occlusion; severe: >25% occlusion                       |        |            |              |         |  |  |  |  |  |
| evaluate in the most severely affected glomerulus                                                            |        |            |              |         |  |  |  |  |  |
|                                                                                                              |        |            |              |         |  |  |  |  |  |
| Acute tubular injury/necr                                                                                    | osis N | lone† Mild | † Moderate † | Severe† |  |  |  |  |  |
|                                                                                                              |        |            |              |         |  |  |  |  |  |
| †Mild: ATI – epithelial flattening, tubule dilation, nuclear dropout, loss of brush border; Moderate – focal |        |            |              |         |  |  |  |  |  |
| COAdolATIVE TTE licerosis, severe - illarction.                                                              |        |            |              |         |  |  |  |  |  |
| Other findings: (FSGS, nodular glomerulosclerosis, tumor, etc.)                                              |        |            |              |         |  |  |  |  |  |
|                                                                                                              |        |            |              |         |  |  |  |  |  |
|                                                                                                              |        |            |              |         |  |  |  |  |  |
|                                                                                                              |        |            |              |         |  |  |  |  |  |
|                                                                                                              |        |            |              |         |  |  |  |  |  |

# Autopsy Kidney

- More than 90,000 die of kidney disease in US per year
- Kidney findings are common at autopsy (Perrone 2018)
  - ~31% in 140 autopsies over 2 years at UChicago)
  - 60% of these had been missed at initial review
- Commonest findings in that series:
  - Diabetic nephropathy, bile cast nephropathy, thrombotic microangiopathy, infection-related GN, focal necrotizing/crescentic GN, LCCN etc (long tail of rarer cases)
  - Missed: Diabetic nephropathy (11/22), TMA (3/5), infection–related GN (3/4), LCCN (2/2)
- A key issue in pathology assessment is autolysis

## Autolysis versus Acute Tubular Injury

- Autolysis
  - Nuclear pyknosis (tubules and other compartments)
  - Degenerative changes of tubular cells (prox and distal)
  - Detachment of tubular cells from basement membranes
- Acute tubular injury
  - Proximal tubules particularly affected, distal tubules may be relatively preserved
  - Luminal dilatation, signs of regeneration











Acute tubular injury







#### Autolysis

#### Acute tubular injury



#### **Diabetic Glomerulosclerosis**

![](_page_65_Picture_1.jpeg)

![](_page_65_Picture_2.jpeg)

# TMA (Chronic in this case)

![](_page_66_Picture_1.jpeg)

![](_page_66_Picture_2.jpeg)

#### **IFTA and Vascular Sclerosis**

![](_page_67_Picture_1.jpeg)

# Monoclonal Immunoglobulin (Light Chain) Cast Nephropathy

![](_page_68_Picture_1.jpeg)

- PAS pale (vs typical tubular casts)
- May be associated with giant cell and neutrophilic reaction
- "Shatter artifact"
- Associated acute tubular injury
- (Light chain restriction on IF)

# **Bile Cast Nephropathy**

![](_page_69_Picture_1.jpeg)

- Associated with severe liver dysfunction
- Causes acute tubular injury
- Red/yellow/green tubular casts
- Differential diagnosis for pigmented casts:
  - Hemoglobin
  - Myoglobin
  - LCCN
  - Hemosiderin

# Autopsy Kidney Summary

- Many autopsy cases have kidney disease
- Most disease can be at least suspected on H&E
- IF and EM can be performed on FFPE tissue (but consider triaging fresh tissue if there is a suspicious clinical history)

Thank you!