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“Top-down” approach of investigating a disease
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‘Bottom-down” approach of investigating a disease
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Taxonomic composition for culture negative samples
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MULTI-SCALE DATA

‘Bottom-down” approach of investigating a disease
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Systems Medicine: integrative systems-level analytics for
individualized treatments

Organism / Population

Tissue / Organ

Molecular / Cellular
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Map of Disease Correlations

Correlation-based methods

* They are simple and thus very attractive

AN -" A S oidaiie
A Gene Coexpresswn Network
(Developing and Diseased Myocardium)

* They tend to overestimate the number of true
connections

* So we need to use prior or expert information to
find testable hypotheses

Chan and Loscalzo, 2012, Circulation Research
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Grace Huang
PhD

Integration
function

Dynamic network

- Transcription factor

) A microRNA

‘ Other gene

Huang, Athanassiou, Benos, 2011, Nucl Acids Res
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Discovery of important network module in
Idiopathic Pulmonary Fibrosis (IPF)
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Downregulation of let-7d in IPF patients and in mice

Control IPF Control IPF

let-7d
miR-125a
miR-126
miR-138
miR-17-3p
miR-184
miR-197
miR-203
miR-224
miR-26a
miR-30a-3p
miR-30a-5p
miR-30b
miR-30c
miR-30d
miR-338
miR-362
B\ MiR-92
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Downregulation of let-7d in IPF patients and in mice

antagomir
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Pandit, Corcoran, ..., Benos, Kaminski, 2010, Am J Resp Critic Care Med
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Correlations: what can and can not do

v'They are easy to calculate and intuitive and can be very useful

v'Provide all variables possibly related to our target variable
* ..and then some

X Generate many “false positive” edges
* In the previous example, TGF-B and EMT were also correlated (pairwise) to let-7d
* We needed prior biological knowledge to guide experiments

* Correlation vs causation
* Causation = Correlation
* Correlation does not prove causation (intervening experiments)
* Example: smoking in the 50s

© Benos lab / Univ of Pittsburgh 2014-2019




Correlation does not (always) imply causation

* A physician in the 50s may have noticed

________________

Lung cancer <:> Tar-stained fingers

These is no causal link between these variables!
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Regression models... (should be used with caution)

N ~ N
Y = Bo + z Bix; + € Y =00+ z 1:Bixi + :Bagexage + BsmkXsmk +
=1 1=
REGRESSION MODEL CAUSAL MODEL
RN RSN 0.31 -0.23
EN FI CL EN —>» FI «— CL
0176 \ %%/ 0.880 -0.48 0.86

Coefficient not 0: PE Model’s fit: PE
p-value=0.0002 p-value=0.94

Data from: American Sociological Review, 1984, vol 49, pp. 141-146 ) . ) )
Slide modified from Richard Scheines
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Regressions: what can and can not do

v'They are intuitive and flexible
v'Relatively fast to calculate

v'Provide relative contributions of all predictors to the target variable

X In practice, it is not easy to implement interactive terms on predictors when number
of predictors is large
* This may result in misleading coefficients




Some machine learning methods
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ML “black box” methods: what can and can not do

v"Can model non-linear effects
v'Very good for classification purposes (given enough data)

X They typically require large amounts of data
X Interpretability is not straightforward
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Researcher dream analysis pipeline
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Overview of the talk

* Discuss the probabilistic graphical models (PGMs) approach COMPUTATIONAL

RESEARCH

 What PGMs are / does it matter what type of variables | have?
* How can we train them and interpret the results (with caution!)
* How can we incorporate prior information

THEORY

* Applications of graphical models in biomedical and clinical research
* Clinical: Predicting lung cancer from low-dose CT scan and clinical data

* Personalized medicine: A SNP that predicts response to chemotherapy '
* Clinical: Determinants of longitudinal lung function decline in COPD patients =~ E=2 = mpp—

* Microbiome: Microbiota and clinical variables that predict culture positivity o
in lung ICU patients - :
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What PGMs are: some definitions

» A graph consists of a set of nodes (variables), some of which are connected
through edges
* Edge connections imply information transfer

* Two variables are connected when they have unique information for each other, not present
in any other variable

* Probabilistic graphical model (PGM) is a model of the data in which a graph
represents the conditional (in)dependencies between variables

 PGMs can be undirected or directed
* Undirected: easier to calculate, but contain FP edges

» Causal graphs are directed acyclic graphs (DAGs)




History of PGMSs and past successes i Modelibrancreait S ——

O Phospho-Lipids

O Perturbed in data

* The development of PGMs started in mid-90s
* First books published in 2000 _ ,

* Application of Bayesian networks to infer gene
regulatory networks in yeast. [Friedman, Science, Inferring Cellular Networks
2004] Using Probabilistic Graphical Models

Nir Friedman

. L] L

ca usal PrOtEI n- s I gn a ll ng sbe cellular networks from erates predictions of system behavior under
. ology. Probabilistic graph- different conditions (as reflected by obser-
N etwo rks De rlved from insights from the resulting vations) and illuminates the roles of various
M M M f complex cellular net- system components in these behaviors. We

® A p p I t f I | g l I I t h d . . Ii:’et:t on well-understood focus on ilisti s, whi 5
a - probabilistic models, which use
I C a I O n O C a u S a e a r n I n e O S M u ltl pa ra meter Sl ngle-cell Data nodel-based methodology stochasticity to account for measurement
abilities are illustrated by noise, variability in the biological system,

proteomics data [Sachs et al, 2005] Karen Sachs,'* Omar Perez** Dana Pe'er,”

Douglas A. Lauffenburger,'t Garry P. Nolan?+

Machine learning was applied for the automated derivation of causal influ-
ences in cellular signaling networks. This derivation relied on the simultaneous
measurement of multiple phosphorylated protein and phospholipid components
in thousands of individual primary human immune system cells. Perturbing these
cells with molecular interventions drove the ordering of connections between
pathway components, wherein Bayesian network computational methods auto-
matically elucidated most of the traditionally reported signaling relationships
and predicted novel interpathway network causalities, which we verified ex-
perimentally. Reconstruction of network models from physiologically relevant
primary single cells might be applied to understanding native-state tissue signal-
ing biology, complex drug actions, and dysfunctional signaling in diseased cells.
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History of PGMs and past successes

* Eric Schadt applies causal graphs for identification
of causal SNPs [Schadt et al, Nat Genet, 2005]

lishing Group http:/www.nature.com/naturegenetics

ARTICLES

nature |

genetlcs

An integrative genomics approach to infer causal
associations between gene expression and disease

Eric E Schadt!, John Lamb!, Xia Yang?, Jun Zhu!, Steve Edwards!, Debraj GuhaThakurta!, Solveig K Sieberts!,
Stephanie Monks?, Marc Reitman?, Chunsheng Zhang!, Pek Yee Lum', Amy Leonardson!, Rolf Thieringer,
Joseph M Metzger, Liming Yang®, John Castle!, Haoyuan Zhu!, Shera F Kash’, Thomas A Drake®,

Alan Sachs! & Aldons J Lusis?

A key goal of biomedical research is to elucidate the complex network of gene interactions underlying complex traits such as
common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integra-
tes DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expres-
sion traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in
DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function
relative to the complex traits under consideration. We show that this approach can predict transcriptional responses to single gene-
perturbation experiments using gene-expression data in the context of a segregating mouse population. We also demonstrate the
utility of this approach by identifying and experimentally validating the involvement of three new genes in susceptibility to obesity.

© Benos lab / Univ of Pittsburgh 2014-2019
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PGM underlying assumption: a causal graph generates the data

DATA GENERATING DATA (OBSERVED) LEARNED GRAPH
GRAPH

Nodes = variables
Edges = direct (causal) associations between variables
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Graph adjacency learning using conditional independencies
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Properties and Drawbacks of Graphical Models

* They can distinguish between direct and indirect effects

* They are asymptotically correct.
* The output graph can be used for predictive models

* They have some non-realistic assumptions (but they can be relaxed)
 Variables are either all continuous or all discrete ¢ Sedgewick et al, 2016, 2019
* All common causes are measured (no latent confounders) s Raghu et al, ACM SIGKDD 2017
* All continuous variables should be normally distributed
* There are no cycles in the graph

e Additional considerations

« Relatively slow (heuristics are needed) s Sedgewick et al, 2016, 2019
e Parameter setting — Raghu, Poon, Benos, ACM SIGKDD 2018; Raghu et al, ACM SIGKDD 2019

* Incorporating priors ~ <4msmmmm Manatakis, Raghu, Benos, 2018
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Edge prediction accuracy in DAGs (100 nodes, Gaussian)

Avgl%diacency Alpha/Penalty Discount - Sample Size: 10000 varSize: 100 A\.igUAdjacency Alpha/Penalty Discount - Sample Size: 100 varSize: 100
| —e= cpcC e ' i——- —e— CPC
—8— PCMax ﬁ —8— PCMax
0.9 1 PCStable 0.9 - ; PCStable
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“Essentially all models are wrong,
but some are useful”

George E.P. Box
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Researcher dream analysis pipeline
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PiIMGM: MGM with prior information

Goals
1. Estimate Reliability of each “expert”
DATA GENERATING 2. Construct a properly weighted combined prior
GRAPH 3. Learn aninformed undirected model using this prior

{5,7, 95%}
{1,6,90%}

{6,7, 80%} {1,3, 100%}
{4,7, 95%} {5,4,90%}

Slide adapted from Vineet Raghu, Benos Lab
© Benos lab / Univ of Pittsburgh 2014-2019
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piMGM Correctly Evaluates the Reliability of Experts

1000 Samples

0T b,

",'.':. f"l E' 5
= 0,751 .5;
@

I i

v 0.50

2 25-

R

000{R?= 0.7974341

0.00 0.25 0.50 0.7 1.00
T

Pricr Reliability

Vineet Raghu

200 Samples
1.001 .-_ . oo}
0.75- -
0.50 1
0.25-
0.00-R*=0.8190244

0.00 0.23

Number of Edges (Log Scale) _

3 4 5 6

0.50
T

Manatakis*, Raghu*, Benos, 2018, Bioinformatics.
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piMGM Overcomes Unreliable Priors

Vineet Raghu

Experts Give Prior for Real Edges Experts Give Prior for Any Edge

B Cacle I Oracle

I Oracle One Lambda I Oracle One Lambda
== Sli.’ii i gi;g

[ piMGM, (5 Reliable Experts) [ 1piMGM, (5 Reliable Experts)
0.8 [ IpiMGM, (3 Reliable Experts) 0.8 [ IpiMGM, (3 Reliable Experts)

[ lpiMGM, (1 Reliable Expert) [ |piMGM, (1 Reliable Expert)

1]
s
(=]
)
L
L.

F1 Score

0% Prior 10%: Prior 30%: Prior B80%: Prior . 0% Prior 10% Prior 30% Prior B0 Prior

Manatakis*, Raghu*, Benos, 2018, Bioinformatics.
Slide courtesy of Vineet Raghu, Benos Lab
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Use “expert evaluation” as a way to evaluate pathway significance

* Use the expert evaluation method to:

* |dentify active pathways in disease (by evaluating edge presence)
* Learn high confidence gene-gene interactions

 Example: breast cancer (TCGA), ER+ and ER- cases

0.507 0.091 (Lien, et al., 2016) @ @
0.000 0.129 (Schramm, et al., 2010) & /.
0.702 0.074 (Patani, et al., 2011)

0.000 0.223 (Hossain, et al., 2017)

0.025 0.239 (Cha, et al., 2017)

0.141 0.004 (Hill, et al,, 2011)

0.098 0.384 @

T cell receptor signaling 0.507 0.058

Manatakis*, Raghu*, Benos, 2018, Bioinformatics.

© Benos lab / Univ of Pittsburgh 2014-2018
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Summary of piMGM results

v piMGM can accurately determine the reliability of prior information sources on
simulated and real data

v piMGM is resilient to unreliable priors when learning network structure

v'The benefits of using prior information to learn network structure are greatest in
high-dimensional, low sample size cases

»
‘‘‘‘‘

gVlamatakis, D.*, Raghu, VK.*, and Benos, PV, 2018, Bioinformatics.
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Overview of the talk

* Discuss the probabilistic graphical models (PGMs) approach COMPUTATIONAL

RESEARCH

L AL

 What PGMs are / does it matter what type of variables | have?
 How can we train them and interpret the results (with caution!)

2

 How can we incorporate prior information

* Applications of graphical models in biomedical and clinical research n
e Clinical: Predicting lung cancer from low-dose CT scan and clinical data | et
* Personalized medicine: A SNP that predicts response to chemotherapy L
* Clinical: Determinants of longitudinal lung function decline in COPD patients e —

TRANSLATION N
* Microbiome: Microbiota and clinical variables that predict culture positivity in —
lung ICU patients

@ © Benos lab / Univ of Pittsburgh 2014-2019




Applications of CausalMGM in (Bio)Medicine

Nodule Type

| o 6 g 9=
* Early disease diagnosis o b
* Lung cancer detection (LDCT scans + comorbidities) ‘ffffff..g'v aaaaa
* Identifying biomarkers indicative of treatment response and s R
alternative treatments B ooma -\ s
* Melanoma chemotherapy (multi-omics data) NUP;;_;‘--;E?—S“‘SE s
NED3 ~ CXCR6
CD2ZBP2 MFI2
[ J

Identifying factors affecting disease progression
* FEV, decline in COPD patients (clinical variables)

* Disease diagnosis
* Pneumonia detection in ICU (microbiome + clinical data)

© Benos lab / Univ of Pittsburgh 2014-2019



In collaboration with:

i/;lm.
David Wilson MD Jiantao Pu PhD

Vineet Raghu

Factors determining malignancy of a lung nodule from
low-dose CT scan and clinical data

Feasibility of lung cancer prediction from low-dose CT scan and smoking factors using
causal models
Vineet K. Raghu'-2, Wei Zhao?, Jiantao Pu?, Joseph K. Leader?, Renwei Wang*, James Herman?,
Jian-Min Yuan*®, Panayiotis V. Benos!?*, David O. Wilson’

Thorax

'Department of Computer Science, University of Pittsburgh, Pittsburgh, PA

2Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA
3Department of Radiology, University of Pittsburgh, Pittsburgh, PA

4UPMC Hillman Cancer Center, Pittsburgh, PA

SDivision of Hematology, Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
*Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh,
Pittsburgh, PA

*Corresponding author
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Low dose CT scan screening reduces lung cancer mortality

The NEW ENGLAND
JOURNAL o MEDICINE

ESTABLISHED IN 1812 AUGUST 4, 2011 VOL. 365 NO.5

Reduced Lung-Cancer Mortality with Low-Dose Computed
Tomographic Screening

The National Lung Screening Trial Research Team*

ABSTRACT

BACKGROUND
The aggressive and heterogeneous nature of lung cancer has thwarted efforts to The members of the writing team (who
reduce mortality from this cancer through the use of screening. The advent of low- 2'¢ "?L‘?ﬁt i"f tht‘:] A,PI:E”‘_*ti") Zosume re-
. sponsibilr 'or the Integrity o e article.
fflose h.ellcal co.mpflte(_i tomography (CT) altered the landscape of lung-cancer screen- Afidress re);rmt requesi tz Dr. Christine
ing, with studies indicating that low-dose CT detects many tumors at early stages. D. Berg at the Early Detection Research
The National Lung Screening Trial (NLST) was conducted to determine whether Group, Division of Cancer Prevention,
. . . National Cancer Institute, 6130 Execu-
screening with low-dose CT could reduce mortality from lung cancer.

tive Blvd., Suite 3112, Bethesda, MD
20892-7346, or at bergc@mail.nih.gov.

RESULTS

The rate of adherence to screening was more than 90%. The rate of positive screen-
ing tests was 24.2% with low-dose CT and 6.9% with radiography over all three
rounds. A total of 96.4% of the positive screening results in the low-dose CT group
and 94.5% in the radiography group were false positive results. The incidence of
lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose
CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in
the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23).
There were 247 deaths from lung cancer per 100,000 person-years in the low-dose
CT group and 309 deaths per 100,000 person-years in the radiography group,
representing a relative reduction in mortality from lung cancer with low-dose CT
screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause
was reduced in the low-dose CT group, as compared with the radiography group,
by 6.7% (95% CI, 1.2 to 13.6; P=0.02).

CONCLUSIONS

Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded
by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov
number, NCT00047385.)

* Follow-up CTs
* Unnecessary invasive biopsies
* with potential serious complications
* Anxiety
* Increased healthcare costs

© Benos lab / Univ of Pittsburgh 2014-2019



Pittsburgh Lung Screening (PLuSS) cohort

Lung cancer Benign nodules Lung cancer | Benign nodules

A.Training n=92 P valuet B. Validation (PLuSS-X) n=126 P valuet
(n=50) (n=42) (n = 44) (n=82)

sE s o se  we o
63.6 (7.1) 65.2 (6.9) 0.261 65.23(9.62)  66.93(7.54) 0.313
Current smoker, n (%) 32 (64) 19 (45) 0.111 Current smoker, n (%) 37 (84) 36 (44) <0.0001
60.35(24.11)  61.81(22.81) 0.766 49.41(22.79)  49.49 (22.0) 0.985
1.52 (2.88) 3.25(3.95) 0.020 0.477 (1.50) 3.037 (4.33) <0.0001
13.43 (6.14) 9.74 (6.69) 0.007 18.86 (7.12)  11.57(5.76)  <0.0001
0203 0381
EET o0 34 (51) DETTE a8 segen)

22 (44) 8 (19) 8 (22) 25 (32)

9.22 (9.48) 2.26(2.21) <0.0001 18.57 (5.21) 3.02 (3.98) <0.0001

Raghu, et al, 2019, Thorax, in print
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LCCM: a CausalMGM-based lung cancer predictor from low-
dose CT scan data N°d“'”ype  Gavity Ratio

BMI Mean |ntenS|ty

Mean Vessel
‘ mtensny

Max 2
® Diameter L

Mean 0Area

p Ground Glass

Emphysema Opacity

Bronchitis

Educatlon . (sol

Vessel Volume

~Diameter »
Irregularity G ¢ )
‘ 0 o-......... .QVolume ‘ Demographics
Sex . . Comorbidities
| Number of ®... Volume Cal
Vessels Score CT scan
Pack Years
Years Since ) A iS 3 cause of B
uit Smokin Number of .
< 9 _f 5 \Nodules @———==P B is not a cause of A
.ACa/ncer Status 0 G |atent variable causes both
@===== @ inconclusive causal relation
Raghu, et al, 2019, Thorax
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LCCM outperforms existing lung cancer predictors (cross-validation)

! I I — _ ‘-j’/’ odel No. of AUC (95% CI) = p-value Features Used
— . Features
P 1IGM-FCI-MAX 3 0.882 - Smoking: Years Quit
T . ratures (0.789, 0.975) Radiographic: Nodule Count{Vessel Numbe
0.16 Demographics: Age, Sex, Fa%
. 0.792 Comorbidities: Emphysema

% rock Full Features 8 (0.699,0.885) Radiographic: Nodule Size, Nodule Type, Nodule Location,
x 7 Nodule Count
_g rock Parsimonious 3 0.700 0.01 Demographics: Sex
'g 7 2atures (0.607,0.793) Radiographic: Nodule Location, Nodule Size
o 0.722 0.02 Demographics: Age, Sex
o ) ach Features (0.629,0.815) Smoking: Cigarettes Per Day, Smoke Duration, Years Quit
= 0.5613 <0.001 Demographics: BMI, Education, Family History Ca, Race

MGM-FCI-MAX Features LCO Features 10 (0 41'2 0.701) Comorbidities: Ca History, COPD

Brock Full Features T Smoking: Duration, Intensity, Smoking Status, Years Quit

Brock Parsimonious Features

Bach Features

PLCO Features . Coefficient

0 : : Predictors p-value
0 0.2 0.4 0.6 0.8 1 (95% C|)

False Positive Rate

Years since quit smoking  -0.178 (-0.349, -0.007) 0.041

Number of Vessels 0.238 (0.074, 0.510) 0.009
Number of Nodules -0.203 (-0.325, -0.081) 0.001
Model Intercept 1.053

Raghu, et al, 2019, Thorax, in print
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LCCM outperforms existing lung cancer predictors (external cohort)

True Positive Rate

0.2 F LCCM (AUC =0.90272)
01l ;,. Brock Parsimonious Original Model (AUC =0.81167)|| p = 0.018
’ Brock Parsimonious Features (AUC =0.75744) p <0.01
D i 1

1] 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

Raghu, et al, 2019, Thorax, in print
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LCCM can help reduce unnecessary follow up screenings

|
. . " 1.00 1
Brock Parsimonious Original LCCM
124 I |
[ I
| |
_ 0.75 1
6 9 I _Z" |
| S |
> Cancer Status >, I § :
B 4 B g
5] Dcancer s ° : D 50- I Sensitivity
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latest  Popular ~ News -  Series&Podcasts ~  Schedule ~  About ~  Support ~  Search Step-by-Step guide for analyzing CRISPR editing results with ICE from Synthego. synthego.com
Artificial Intelligence Could Reduce False < | | HEALTH
Positives In Lung Cancer Screenings D Heath~  Tech~ — Enviro~  Society ~
i el & ITANALYTICS
- xtelligent MEDIA Home News Features
O e Science News
o Population Health Precision Medicine Quality & Governance  Tools & Strategies  Analytics inAction |
Shar
_m‘m CIVIC » Best Countries Best States  Healthiest Communities  Cities  The Civic Report F
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TOOLS & STRATEGIES NEWS

Al Takes Aim at Lung Cancer Screening

UPMC Uses Machine Learning to Cut
Lung Cancer False Positives

BY ROBERT PREIDT, HealthDay Reporter Using machine learning, researchers have significantly reduced
the false positive rate for lung cancer diagnoses.

March 13,2019, at 9:00 a.m. f

WEDNESDAY, March 13, 2019 (HealthDay News) —
The term artificial intelligence (Al) might bring to
mind robots or self-driving cars. But one group of
researchers is using a type of Al to improve lung

In this June 3, 2010, file photo, Dr. Steven Birnbaum works with a patient in a CT scanner al
Hampshire Medical Center in Nashua, N.H.

LE /A cancer screening.

Screening is important for early diagnosis and
improved survival odds, but the current lung
cancer screening method has a 96 percent false
positive rate.

3 (HEALTHDAY)
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What we learned from the LCCM study?

* Vasculature around a nodule and total number of
nodules are important discriminants of nodule status

 LCCM in the future may help reduce unnecessary follow
up screens for 28% of the benign nodule subjects

© Benos lab / Univ of Pittsburgh 2014-2019
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In collaboration with:

Disclosure: Hussein Tawbi MD
US Patent Application No. 15/524,242, filed May 3, 2017

AJ Sedgewick PhD

A SNP that predicts response to chemotherapy and
suggests new combination therapy

SCIENTIFIC REPORTS

Article | OPENACCESS | Published: 01 March2019

PARP1 rs1805407 Increases Sensitivity to
PARPI1 Inhibitors in Cancer Cells
Suggesting an Improved Therapeutic
Strategy

Irina Abecassis, Andrew J. Sedgewick, Marjorie Romkes, Shama Buch, Tomoko Nukui, Maria G.

Kapetanaki, Andreas Vogt, John M. Kirkwood, Panayiotis V. Benos *< & Hussein Tawbi
Scientific Reports 9, Article number: 3309 (2019) = Download Citation
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ldentify cancer chemotherapy biomarkers

* Metastatic melanoma Pittsburgh cohort B ONA methylation

MRNA expression

* Subjects:

DNA polymorphism

* 69 subjects- ACTA2
. Eemographlcs and response to TMZ THE3"RU..'3 D2 HS%’B B1
reatment v PARP1 .- RIP
DXS9879E N HIRP3
N KIF2DA
+ Data acquisition from tumor: APORAZA FRAS 1
* Gene expression NPAS4———— rggpilse FZDO
* miRNA expression U2l CPIEBP1
DNA methylation NED3  CXER6
* SNP assay (selected SNPs) CD2BP2 MFI2

N Abecassis*, Sedgewick?*, ..., Benos", Tawbif, 2019, Sci Rep, 9:3309
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Alkylating agents induce the strongest changes in drug A
sensitivity between carriers/non-carriers L 2

AJ Sedgewick PhD

Method of action DNA damage DNA damage DNA replication inhibition
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N Abecassis*, Sedgewick?*, ..., Benos", Tawbif, 2019, Sci Rep, 9:3309
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Hypothesis (testable)

 The PARP1 SNP is directly related to improved DNA damage repair
* Improved DNA damage repair = worse response to chemotherapy

* Testing:

Treat cells with PARP inhibitor (PARPi) = do SNP cells require lower doses of
alkylating agent than WT cells? (lower IC,)

© Benos lab / Univ of Pittsburgh 2014-2019




PARP-1 inhibition increases chemo efficiency to cell
lines with the SNP

Hussein Tawbi MD
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PARP-1 inhibition increases chemo efficiency to cell lines
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Hypothesis (testable)

 The PARP1 SNP is directly related to improved DNA damage repair
* Improved DNA damage repair =» worse response to chemotherapy

* Testing:
Treat cells with PARP inhibitor (PARPi) = do SNP cells require lower doses of
alkylating agent than WT cells? (lower IC,)

* Result:

A PARP1 SNP may be suitable for patient stratification and deciding
optimal therapeutic intervention

* SNP carriers = combination therapy w/ FDA-approved olaparib
* wt patients =» no PARP1 inhibitor




What we learned from the PARP1 study?

 PARP1 SNP rs1805407 is linked to poor response to

ACTA2
Trgss RUR3 1 P2 posgmsp
chemotherapy xsamror h /TR s
ADORA2A KIFZDA
NP4 ___res,;‘i"l';e Fpié[fgl
* PARP1 inhibitors and alkylating agents act synergisticallyon "% _ -~ CPIFBPL
SNP carrier cell lines e LY T I

* PARP1 inhibitors make SNP carrier cell lines more sensitive to
chemotherapy, indicating potential new therapeutic strategy
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In collaboration with:

\ /
Frank Sciurba MD

Kristina Buschur

Determinants of longitudinal lung function decline in
COPD patients

Systems Biology
Mixed Graphical Models for Integrative Causal
formatics Analysis with Application to Chronic Lung

IGUST 15 2018

Disease Diagnosis and Prognosis

Andrew J Sedgewick'?, Kristina Buschur'?, lvy Shi®, Joseph D. Ramsey*,
Vineet K. Raghu®, Dimitris V. Manatakis', Yingze Zhang®, Jessica Bon®, Di-
vay Chandra®, Chad Karoleski®, Frank C. Sciurba®, Peter Spirtes®, Clark
Glymour®, Panayiotis V. Benos®*"

1Departm\ent of Computational and Systems Biology, 3Department of Bioengineering, 5Depaﬁment of

Computer Science, 6Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,
USA. 4Depar‘tment of Philosophy, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

e S B=EE 20int oMU-Pitt PhD Program in Computational biology

*To whom correspondence should be addressed.
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COPD progression (COPDGene® cohort)
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Red = Upper 20% Airway Dis Axis
Blue = Upper 20% Emphysema Dis Axis

Yellow = Both
Gray = Neither

Graph source: COPDGene®



FEV1 progression in COPD patients (SCCOR cohort)

Frank Sciurba MD

e SCCOR (Pittsburgh Specialized Center of Clinically Oriented Research)

e Subjects:
e 762 subjects (community-based, tobacco-exposed cohort)
» 385 subjects returned for a 2-year follow-up evaluation

* Data acquisition in visit-1: _.--==="" Questionnaire:

el Patient’s history of other diseases (asthma, etc)
Environmental (asbestos, arsenic, etc)
Symptoms (coughing, dyspnea, etc)

Psychological

* Demographics e
Spirometry (pre- and post-bronch,ddilators)
Semi-quantitative visual and qua;'wtitative MDCT
Blood biomarkers ,"

Exercise testing e
Questionnaire -==-=~
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Integrating multi-modal datasets with probabilistic models

e Ivy Shi

All baseline variables + AFEV1
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Clinical and blood biomarker variables
inked to FEV, decline in COPD

o Spirometry@ariables

Exercise

. Dyspnea
F’ Smoking-related
. Co-morbidities ConlSione

. Environmental@actors

o Blood@iomarkers

. Other@onditions r

Sedgewick et al, Bioinformatics, 2018.

Cobalt
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What we learned from the COPD study?

* Creatinine and TNF-a are directly linked to longitudinal
lung function decline in COPD patients
e Creatinine may be linked to muscle loss

e TNF-a is linked to inflammation: can inflammation reduction
help delay lung function decline?

* Reducing GERD exacerbations may help delay lung
function decline
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In collaboration with:

George Kitsios MD

Dimitris Manatakis PhD

Microbiota and clinical variables that predict culture
positivity in lung ICU patients

Alison Morris MD

o

P frontiers. opsemu remmsec @ e @
in Microbiology oi: 10.338¢ 3 Lactolbag\i;aﬁe\s | yﬂ;revotella
@ unclassitie \\(\"
L2 € Dolosigranulum / ~ /,Pre\ﬁ/)te!!a
> ve /

‘ ) /spiratio;;
Eubacterl {

Chyonic Liver
Entergcoccus  /Disease

Stapl oco(chs S/

“

/
/ Bifidobacterium ’

- BMI

Respiratory Microbiome Profiling for
Etiologic Diagnosis of Pneumonia in
Mechanically Ventilated Patients

Enterobacteria

Georgios D. Kitsios'2*, Adam Fitch?, Dimitris V. Manatakis®, Sarah F. Rapport’, 1 _stieptotoccus
Kelvin Li?, Shulin Qin’?, Joseph Huwe', Yingze Zhang', Yohei Doi*, John Evankovich’, 1 I
William Bain', Janet S. Lee’, Barbara Methé'2, Panayiotis V. Benos?, Alison Morris'25t I Resp fx Pos
B e
and Bryan J. McVerry 2t -
! Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of / ’ —
Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, United States, ? Center for Medicine and the Mycoplasma
Microbiome, University of Pittsburgh, Pittsburgh, PA, United States, * Department of Computational and Systems Biology, Hgb \\ (, Shannon
University of Pittsburgh, Pittsburgh, PA, United States, * Division of Infectious Diseases, University of Pittsburgh Medical \ Pseud
Center, Pittsburgh, PA, United States,  Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, « seugRponas
OPEN ACCESS  PA United States TNFR1  Neisseria
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Can we predict Cx positivity in ICU patients from lung 16S

microbiome? George Kitsios MD
Variable All Culture- Culture- P-
positive negative” value
N 56 12 44
Age, mean (SD), yrs, 55.9 (15.3) 54.7 (17.2) 56.2 (14.9) 0.88
Males, N (%) 34 (61) 5 (42) 29 (66) 0.18
BMI, mean (SD) 32.2(10.2) 28.8 (7.1) 33.1(10.8) 0.19 > gl
History of diabetes, N (%) 25 (45) 6 (50) 19 (43) 0.75 16S rRNA
History of COPD, N (%) 17 (30) 5 (42) 12 (27) 0.47
Sepsis, N (%) 50 (89) 12 (100) BE6) 032 m
ARDS, N (%) 21 (38) 7 (58) 14 (32) 0.11 =
High clinical index for pneumonia® 34 (61) 12 22 (50%) 0.002

Kitsios et al, “Respiratory microbiome profiling for etiologic diagnosis of pneumonia in
mechanically ventilated patients”, 2018, Frontiers in Microbiol
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George Kitsios MD

Lung ICU patient cohort: microbiome profiles and Cx positivity

A| Taxonomic composition for culture positive samples B X . i
Taxonomic composition for culture negative samples
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Kitsios et al, 2018, Frontiers in Microbiol
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Variables directly linked to ICU patient culture positivity

6 Megasf’haera ﬁ Dimitris Manatakis PhD
T Lactobacillales | Aljgprevotella
CI In |Ca| unclassified

.

b £ y /P4ev tella
Dolosigranulum v ’\--x_, ) T\

. , |
‘ biomarkers Spiration =~ e Y /,'
Eub;cter : e ,// f‘
( Staph#flococcus 7 f
brachy grou y /
iy Chyonic Liver g~ i
s POSitive assoc p Enterdcoccus  /pisease & / (, p
: p y )
. ; , . e y Bifidobacterium ’
messss N egative assoc -4 BMI
/./
}/
I /// S / “
I ‘ ’ __-Streptococcus /
I Resp €x Pos 1 /,/"
I - -l = } //‘
) ’\ f , Mycbplasma
Hgb

Shannon

Kitsios et al, 2018, Frontiers in Microbiol Beaug
seudomonas

TNFR1 Ne;isseria

© Benos lab / Univ of Pittsburgh 2014-2019



\ale \owe' Megasphaera Dimitris Manatakis PhD
€y clinical 2855 fectio” Laaﬂbaafﬁ& % "'emte"a
oG (o} unclassifie

- enief0C®  9003s
G(Up_p a\O\'\] “aC ’ Prevéteila
. (6‘59\" Ay
‘ biomarkers )
Eubacte? A4 ;
brachy grou ( ’ ?,goccus
i Chyonic Liver j§ - b
s Positive assoc p /fisease [/ 6 p
— Negative assoc CO{) ) Blfldobactenum Bl\{
| ’ : ____'4‘,_/--Sf'|"'é;tococcus ,
| Resp F( pos | Abundance\ ’
e o - | __,/“'--’-’J‘ ",r"l
, Mycoplasma
I . . . . Hes \ Shannon
Kitsios et al, 2018, Frontiers in Microbiol \ Pseuc
seudomonas

TNFR1 Néisseria

© Benos lab / Univ of Pittsburgh 2014-2019



Some results from the ICU culture positivity study

* The microbial communities in 20% (9/44) of culture negative
patient samples are dominated by pathogenic taxa
(Staphylococcus, Pseudomonas)

* Using the network model we can predict culture positivity with an
average accuracy of 83% (+7%)

* The 16S method is promising for prediction culture positivity in
ICU patients

Kitsios et al, 2018, Frontiers in Microbiol
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Take home messages

COMPUTATIONAL
RESEARCH

v CausalMGM is a highly flexible framework that can be used to geu
analyze multi-modal and multi-scale data e

THEORY

v CausalMGM has the ability to efficiently incorporate prior
information to learn more accurately graphs in high-dimensional
data
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RESEARCH

Take home messages U CL.N.EEL"I
b

v CausalMGM has been successfully applied to a variety of medical U

prOblemS: TRANSLATION
v"We developed a new accurate predictor of lung cancer from clinical and =

LDCT scan data, which has the potential of reducing unnecessary
procedures in subjects with benign nodules

v'We identified a PARP1 SNP that is a marker for no response to
chemotherapy and we’ve shown evidence to suggest that the SNP carriers
may benefit from combination therapy (chemo + PARP1 inhibitors)

v'We identified blood biomarker proteins and comorbidities that are
directly linked to longitudinal lung function decline in COPD patients
(creatinine, TNF-a, GERD, etc)

v We identified microbiome taxa and clinical variables that are indicative of
culture positivity in ICU patients
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Benos’ laboratory

MD FELLOW

. AV k Craig Riley MD
g (co-advised: Frank Sciurba)

Bertolazzi

N7 Sheeraz

Akram

MD STUDENT

Electronic contacts: Grace Zhang

benos@pitt.edu
http://www.benoslab.pitt.edu
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Postdoc positions available in Benos’ Lab

Developing causal graphical models for integrating biomedical and
clinical Big Data

Takis Benos (benos@pitt.edu)

Department of Computational and Systems Biology
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The Economist names Pittsburgh the Most Livable City (on the
mainland) again

& Deb Smit O August 25, 2014 (O Business & Tech News
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Georgios Deftereos, MD
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Questions???

Electronic contacts:
benos@pitt.edu
http://www.benoslab.pitt.edu
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