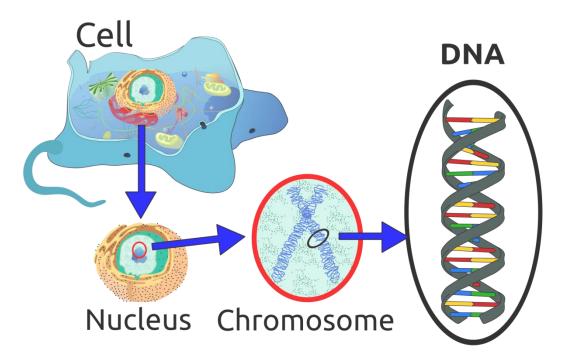
Genomics Reimagined in a Reference Laboratory Setting

Hunter Best, Ph.D.

Medical Director, Molecular Genetics & Genomics Associate Professor, University of Utah Department of Pathology


Learning Objectives

- 1. Understand massively parallel sequencing (MPS) and the role that it plays in clinical diagnostics
- 2. Describe problems commonly encountered by clinical laboratories during implementation of MPS-based testing
- 3. Describe the steps that can be taken to streamline MPS clinical workflows

Learning Objectives

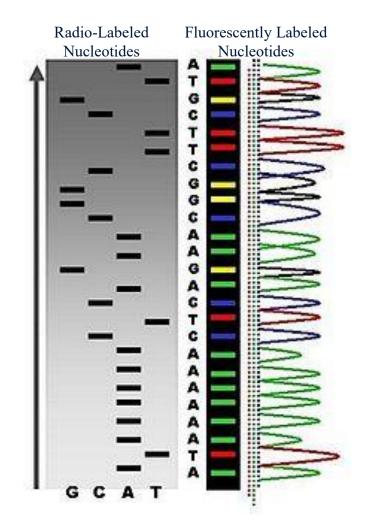
- 1. Understand massively parallel sequencing (MPS) and the role that it plays in clinical diagnostics
- 2. Describe problems commonly encountered by clinical laboratories during implementation of MPS-based testing
- 3. Describe the steps that can be taken to streamline MPS clinical workflows

The Role of DNA in Diseases

Disease-causing Variants: Variation in DNA sequence that cause aberrant activation or loss of different genes

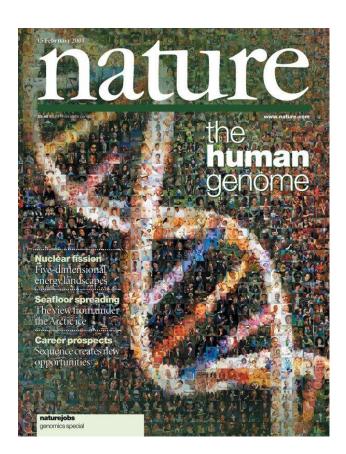
Germline: Inherited variations obtained from parents that increase risk of developing cancer, developmental diseases, etc. (*CFTR*, *BRCA*, *TP53*, *APC*)

Somatic: Variations that sporadically occur caused by mistakes during cell division & carcinogen exposure (smoking, chemicals, alcohol, radiation, etc)


Basics of DNA Sequencing

• Sanger Sequencing

- Developed in the 1970's
- Originally used radio-labeled chain-terminating dideoxynucleotides
 - Cytosine (C)
 - Guanine (G)
 - Adenine (A)
 - Thymine (T)
- sequencing gels

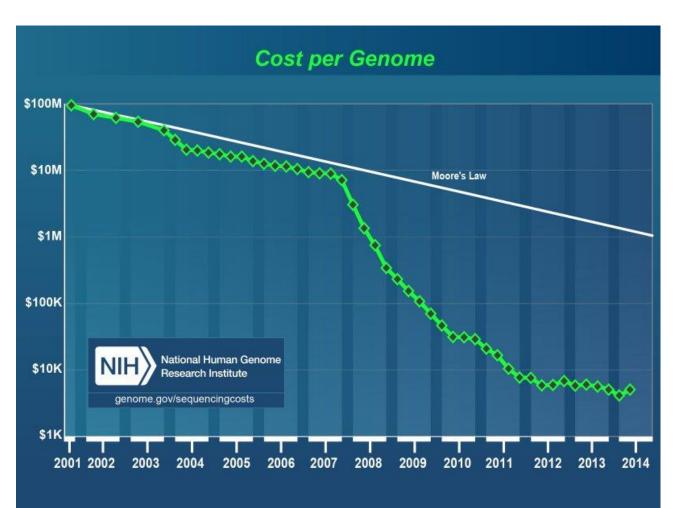

Automated capillary electrophoresis

- Fluorescently labeled dideoxynucleotides
- Largely used for sequencing of fragments between 300-1000 bp
- ABI 3730 capable of generating 1-2 Mb of sequence per day

Human Genome Project

Started in 1990

- Goal to sequence the ~3,000,000,000 bp human genome
- 20 institutions across 6 countries
- Sanger sequencing methodology
- Cost ~3 billion dollars
- Completed in 2003
 - 22,300 protein coding regions in the genome
- Demonstrated that there was a need to develop high throughput, cheaper and faster DNA sequencing technologies


Massively Parallel Sequencing (aka Next generation sequencing (NGS))

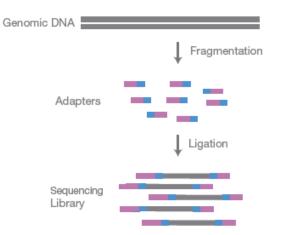
- Rapid and cost effective method for determining the sequence of millions of DNA molecules simultaneously
- Instruments can fit on a desktop
 - Illumina
 - IonTorrent
- Requires complex and powerful computing processes for data analysis
 - Anyone can generate data; analysis and interpretation are typically the bottlenecks

Impact of Massively Parallel Sequencing

2005: Roche 454

2006: Genome Analyzer

2010: Illumina HiSeq

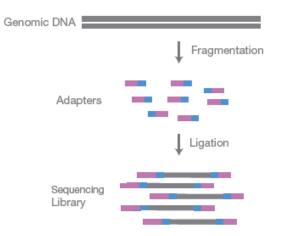


2011: Ion Torrent PGM

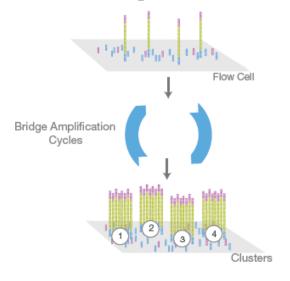
AR

MPS (Illumina) sequencing overview

A. Library preparation

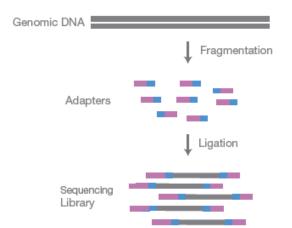


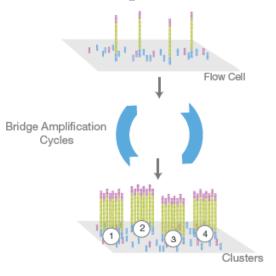
www.illumina.com



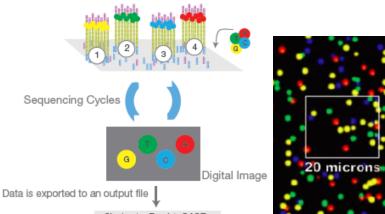
MPS (Illumina) sequencing overview

A. Library preparation


B. Cluster amplification



MPS (Illumina) sequencing overview


A. Library preparation

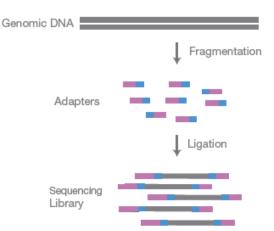
B. Cluster amplification

C. Sequencing

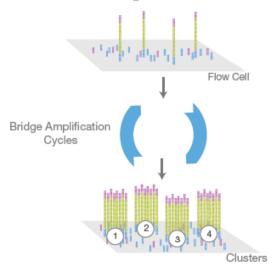
Cluster 1 > Read 1: GAGT... Cluster 2 > Read 2: TTGA... Cluster 3 > Read 3: CTAG... Cluster 4 > Read 4: ATAC... Text File

www.illumina.com

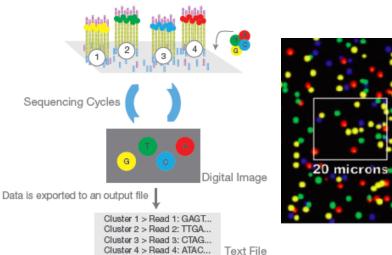
Massively Parallel Sequencing


@JDQNNM1:207:c6ckfacxx:7:1101:1457:2221 1:N:0:TGACCA
AATTCCGCAAAAATTGATCATTTGCAAAGTCAAAACTATAGCCATATCCAAATCTTTTCCCCCTCCCAAGAGTTCTCAGTGTCTACATGTAGACTATTCCT
@@CDFFFFHHGHHJJIGJIIIIJIGIJHJEHIGJJJJJIJIIIJJEGHIEHJJIJJIIGJIJGEFHECDADDDDFEEEEEEDDCCDEDDDDEEED
@JDQNNM1:207:c6ckfacxx:7:1101:1517:2156 1:N:0:TGACCA
CCTGGTGAAAGTGGTGGGGGCTGTATGGCTTCATGCTCAGCATATCGCCTCGACTCACCCTCCTTTCTCTGCTGCACATGCCCTTCACAATAGCAGCGGAGA
??@BDDD?FDF?DG2ABEHE<@?EFFHBABGFADGE9BBGGFDD4?DB:AAAE=ECCHH?DEC;@CCCCACC>AC@C>@CCCACCCCCCC@ABB@B>B
@JDQNNM1:207:c6ckfacxx:7:1101:1893:2234 1:N:0:TGACCA
CATTTTGGTAAAGACAAATTATACAGACAGTAAAAAGTAAAAGGCAAAATTATAGAGACAGTAAAAAATCTGGAAAGGCTATATACTGTATGATTCCATAC
+
BBCFFFFFHHHHHIJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
@JDONNM1:207:c6ckfacxx:7:1101:3454:2163 1:N:0:TGACCA
AGGGGCGATGCATTCGAACGCGTTGGGGTTCTTCTCCGGGGAGTAGATGATGGTCTCCGTCTTCTGCCTTCTGAGGAACTCATCTCTTGTGACGATATCTG
+
8?@4B A1<CBF?FGGGE:FBH8@FHI;;DECAEECH8BE A(5;CDCC>@@,:A@:=@??BC>CAC>C:@:>@?:< <cccac>4>:4>@>@<<bbb>::</bbb></cccac>
@JDQNNM1:207:c6ckfacxx:7:1101:3554:2157 1:N:0:TGACCA
AGTTGGAGGTATTGATGCATGTGTTGGTTTGCCAACATTATCTCTATGATATTGATCTCTATTTGCTTGACGGCTGCCCTTCTTAAGATCATGAATTACAA
4
1=8BDA?BB+2< <a4afbhfibbcaccgefc<d?ed;1:b>??DF>?D>?BBD<dffei<f8bfd===3(8;b8=bbd.;;>/</dffei<f8bfd===3(8;b8=bbd.;;></a4afbhfibbcaccgefc<d?ed;1:b>
@JD0NNM1:207:c6ckfacxx:7:1101:3932:2232 1:N:0:TGACCA
AGGTAGTGGCTTGACAGCTCAGGGATGTTGGTATGGGTCTCGTTAATCCAAATTAACAAACCAGGCAATACTTTCACACGTGCA
@@CADEEFHHHHHHHIGGGGHGIIJBFGEGEH?FCGIJDFFGEGHGHEBHGHIJIIGHHJCGGGIHFHFFFFFFFCECDBBDI
@JDONNM1:207:c6ckfacxx:7:1101:4020:2157 1:N:0:TGACCA
GTCTCACCCTCAGCACACTGGCAGACTTCAGCAGAACACAAGGTGGCCAAGAGTCTGCTCTTACTTGGTGCCCCGTAAAACA(
* 20 microns @BBDFFFFFHHHHJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
@JDQNNM1:207:c6ckfacxx:7:1101:4229:2203 1:N:0:TGACCA

CCCFFFFFGHHHHJIJJJAFHHID@FAHIJGHIIJJJIJHEDFBCEDEDDDDDDD@BDDDCACDDDDDDDDCCCDDD@09<BDDDD@BDDCDBDBDDD


Millions of sequencers sequencing in parallel!

NGS (Illumina) Sequencing Overview


A. Library preparation

B. Cluster amplification

C. Sequencing

D. Bioinformatics: Alignment, variant calling and analysis

Reads-	ATGGCATTGCAATTTGACAT TGGCATTGCAATTTG AGATGGTATTG GATGGCATTGCAA GCATTGCAATTTGAC ATGGCATTGCAATT AGATGGCATTGCAATTTG
Referenc	

Reference Genome AGATGGTATTGCAATTTGACAT

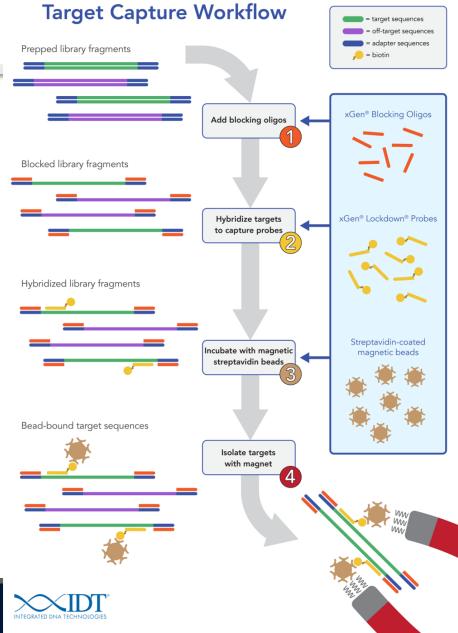
www.illumina.com

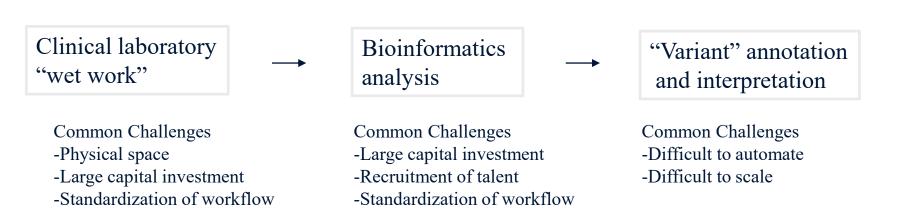
Bioinformatics Data Processing

- Bioinformatics 'pipeline' produces variant calls
- Aligns reads to a reference sequence, calls variants, then annotates the variants

•		Sequencing	FASTO	1 2 Pipeline	VCF bam	
T T T T T T T T	Homozygous variant	T	A A A	Heterozygous variant		A
			A A A			
I			A		Insertion	
				<u> </u>		

Common MPS Testing Terminology


- *Capture* = Probes targeting genes of interest
 - Typically targets only the coding regions (exons) of genes or noncoding regions with known clinical significance
- *Panels* = Subset of genes within a capture typically clustered by clinical features (disease, phenotype, etc.)


Targeted Hybrid Captures

- Biotinylated 'baits' designed to cover regions of interest only
- Target regions hybridized to baits in liquid phase
- Regions of interest are eluted using streptavidin magnetic beads
- Only the DNA sequence that is eluted with baits is sequenced
- From 1 to >20,000 genes can be targeted

ABORATORIES

Massively Parallel Sequencing Workflow in Three Basic Steps

Why use MPS in a clinical lab?

- Traditional testing modalities (e.g. Sanger sequencing) require you to look at a single gene at a time
 - For disorders with numerous causative genes (such as Retinitis Pigmentosa) the cost of determining the underlying genetic cause by traditional molecular testing routinely exceeds \$10k
 - Time to diagnosis is usually prolonged and, in some cases, can take several years
- MPS allows for the simultaneous testing of many targets in a single test
 - All known causes of a disorder with allelic heterogeneity can be tested in a single assay
 - Also useful in targeting hotspot regions for somatic changes in cancer patients
- For inherited disease testing the introduction of MPS into the clinical laboratory has dramatically reduced the cost of testing and time to diagnosis for a number of disorders
- For somatic disorders the use of MPS has significantly decreased molecular testing costs and helps to tailor care of cancer patients

Common Types of MPS Tests

- Single gene tests
 - Ex. BCR-ABL1 mutation testing
- Panels
 - Typically a group of genes associated with a common phenotype (i.e. Inherited Breast Cancer, Myeloid Malignancies)
- Exome Sequencing
 - Coding sequences of genes (exons) only
 - Does include intron/exon boundaries
- Whole Genome sequencing
 - Entire genome

Distinctions Between Germline and Somatic MPS Testing

Germline

- Tests for variants in DNA common to all diploid cells
- Allelic ratios = 50% or 100% (heterozygous or homozygous)
- Sample type is typically blood
- Rare variants, SNVs and small insertion/deletions
- Expansive number of genes
- Extremely large number of probes to analyze

Somatic

- Tests for variants in a subset of cells
- Any allelic ratio is possible ranging from < 1 – 100%
- Challenging sample types (FFPE)
- Known/common variants, amplifications/translocations
- More limited gene set
- Moderate numbers of probes

ARUP Genomics Overview

- Massively parallel sequencing-based clinical testing has been available at ARUP for 5+ years
- ARUP was one of the first reference labs to offer clinical MPS
- We offer testing for germline disorders, solid tumor oncology and hematological malignancies
 - Current offerings include ~25 germline tests (including exome), 1 Solid Tumor hotspot test and 2 heme malignancy tests
 - All of our current tests are internally developed

Learning Objectives

- 1. Understand massively parallel sequencing (MPS) and the role that it plays in clinical diagnostics
- 2. Describe problems commonly encountered by clinical laboratories during implementation of MPS-based testing
- 3. Describe the steps that can be taken to streamline MPS clinical workflows

MPS Common Hurdles – Lab Standardization

- Consolidation of workflows to a single chemistry and sequencing platform is often difficult
 - Many labs implement kit based assays in order to quickly get into genomic testing
 - This often works for one area (e.g. solid tumor testing) but may be difficult to implement in others (e.g. germline gene panels)
 - This sometimes requires that multiple sequencing platforms be introduced
 - MPS workflows are highly complex and it is very difficult to automate processes that are not standardized

MPS Common Hurdles – Informatics and IT

- MPS generates an *enormous amount of data* and few labs already have infrastructure in place to handle the increased computing demands
 - In most cases implementation of MPS requires improved networking capability – a single sequencing run can generate anywhere from several gigabytes to several terabytes of data
 - Demultiplexing, alignment and annotation of data usually requires individuals with specialized training in bioinformatics
- It is possible to use sequencing platforms with onboard informatics but these typically still require significant networking and/or server maintenance infrastructure
 - Use of these systems also requires constant tracking of software updates.
 Lack of notification from vendor can result in testing discrepancies

MPS Common Hurdles – Analysis and Interpretation

- MPS generates much more data than traditional testing modalities requiring a significant time investment for interpretation
 - A large gene panel (>20 genes) routinely generates more than 100 variants that need to assessed for clinical significance
 - Exome sequencing generates *thousands* of variants
 - Interpretation of somatic and germline testing is very different and requires individuals with specialized training

ARUP's Experience With Common MPS Hurdles – Lab Standardization

- In order to initially enter the genomic testing space quickly, multiple technical approaches were taken by individual specialty areas
 - At one point our genomics laboratory was running tests using five different chemistries across several sequencing platforms (Illumina, IonTorrent)
- We were also using multiple sequencing systems within individual manufacturers
 - At one point our laboratory was running the Illumina NextSeq 500, the Illumina MiSeq, the Illumina HiSeq 2500 and the IonTorrent PGM
- This resulted in prolonged turnaround times, a challenging work environment for the genomics clinical lab staff, and concerns about maintaining quality for the multiple workflows

ARUP's Experience With Common MPS Hurdles – Informatics and IT

- Lack of standardization of laboratory workflows also resulted in a lack of standardization of our informatics processing
 - We essentially had individual bioinformatics processing pipelines for every test
 - This clearly was not scalable or sustainable in the long term
- Lack of cloud-based computing solutions meant that onsite computing requirements were substantial
 - Resulted in long processing times for individuals samples and that samples were serially analyzed
 - No real capability to do parallel sample processing

ARUP's Experience With Common MPS Hurdles – Analysis and Interpretation

- Rapid growth in the area of genomics highlighted our lack of scalable infrastructure for interpretation and reporting
 - Existing processes used in the interpretation of our Sanger tests were not directly transferrable to genomic testing
 - Medical directors spent hours investigating the higher volume of variants identified by gene panels
 - Turnaround time was negatively impacted

Learning Objectives

- 1. Understand massively parallel sequencing (MPS) and the role that it plays in clinical diagnostics
- 2. Describe problems commonly encountered by clinical laboratories during implementation of MPS-based testing
- **3.** Describe the steps that can be taken to streamline MPS clinical workflows

Focus on Standardization and Scalability

- For the last few years ARUP has been focused on reorganizing our genomics lab to focus on standardization and scalable processes
- This overhaul has been focused on:
 - Consolidating all of our testing to a single chemistry and sequencing platform
 - Reworking our bioinformatics pipeline such that it is state of the art and cloud based
 - Implementing full automation into the clinical lab
 - Standardizing analysis and interpretation

Laboratory Chemistry Standardization

- One capture for germline testing
- One capture for somatic testing
- One capture for exome

Laboratory Chemistry Standardization

- 3 captures and <u>one laboratory workflow</u>
 - Each of our previous captures targeted < 300 genes

	Germlin	Germline Captures		
	Exome	Targeted		
# Genes	>18,000	~5000	\sim 700 + intronic	
Capture Size	39-57 Mb	14-18 Mb	6 Mb	
# Probes	>400,000	>130,000	50,000	
/		Disease as	sociated genes	

All genes, not all clinically relevant

Disease associated genes

Benefits of Consolidating Capture Chemistry

- Significant efficiency gains in the laboratory by reducing workflow complexity
 - Regardless of the germline or somatic panel test order a single capture is performed by the laboratory
 - Data from genes not ordered is masked bioinformatically
 - Single chemistry allows for an easier automation build and therefore improves scalability
- Increased flexibility in test builds as a single validation is performed for the overall capture
 - New panel test additions are essentially ready at any time
 - Also allows for custom panel builds and single gene testing

Proper Validation of MPS-based Testing

- Variant types/classes
 - Single Nucleotide Variants (SNVs)
 - Small Deletions
 - Small Insertions
 - Large Deletions
 - Large Insertions
 - MNVs -multiple nucleotide variants (indels)
 - Translocations
 - Copy Number Variants (CNVs)
- Performance can (and usually does) vary for each variant class
- Variant classes need to be treated independently in validation
 - Hundreds of samples are required

The Journal of Molecular Diagnostics, Vol. 🔳 , No. 🔳 , 🔳 2017

After performing the test on 59 representative samples, the highest false-positive rate is 1.9%. Therefore, he or she could be 95% confident that 95% or more of his her samples will have a false-positive rate $\leq 1.9\%$.

the Journal of Nolecular Diagnostics

SPECIAL ARTICLE

Guidelines for Validation of Next-Generation Sequencing—Based Oncology Panels

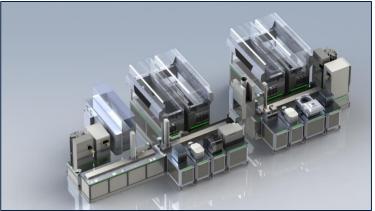
A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists

Lawrence J. Jennings,*[†] Maria E. Arcila,*[‡] Christopher Corless,*[§] Suzanne Kamel-Reid,*[¶] Ira M. Lubin,*^{||} John Pfeifer,*'** Robyn L. Temple-Smolkin,^{††} Karl V. Voelkerding,*^{‡‡} and Marina N. Nikiforova*^{§§}

Why Not Just Run Exome on All Samples?

- Cost: 5x more sequencing for germline samples and at least 50x more for Oncology samples
 - Number of samples that you can pool goes down significantly due to the size of the exome capture
- Cost: Probe cost is significantly more for exome
- Very little flexibility in design
 - Careful probe design is required to cover all genes appropriately for targeted clinical panels

	Germline Captures		Onco	ology Capture
	Exome	Germline		Oncology
# Genes	>18,000	~5000	~70	00 + intronic
Mb	39-57 Mb	14-18 Mb		6 Mb
# probes	~450,000	~130,000	\checkmark	~35,000
All genes, not all clinically rele	evant	Only disease as	sociated genes tested	


Full Lab Automation

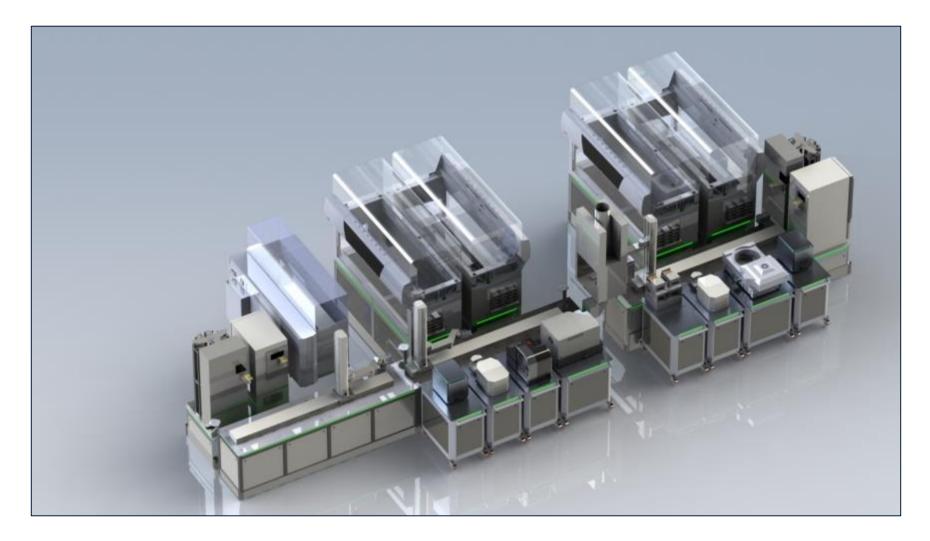
Full Lab Automation: A Multi-Phase Process

- Automation is critical component of scalability and error reduction
- Our ultimate goal is to move to a fully automated workflow in our genomics lab
- As full automation is a large undertaking we have approached automation as a multi-phase process

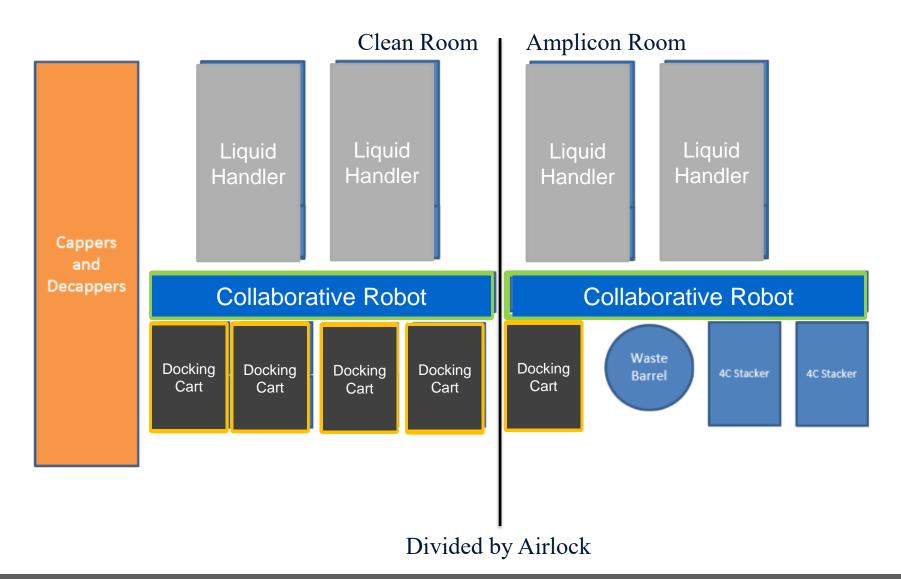
Lab Automation Phase 1: Manual to Semi-automation

- Agilent Bravo B Liquid Handler
- Semi-Automated process
 - Library Preparation to Capture/Wash
 - Improves consistency between samples/preps
- Sample switching improvements
- Semi-scalable and robust

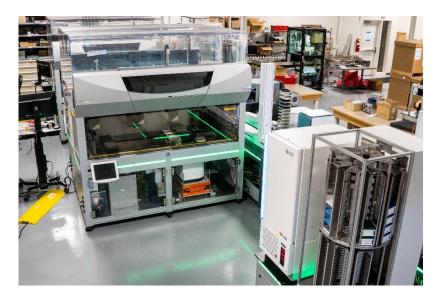
Lab Automation Phase 1: Manual to Semi-automation


Disadvantages:

- Not true walk-away automation
- Limited scaling
- Poor LIMS/scheduling integration
- Limited workflow customizability/flexibility

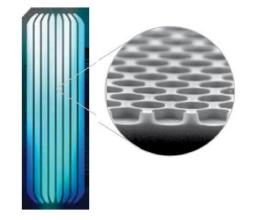


The Next Phase: NGS Automation Work Cell


Automation Workcell Concept

Automation Workcell

- Collaborative Robots
- Modular Carts
- Scheduling Software



Sequencing Consolidation and Scaling: HiSeq 4000 Sequencing

- Patterned Flowcell Technology
 - 2.5 billion pairs of reads (aka 150 bp sequences)
 - 750 Gb per flow cell in \sim 40 h
 - \$20.71 per Gb or \$0.0000002 per base
- Bioinformatics
 - Images converted to FASTQ Files

Bioinformatics Overhaul

Past Workflow

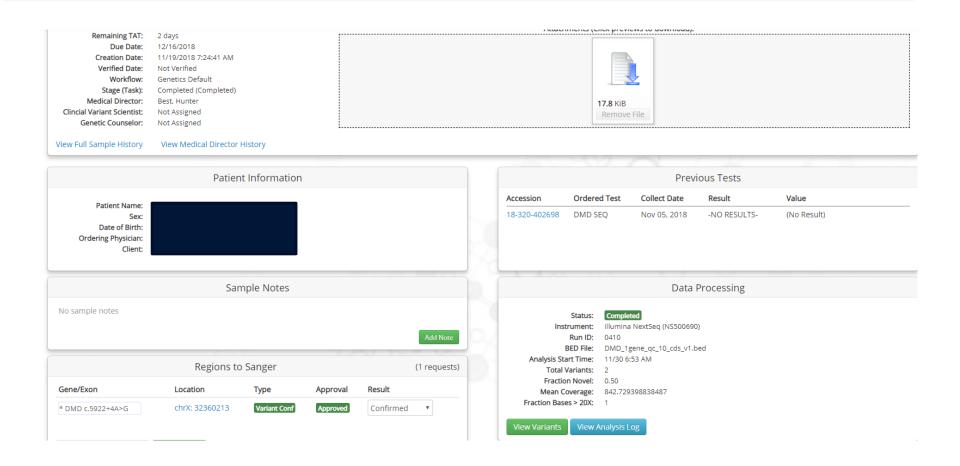
- Numerous bioinformatics pipelines
 - Essentially a different pipeline for each assay offered making it very difficult to properly maintain
 - Computing done on site using physical systems resulting in longer data processing times
 - Not scalable

Current Workflow

- Complete redesign of our informatics infrastructure
- One bioinformatics pipeline for germline/exome and one for somatic
- Cloud based data processing
 - Infinitely scalable (in theory)

Genomic Data Interpretation Issues

- Our original MPS data interpretation involved having the medical directors interpret all variants with no support
 - Time consuming: some variants would take hours to interpret
 - Turnaround time also negatively impacted as medical directors had to do the initial variant list review to determine required Sanger confirmations
 - Lack of standardization: Our genomics lab predates the ACMG guidelines on variant interpretation so criteria for variant classification weren't clearly defined
 - Very costly to have medical directors doing 100% of the initial interpretation and report building


Genomic Data Interpretation Solutions

- Clinical Variant Scientist position created
 - Ph.D. level scientists hired specifically to do variant interpretation
 - These individual do all initial quality metric review, review of variant list, order any necessary Sanger confirmations and generate a draft report
 - ARUP now employs ~15 clinical variant scientists
 - Half focused on germline testing and half focused on somatic
 - Use of clinical variant scientists has been so successful with MPS-based testing that they are now being trained on other testing specialties (e.g. cytogenetics)

- Easy visualization of data generated by MPS is important for streamlined interpretation
- When we first entered the MPS testing field there really weren't a lot of options for data visualization and clinical report generation
- After testing a few commercially available options we decided to build our own
 - Program is called NGS.Web
 - Created by our internal biocomputing group under the direction of our medical directors
 - Now used for all MPS based testing
 - Also used for Sanger testing

AR		NGS.	Veb v 5.8.4.122									♣ Hunter Best ▼
Home	Dispatcher	Q Search	💧 Sanger	🗏 Reports	A Research	DD 🔳	🗉 Batch	🏟 Admin				🖋 Con
					Dash	nboard: Ov	erall Pending	*				
				Pend	ding Samples					🕃 Last refresh: a few seconds ago		Tests on this Dashboard
Show		entrie est Mnemonic	s Test DTA	Remaining TA	.T 🔺 Current S	Stage Task	In-Lab Sta	tus (Millennium)	Search:	♦ Additional Info ♦		Please use add test button below for the dashboard to function
					No data availa	able in table					\sim	properly.
Showin	g 0 to 0 of 0 entries						- (0.10		Previous Next		Remove Test(s) Add Test(s)

AR	PLABORATORIES	NGS.	Web v 5.7.2.115			
🚯 Home	Dispatcher	Q Search	👍 Sanger	Reports	A Research	I QC
No sam	pple notes					

	BAM Metrics	5	
	Observed	Expected Range	Check
Bases above Q10	100.0%	99.0% - 100.0%	\checkmark
Bases above Q20	92.8%	88.0% - 100.0%	~
Bases above Q30	87.9%	75.0% - 100.0%	\checkmark
Number of no-call bases	0.00	366.3 - 52	
Number of no-call regions	0.00	4.11 - 33.7	
PCR duplicates removed	87.0%	47.3% - 90.5%	
Unmapped reads	20.5%	1.1% - 22.8%	

	Cove	rage	
	Observed	Expected Range	Check
Fraction above 20X	100.0%	95.0% - 100.0%	\checkmark
Fraction above 50X	100.0%	95.0% - 100.0%	\checkmark
Mean coverage	361.2	>= 200	~
otal reads	20 M	2 M - 23 M	\checkmark

	810-400940 Result Set:	NC_TRK PF Seq	Variants	Search	¢* 1	± ▼ ∅						
	Show 100	• entries				Showing 1 to 28	of 28 entries					
	1KG Freq	ARUP Frequency	Gene 📤	Variant Type	Location	Nuc. Change	Protein Change	dbSNP Id	HGMD & OMIM	Classification	Sanger	Note
	0.043	0.003	LPIN2	3 prime UTR variant	chr18: 2917367	c.*2924delC		rs148191039	HG OM	Not Classified	No Request	$ \Phi_{i} $
	0.043	0.004	LPIN2	3 prime UTR variant	chr18: 2917368	c.*2923C>T		rs202079191	HG OM	Not Classified	No Request	•
>	0.022	0.039	LPIN2	3 prime UTR variant	chr18: 2919790	c.*501T>C		rs35176958	HG OM	Not Classified	No Request	$ \Phi_{i} $
	0.078	0.015	LPIN2	Intronic	chr18: 2926479	c.1793+242G>A		rs73936863	HG OM	Not Classified	No Request	$\Phi_{\rm eff}$
	0.036	0.01	LPIN2	Intronic	chr18: 2931225	c.1456+29A>G		rs16944068	HG OM	Benign	Confirmed	$ \Phi_{i} $
	0.0	0.0	LPIN2	Intronic	chr18: 2934196	c.1268+153G>A			HG OM	Not Classified	No Request	$\Phi_{i,i}$
	0.061	0.005	LPIN2	Intronic	chr18: 2937400	c.1168+290C>T		rs7229067	HG OM	Not Classified	No Request	$ \Phi_{i} $
	0.0	0.0	LPIN2	Intronic	chr18: 2937543	c.1168+146_1168+147delTT		rs149050165	HG OM	Not Classified	No Request	$\Phi_{\rm eff}$
>	0.099	0.004	LPIN2	Intronic	chr18: 2950744	c.590+309T>C		rs7244259	HG OM	Not Classified	No Request	$ \Phi_{i} $
	0.0	0.038	LPIN2	Intronic	chr18: 2960513	c.192+134delT		rs376940122	HGOM	Not Classified	No Request	•
	0.0	0.021	MEFV	3 prime UTR variant	chr16: 3292392	c.*749C>T			HGOM	Not Classified	No Request	$ \Phi_{i} $

Columns	▼ Filter 🖸	🕻 Links 🛛 🕫	Settings ? About					18-313-1	04466	dcaa5862-15f4-4bf3-b	306-90b078beb	632 (Original) 🔻	, 16 V	arian
Gene	Effect	NM Number	Hgvs C (Features)	Hgvs P (Fe	Indel Lengt	Location	Gnomad Combined Af (Ann	gnomAD Link	gno	Allele Freq (Caller D	Depth (Call	Quality (Cal	Notes	(
LPIN2	3_prime_UTR	_ NM_01464	c.*3C>T			chr18: 292028	0.3102258605242623	C	⊞	0.9911190053285968	1126	27795	۶	rs3
MEFV	intron_variant	NM_00024	c.1588-69G>A			chr16: 329661	0.47148325979756034	ľ	⊞	0.9969104016477858	971	25703	•	rs2
MEFV	synonymous_v	/ NM_00024	c.1530T>C	p.Asp510Asp		chr16: 329707	0.6101983657205555			0.9951980792316927	1666	43752	•	rs2
MEFV	synonymous_v	/ NM_00024	c.1428A>G	p.Gln476Gln		chr16: 329717	0.6051029252437703			0.9945717732207479	1658	71722	•	rs2
MEFV	synonymous_v	/ NM_00024	c.1422G>A	p.Glu474Glu		chr16: 329718	0.6020470074975081		▦	0.9932182490752158	1622	70997	•	rsî
MEFV	synonymous_v	/ NM_00024	c.942C>T	p.Arg314Arg		chr16: 329974	0.6268223813669049			0.9878277153558053	1068	27634	•	rsź
MEFV	missense_vari	ε NM_00024	c.605G>A	p.Arg202GIn		chr16: 330446	0.2359324852544625			0.4421052631578947	380	3573.6	•	rsź
MEFV	synonymous_v	/ NM_00024	c.495C>A	p.Ala165Ala		chr16: 330457	0.4362615527644603			0.99	200	5738.03	•	rsź
MEFV	synonymous_v	/ NM_00024	c.414A>G	p.Gly138Gly		chr16: 330465	0.4445870565120183			0.9943609022556391	532	14803	•	rs2
MEFV	synonymous_v	/ NM_00024	c.306T>C	p.Asp102Asp		chr16: 330476	0.44800552530841065			0.9926888708367181	1231	32101	•	rs2
NOD2	missense_vari	ε NM_02216	c.2233A>G	p.Ser745Gly		chr16: 507460	0			0.5	4	30.6	•	
NI RP12	missense vari	7 NM 14468	c.1206C>G	n Phe402l eu		chr19: 543137	0 05082672363397542	(7	Ħ	1	2	56 28	•	rs3

- 1 . . .

.

Generate Report: 18-310-400940 (PRFEVERPAN)									
Overall Result: Negative		Total Characters: 1014	Review Variants Update Draft Save Draft Notify MD Commit Report						
Template: Negative	T	NGS Web Millennium							
🕑 Use Global Template									
Include the following variants:		INDICATION FOR TESTING: Not provided.							
* MEFV NM_000243.2: c.1530T>C p.As Benign Accepted ? Sanger: No Sanger	ŧ	RESULT No pathogenic variants were detected.							
* MEFV NM_000243.2: c.1428A>G p.Gl Benign Accepted ?	ŧ	TNFRSF1A, NLRP3, ELANE, and PSTPIP1). No large exonic deletions and of the six targeted genes associated with periodic fever syndromes (MEFV, N	g of the coding regions and intron-exon boundaries in any of the seven targeted genes (MEFV, MVK, LPIN2, duplications were identified by the custom designed Comparative Genomic Hybridization (CGH) array in any MVK, LPIN2, TNFRSF1A, NLRP3, and PSTPIP1). This result decreases, but does not exclude, a diagnosis of issociated with periodic fever syndromes; other causes of autoinflammatory disorders cannot be excluded.						
Sanger: No Sanger * MEFV NM_000243.2: c.1422G>A p.Gl Benign Accepted	ŧ	RECOMMENDATIONS Medical screening and management should rely on clinical findings and fami COMMENTS Benign variants are not included in this report.	ily history. Genetic consultation may be helpful.						

ARUP Genomic Data Interpretation

- ARUP also employs more than 15 genetic counselors
 - GCs review all of our genomic test orders for appropriateness
 - GCs also review all germline reports after they are completed by the CVS (prior to medical director review)
- Final review of all reports is done by a board-certified medical director
 - ~30 medical directors at ARUP are involved in the sign out of MPS-based testing
 - Exome cases are discussed weekly at a focused case conference that includes multiple medical directors, GCs, CVSs and clinical geneticists

- Genomic testing using MPS has become the standard of care for the diagnosis and treatment determination in many disorders
- Clinical testing in genomics is complex and can be challenging to implement without the proper infrastructure
- Though many hurdles exist, the successful implementation of MPS-based testing can be achieved through strategic planning

Acknowledgements

<u>Genomics Leadership Team</u> Devin Close, Ph.D. Erica Cuttitta Kim Frizzell, Ph.D. Mike Graczyk

<u>Genomics Project Managers</u> Sarah Teofilo Devin Rhodenizer

<u>Genomics Clinical Lab Supervisors</u> Scott Pew Josh Raney Automation Group MPS R&D Group Biocomputing Group Genomics Clinical Lab Medical Directorship Too many others to list

© 2019 ARUP Laboratories

ARUP IS A NONPROFIT ENTERPRISE OF THE UNIVERSITY OF UTAH AND ITS DEPARTMENT OF PATHOLOGY