Introduction to Blood Parasites

It may be a bloody mess, but it is worth knowing

Marc Roger Couturier Ph.D., D(ABMM)

Medical Director, Parasitology – ARUP Laboratories Professor of Pathology – University of Utah

Blaine A. Mathison B.S., M(ASCP)

Research and Development Scientist, Parasitology Specialist – ARUP Laboratories Adjunct Instructor in Pathology – University of Utah

Objectives for Learning

Understand the role of lab testing in blood parasite diagnostics

Recognize the major genera of blood parasites

Describe the clinical associations and syndromes of major blood parasites

Clinical Parasitology

- Organ systems:
 - » Brain
 - » Skin/Soft tissue
 - » Lungs
 - » Liver
 - » GU
 - » Blood

See separate video

Blood Parasite testing

- Blood smear overview
- Other methods discussed within organisms

Blood Smear Exam

- Collect peripheral or fingerstick blood
- Stain with Giemsa, Wright-Giemsa, or Wright
- Two smears:
 - » Thick
 - Increased sensitivity (more blood examined) & blood is lysed
 - Detect parasites, may not allow full identification
 - » Thin

- Morphology within in-tact blood cells is maintained
- Species determination achievable
- Parasite burden (parasitemia) can be determined

Blood Smear Exam

• Repeat every 6-8 hrs x3 if first test is negative & high clinical suspicion

Plasmodium falciparum thin smear

Plasmodium falciparum thick smear

Major Blood Parasites

- Protozoa
 - » Malaria (*Plasmodium* spp.)
 - » Babesia
 - » Trypanosoma
- Helminths filarial nematodes
 - » Lymphatic filariasis Wuchereria & Brugia spp.
 - » Loa loa
 - » Mansonella
- Spirochetes*

*Not technically parasites

Malaria – *Plasmodium* spp.

- Protozoan blood parasite >150 species
 » 4 species are primary human parasites
 - Plasmodium falciparum
 - Plasmodium vivax
 - Plasmodium ovale
 - Plasmodium malariae
- Symptoms
 - » Common: fever & chills (cycling)
 - Can be accompanied by headache, myalgias, arthralgias, weakness, vomiting, & diarrhea.
 - Less common: splenomegaly, anemia, thrombocytopenia, hypoglycemia, pulmonary or renal dysfunction, & neurologic changes

Plasmodium spp. Lifecycle

- Anopheles mosquito vector
- Replicates in liver \rightarrow blood
- Sexual replication → gametocytes
 » Transmissible form
- Erythrocytic cycle

» Red blood cell replication/ destruction

Plasmodium falciparum

- Most dangerous \rightarrow infects all types of red blood cells
 - » Highest parasitemias
 - » Severe symptoms include cerebral malaria (often fatal in children)
- Most commonly encountered in clinical care
- Most widespread

• Fevers cycle every 24-48 hours » Continuous at high parasitemia

Plasmodium falciparum

• Microscopy:

» Small ring forms and banana-shaped gametocytes

Plasmodium falciparum

Appliqué form

"Headphones"

Maurer's clefts

Plasmodium vivax

- Prefers to infect macrocytic (immature) red blood cells
 » Low parasitemia = restricted host cell availability
 - Rare complication: splenomegaly or splenic rupture
- Second most common species in clinical care » Widespread
- Fevers every ~48 hours

AR PLABORATORIES

• Liver phase hypnozoites can reactivate months after infection

Plasmodium vivax

Ring form trophozoite

Mature trophozoite w/Schüffner's dots

Plasmodium vivax

Gametocyte

Schizont

Plasmodium ovale

- Prefers to infect macrocytic (immature) red blood cells
 » Low parasitemia = restricted host cell availability
- Third most common species in clinical care » Most geographically constrained
- Fevers every ~48 hours

AR PLABORATORIES

• Liver phase hypnozoites can reactivate months after infection

Plasmodium ovale

Trophozoite

Trophozoite w/ fimbriation

Schizont

Plasmodium ovale

Mature Trophozoite w/Schüffner's dots & fimbriation

Mature Trophozoite w/Schüffner's dots & fimbriation

Plasmodium malariae

- Prefers to infect senescent (older) red blood cells
 » Very low parasitemia = restricted host cell availability
- Fourth most common species in clinical care
 - » Often asymptomatic
 - » Constrained geographically
- Fevers every 72 hours (if any)

Plasmodium malariae

Trophozoite, gametocyte, & schizont

Band form trophozoite

Plasmodium malariae

Bird's eye

Basket form

Regarding"other " Plasmodium sp.

Tread carefully with the hyperbole

Simian malaria

- Zoonotic malaria, rarely found in humans:
 - » Plasmodium knowlesi SE Asia/Malaysian peninsula
 - » Plasmodium cynomolgi Peninsular Malaysia
 - » Plasmodium schwetzi Tropical Africa
 - » Plasmodium coatneyi Peninsular Malaysia & Philippines
 - » Plasmodium inui Southeast Asia
 - » Plasmodium simiovale Sri Lanka and Malaysia
 - » Plasmodium simium South America

- Probable *P. vivax* \rightarrow jumped to monkeys after introduction.
- » Plasmodium brasilianum South America
 - Probable *P. malariae* → jumped to monkeys after introduction.

Plasmodium knowlesi

- Simian malaria: narrow geographic distribution S.E. Asia » Malaysia, Indonesia
- Mimicry:

- » Clinically \rightarrow *P. falciparum*
- » Morphology \rightarrow
 - > Early, P. falciparum
 - > Late, P. malariae (but parasitemia too ↑)
- » NAAT \rightarrow *P. vivax* if not carefully designed

24

Plasmodium knowlesi – final note of caution

• Do not default to *P. knowlesi*

» RARE \rightarrow consider common things being common

- Evaluate morphology → Follow the flow
 » IF, something seems "odd"
 » THEN, consider other species like *P. knowlesi*
- CONFIRM appropriate geographic exposure
- Consider NAAT

Malaria Treatment

- Depends on: severity, species, area acquired, previous anti-malarials used
- Resistance is a problem
 - P. falciparum & P. vivax
 - » See algorithm for detailed decision making: <u>https://www.cdc.gov/malaria/resources/pdf/treatment_algorithm_101619.pdf</u>
 - » Acquired in area w/out chloroquine resistance \rightarrow chloroquine
 - » Acquired in area w/chloroquine resistance ightarrow
 - (1) artemether-lumefantrine
 - (2) atovoquone-proguanil
 - (3) quinine + doxycycline
 - (4) mefloquine
- Liver phase hypnozoites also require specific therapy
 - *P. vivax* & *P. ovale* → tafenoquine or primaquine phosphate

Other Malaria Tests

Plasmodium antigen from blood

- BinoxNOW Malaria r_{12} (+) (+) (-) r_{11} r_{12} r_{12} r
- Rapid Diagnostic Test Binax Now Malaria (only FDA cleared assay)
 » Results in < 30 min (good for hospitals unable to do blood smears)
 - But...less sensitive than blood smear examination
- Most sensitive for *P. falciparum*

AR P^{*}LABORATORIES

- Can detect three remaining human species
- May cross-react with simian species
- 5000 parasites/ml = 0.125% parasitemia

SENSITIVITY FOR P.f.

Parasitemia Level	% Sensitivity	95%Cl
> 5000	99.7% (326 / 327)	98 - 100%
1000 - 5000	99.2% (126 / 127)	96 - 100%
500 - 1000	92.6% (25 / 27)	76 - 99%
100 — 500	89.2% (33 / 37)	75 - 97%
0 - 100	53.9% (21 / 39)	37 - 70%
Overall	95.3% (531 / 557)	93 - 97%
	% Specificity	95% CI
	94.2% (3297 / 3500)	93-95%

NAAT for Malaria

- Not standard of care for Dx
- Excellent specificity and sensitivity (design dependent)
- Helpful for:
 - » Possible mixed infections
 - » Very low parasitemia specimens
 - Few organisms to determine *Plasmodium* sp.
 - Babesia vs Plasmodium
 - *P. knowlesi* rule in/out
- Not truly quantitative, still requires parasitemia by smear

Babesiosis

- Caused by apicomplexan parasites in the genus *Babesia*. » Primary morphologic differential for malaria
- Transmitted by ticks in the genus *Ixodes*.
- Several species endemic to North America
 - *B. microti*, NE

- *B. duncani*, West, PNW
- *Babesia* MO-1, PNW, Missouri River Valley

Life Cycle of Babesia microti

Westblade LF, et al. J Clin Microbiol. 2017. PMID 28747374

Babesiosis

- Symptoms often asymptomatic
 - » When present, usually non-descript (fever, chills, sweating, myalgia, fatigue, hepatosplenomegaly); hemolytic anemia possible.
- Symptoms most severe in immunocompromised, elderly, asplenic patients.
- Diagnosis primarily by blood film examination
 - » Species cannot be separated morphologically. NAAT or serologic testing needed for species-level ID (epidemiologic data can be helpful).

Babesia - Morphology

'Maltese Cross'

Extracellular forms

Pleomorphic rings

• Protozoa (flagellate), two primary human pathogens

» T. cruzi – causes Chagas disease

» *T. brucei* – causes African sleeping sickness

- Vectored by triatomine bug (kissing bug)
 » Parasite in feces of bug, enters wound or mucus membrane
- Symptoms:

AR P^{*}LABORATORIES

- » <u>Acute</u>: often asymptomatic, chagoma (node or lesion around bite site), <u>Romaña sign</u> is swelling around eye (@ bite)
 - +/- fever, malaise
 - Rarely cardiac or CNS involvement

- Symptoms:
 - » <u>Chronic</u>:
 - Cardiac and/or GI involvement

- » ~70-80% remain chronically infected, asymptomatic for life (Indeterminate form)
- » 20-30% progress to disease over years to decades (Determinate form)
 - Megacolon
 - Cardiomyopathy
 - Megaesophagus

Trypanosoma cruzi

- Diagnosis:
 - » Acute → Microscopy (blood, CSF, biopsy) PCR Culture
 - » Chronic → Serology
 - Recommend two different IgG serology tests to optimize accuracy
- Treatment: most effective for acute phase
 - » Benznidazole (FDA cleared)
 - » Nifurtimox (via CDC; investigational)

- Vectored by Tse tse fly (Glossina) bite
- Humans are main reservoir » Occasionally cattle

- Symptoms:
 - » Early:
 - Hard painful skin ulcer
 - Fever
 - Enlarged lymph nodes
 - » Later:

- Symptom free (intermediate duration)
- » Late/end stage disease
 - Somnolescence to coma

• Two subspecies (cannot be distinguished morphologically):

40

» *T.b. gambiense* (Gambling out west)

» *T.b. rhodesiense* (Rhode Island is east)

Subspecies	Parasitemia	Severity	CNS tropism	Time to CNS
ssp. <i>gambiense</i>	\downarrow	Less severe	Less tropic	Years
ssp. <i>rhodesiense</i>	\uparrow	More severe	More tropic	<9 months

- Diagnosis:
 - » Acute -> Microscopy (blood, lymph aspirate, chancre fluid, bone marrow)
 - » Chronic → Microscopy (CSF)
- Treatment: subspecies and source dependent
 - » T. b. rhodesiense
 - Hemolymphatic Suramin
 - CNS Melarsoprol
 - » T. b. gambiense
 - Hemolymphatic Pentamidine
 - CNS Eflornithine

Filariases

- Caused by various genera and species of filarial nematodes.
- Vector-borne
- Adults reside in various locations:
 - » Lymphatic filariasis (lymph tissue)
 - » Loiasis (skin, eye)
 - » Mansonellosis (mesenteries, connective tissue, skin)
- Diagnosis primarily by detection of microfilariae in blood films
 - » Serology for lymphatic filariasis

Lymphatic filariasis

- Caused by *Wuchereria bancrofti* (Circumtropical), *Brugia malayi* and *B. timori* (Southeast Asia)
- Vectors: mosquitos
- Clinical presentation: lymphatic filariasis ('elephantiasis')

Microfilaria of W. bancrofti in blood

Lymphatic filariasis

- Diagnosis:
 - » Microfilariae in blood
 - » Serology
- Treatment: diethylcarbamizine (DEC)
 - » Contraindicated in patients with *Onchocerca* or *Loa*.

Microfilaria of W. bancrofti in blood

Loiasis

- Caused by *Loa loa*, the African eye worm, endemic to west-central Africa
- Vectors: deer flies
- Clinical presentation:
 - » 'Calabar swellings'
 - » ectopic migration to the eye

Adult in eye

https://www.cdc.gov/dpdx/monthlycasestudies/2011/case301.html

Loiasis

• Diagnosis:

- » Microfilaria in blood films
- » Adults removed from the eye
- Treatment: DEC
 - » Albendazole to lessen worm burden prior to DEC administration

Microfilaria in blood

https://www.cdc.gov/dpdx/monthlycasestudies/2011/case301.html

Mansonellosis

- Three species:
 - » *Mansonella perstans* (Africa, Latin America, Caribbean)
 - » Mansonella ozzardi (Latin America, Caribbean)
 - » Mansonella streptocerca (Africa)
- Vectors: biting midges (all 3), also black flies (*M. ozzardi*)
- Diagnosis: microfilariae in blood [often incidental]
 » M. streptocerca in skin snips

Mansonella perstans, thin blood smear

Relapsing Fever Borreliosis

Not a parasite: caused by *Borrelia* spp. in the relapsing fever group
 » Vectored by soft ticks (*Ornithodorus*)

48

- Detected in blood smears (intentionally or accidental)
- Recurring febrile episodes ~3 days separated by afebrile period ~7 days
 - » 75%: headache, myalgia, chills, nausea
 - » 50%: arthralgia, vomiting

AR P LABORATORIES

» 25%: abdominal pain, dry cough, eye pain, diarrhea, photophobia, neck pain

Relapsing Fever Borreliosis

- Diagnosis:
 - » Blood smear
 - » NAAT (most sensitive)
 - » Serology (retrospective)
- Treatment:
 - » Doxycycline

49

Approximate geographic ranges in the USA

Worldwide distribution for other species

Key Points

AR P^{*}LABORATORIES

- Malaria Anopheles mosquitos
 - » *P. falciparum* most dangerous, most widespread, chloroquine resistance
 - » *P. vivax* liver phase reactivation, chloroquine resistance
 - » P. ovale liver phase reactivation
 - » *P. malariae –* mild or asymptomatic
- Babesia tick-borne, asplenic patients @ high risk
- *Trypanosoma cruzi* Chagas disease, Americas, chronic (e.g. cardiomyopathy, megacolon)
- Trypanosoma brucei African sleeping sickness, blood microscopy, mostly fatal if untreated

Key Points

• Filariasis

» Wuchereria – lymphatic filariasis and elephantiasis

» *Loa loa* – African eye worm, Calabar swellings

» *Mansonella* – often an incidental finding when blood films ordered for something else

• Tick-borne Relapsing Fever – soft ticks, widespread, cycling fevers

A nonprofit enterprise of the University of Utah and its Department of Pathology

© 2020 ARUP LABORATORIES