CRISPR and Diagnostics: Challenges and Strategies for Understanding Results from Sequencing including Variants of Unknown Significance

Josh Bonkowsky, MD, PhD
Department of Pediatrics
University of Utah School of Medicine
Outline

1. Pediatric Neurology and the Diagnosis Problem
2. Diagnosis: Costs and NGS (Next-Generation Sequencing)
 1. Leukodystrophy as an example
3. Crispy Zebrafish (... CRISPR and Zebrafish)
4. Perils and Successes with CRISPR Modeling
 1. Neuromuscular Disease
 2. The nav1 problem
 3. Lou Gehrig’s disease
Pediatric Neurology and the Diagnosis Problem
~5% of all children
Life-long morbidity; higher mortality
Largest single group of healthcare costs for children
 contribution to the “Diagnostic Odyssey”
 Berry, Poduri, Bonkowsky et al., 2012, PLoS Medicine
Known and unknown causes of disease
 many rare diseases
 for most patients the genetic cause has been unknown
Rare and Orphan Diseases

- >2,025 rare diseases
- 25 million Americans affected
- orphan disease:

 “for which there is no reasonable expectation that the cost of developing and making available in the United States a drug for such disease or condition will [be] recovered from sales in the United States of such drug”
Orphan Diseases and Leukodystrophies

RARE DISEASES BY THE NUMBERS
A disease is defined as orphan in the U.S. when it affects fewer than 200,000 people. There are approximately 7,000 types of rare diseases and disorders.

- 95% of rare diseases have no FDA-approved drug treatment.
- 80% of rare diseases are genetic in origin.
- Approximately 50% of those affected by rare diseases are children.
- 30% of children with a rare disease will not live to see their fifth birthday.

- 8: Average number of physicians visits before diagnosis.
- 3: Average number of misdiagnoses.
- 7+: Average time until diagnosis.

SOURCES: National Organization for Rare Diseases, Global Genes Project
What is an undiagnosed disease?

- A disease that has not been diagnosed because the correct test has not yet been performed
 - rare disease
 - atypical presentation of a more common disease
- A disease that has not been diagnosed because we didn’t know the disease existed
 - majority of undiagnosed diseases are neurologic
Why does diagnosis matter?

- Cure
- Therapy/Treatment
- Clinical Trials
- Natural history studies
- Prognosis for family
- Genetic counseling
- Genetic and biochemical pathways of disease
How good are we at diagnosis?

Pediatric Neurology

- MRI: 20% diagnosis
- CGH microarray: 10%
- NGS (Next-Generation Sequencing): 40%
Leukodystrophy:

- Genetic
- Involvement of white matter (myelin)
 - Not secondary to a different etiology (trauma, prematurity, etc.)
What is a Leukodystrophy?

- Three types:
 - Hypomyelination
 - Dysmyelination
 - Demyelination

- 30 canonical genes, >700 total genes

- Diagnosis rates ~50%
Leukodystrophy Problems

- Causes of leukodystrophies not known
- How to diagnose unknown
- No treatments
The Burden of Leukodystrophies

Table 2

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death, n (%)</td>
<td>42 (34)</td>
</tr>
<tr>
<td>Average age at death, y</td>
<td>8.2</td>
</tr>
<tr>
<td>Epilepsy, n (%)</td>
<td>60 (49)</td>
</tr>
<tr>
<td>Average age at onset, y</td>
<td>4.0</td>
</tr>
<tr>
<td>Developmental regression, n (%)</td>
<td>39 (32)</td>
</tr>
<tr>
<td>Feeding tube, n (%)</td>
<td>53 (43)</td>
</tr>
</tbody>
</table>

Costs

<table>
<thead>
<tr>
<th>Costs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cohort cost</td>
<td>$14,315,919</td>
</tr>
<tr>
<td>Average yearly cost/patient</td>
<td>$22,579</td>
</tr>
</tbody>
</table>

Age at death

![Graph showing age at death by cohort type](image-url)

Bonkowsky et al., *Neurology*, 2010
Diagnosis: Costs and NGS (Next-Generation Sequencing)
Hypotheses:

1. Costs are substantial.
2. NGS will help.
1. Costs are substantial

- False
- Average costs of $4,209/patient
 - Compared to average healthcare costs of $107,000/patient

- Conclusion: reaching a diagnosis is not the primary driver of costs
2. NGS will help

- True

- Charges for the entire cohort = $538,053

- If NGS had been performed instead = $371,200
 - and equal or better diagnosis rate

- Conclusion: *Use NGS early*

 Richards et al., 2015, *Neurology*

 Richards et al., 2015, *Am J Med Genetics*
Next Generation Sequencing: NGS

- NGS has revolutionized diagnosis
 - Sequencing technology is on the time-scale of hours/days
 - Interpretation is weeks to months
- But accompanying limitations:
 - sequencing informatics bottleneck
 - *biology bottleneck of variants*
 - each individual has ~74 germline de novo mutations
 - the spectre of non-coding variants
 - the role of somatic mutations
Two Steps:

1. Test treatable disorders
 Either:
 Leukocyte Lysosomal Enzymes and Serum Very Long Chain Fatty Acids
 or
 Rapid Whole Exome

2. Whole exome/genome or leukodystrophy gene panel
Diagnosis Disparities - a role for NGS?
Number of Leukodystrophy cases per 100,000 PHIS patients
Diagnosis rates are >50% lower in some racial groups
No evidence for genetic
Conclusions

- NGS diagnosis is less expensive
 - Than traditional diagnosis
 - Than clinical care
 - The Diagnostic Odyssey can be finite

- NGS algorithms for diagnosis should be developed

- Consider NGS to reduce diagnosis disparities
Crispy Zebrafish
(CRISPR and Zebrafish)
CRISPR is the most recent and most successful of genome editing techniques

- ZFN (zinc-finger nucleases)
- TALENs (transcription activator-like effector nucleases)

- ZFNs and TALENs require customization to efficiently target a sequence, and are more costly and difficult to develop for each target
CRISPR/Cas system is a prokaryotic (bacterial) “immune” system to attack foreign DNA

- CRISPR:
 Clustered Regularly Interspaced Short Palindromic Repeats
- Cas: CRISPR-associated system
 - Cas9: an RNA-guided DNA endonuclease

- Synthetic gRNA (guide RNA) matches a sequence in the target, and then guides the Cas9 system over to cut at that locus
How CRISPR works

1. The Cas9 protein forms a complex with guide RNA in a cell.
2. This complex attaches to a matching genomic DNA sequence adjacent to a spacer (yellow segment).
3. The Cas9-RNA complex cuts the double strands of the DNA.
4. Programmed DNA may be inserted at the cut.

Credit: MRS Bulletin
Zebrafish as a Model Organism

1. Vertebrate
2. Conserved genes
3. Rapid development
4. Inexpensive
Zebrafish and Human Genes are Conserved
Genomic responses in mouse models poorly mimic human inflammatory diseases

Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R^2 between 0.0 and 0.1)
Economy of scale

- Analyze 1000s of animals per day
- 1000s of tanks in a facility
- Generation time: 8 weeks
Power of Drug Discovery in Zebrafish

- whole animal biological complexity
- rapid development
- high-throughput screening
 - 62% of new drugs discovered using phenotypic screening
Drug Pipeline

- **Discovery**: High-throughput screening
- **Pre-clinical**: Laboratory & animal testing
- **Phase I**: 20-100 volunteers: safety & dosage
- **Phase II**: 100-500 volunteers: efficacy & side effects
- **Phase III**: 1,000-1,500 volunteers: long-term use study
- **FDA review**
- **Production**

Cost/Trial
- Discovery: $1-5 \times 10^6$
- Pre-clinical: $5-20 \times 10^6$
- Phase I: $80-400 \times 10^6$

Success Rates
- Discovery: 40-60%
- Pre-clinical: 50-70%
- Phase I: 60-80%

Timeline
- Discovery: 5 years
- Pre-clinical: 2 years
- Phase I: 1.5 years
- Phase II: 2 years
- Phase III: 2.5 years
- FDA review: 2 years
- Production
Automated screening
CRISPR in Zebrafish

- Bi-allelic knockdown using CRISPR >80%
 - Both copies of a gene are mutated
 - From the 1-2 cell stage of life
- CRISPR construct is easy to make and can be ready in <1 week and <$400
- Multiple genes can be targeted simultaneously
- >1000 animals can be generated in a week and tested by an undergraduate
- Results can be known in 1-2 weeks for developmental disorders
 - Because embryogenesis occurs in first 3 – 7 days
Zebrafish CRISPR limits

- **Limits**
 - Some genes in the zebrafish genome are duplicated
 - A stable mutant for long-term studies takes 1 year to generate
 - Some disorders are not amenable for zebrafish (for example, thumb development, or disorders of the placenta, etc.)
 - Some “rescue” may occur by orthologs
Zebrafish have unique benefits as a vertebrate model organism
- rapid generation time, high numbers, and inexpensiveness

CRISPR is fast and efficient in zebrafish

Zebrafish have emerged as a powerful tool for testing NGS results
Perils and Successes with CRISPR Modeling

Three tales (tails?)
Guidelines for Demonstrating Variant Pathogenicity

1. specific gene variant enriched/specifically associated with a disease
2. a mutant phenotype in a model system matches a phenotype from human
3. Rescue of the mutant phenotype with wild-type allele
4. Inability of mutant allele to rescue phenotype

adapted from Chakravarti et al., 2013, Cell
Two congenital motor neuron diseases: ...a New Gene... and the Wrong Gene

Case 1:
- Newborn infant requiring artificial ventilation
- Genetic testing showed that it was not SMA
- Guidance needed for parents and physicians
LAS1L gene identified and had phenotype in zebrafish
LAS1L Pathogenicity

- Sequencing showed p.S477N mutation in a ribosomal biogenesis protein: LAS1-like
- Confirmed in zebrafish
- New biochemical pathway in neurological disease

Congenital lethal motor neuron disease with a novel defect in ribosome biogenesis

Butterfield et al., Neurology, 2014
Case 2

- Stevenson and Carey, AJMG, 2007
- Siblings with muscular contractures, seizures, and brain structural abnormalities
- NGS suggested NAV1 gene
zebrafish morphants and CRISPR are normal

- sequence re-analysis did not confirm NAV1 (and did not identify other better candidates)!
TP73: a Novel Amyotrophic Lateral Sclerosis Gene
Most ALS cases have an unknown genetic cause for disease

Familial ALS (10%)
- C9ORF72 (~40%)
- TARDBP (~4%)
- FUS (~4%)
- SOD1 (~12%)
- OPTN, VCP, SQSTM1, PFN1, UBQLN2 (~68%)
- Unknown (32%)

Sporadic ALS (90%)
- C9orf72 (5.7%)
- FUS (1.1%)
- SOD1 (2.3%)
- SQSTM1 (3.5%)
- ATXN2 (1.1%)
- NEK1 (2.3%)
- ERBB4 (1.1%)
- Unknown (17.2%)

Renton et al. (2014), Nat. Neurosci
Gibson, Downie et al. (2017), Neurology
Determine whether novel loci ALS loci can be identified using next-generation sequencing

87 SALS patients (exome sequenced)

324 controls (Simons Simplex Collection)

Candidate gene list applicable to a phenotype/disease

Burden testing

Prioritized gene list by burden

Re-ranked gene list with genes relevant to a phenotype ranked higher
TP73 has multiple qualities that make it an attractive ALS gene candidate

- Two known ALS genes in top 5 ranked genes from VAAST/PHEVOR
 - MAPT (rank: 3)
 - SOD1 (rank: 5)

- **TP73** (rank 2)
 - One of two genes that possessed a VAAST burden level approaching genome-wide significance
 - Four different rare missense SNVs in five patients
 - 1 in-frame indel upon screening for indels
 - Part of the p53 family of tumor suppressor proteins
 - Neuronal survival factor
Rare, deleterious variants in TP73 are found at appreciable frequency in ALS patients

24 rare (MAF<0.0005) TP73 coding variants were found in ~2,900 ALS patients

TP73; ENST00000378295

All SNVs are deleterious according to MetaSVM

~2,800 patients from Cirulli et al. (2015) Science
A CRISPR/Cas9 zebrafish system was developed to test how loss of p73 affects spinal motor neurons.
The number of spinal motor neurons is significantly reduced in tp73 zebrafish mutants

G uninjected

H TYR CRISPR

I Tp73 CRISPR

J

Tg[Hb9:Gal4-UAS:GFP]

Confocal: 10x; 5μm/step, 21 steps

Hb9 = motor neuron promoter

hpf = hours post fertilization

MN = motor neuron

* = p < 0.01

uninjected TYR TP73 CRISPR

MN/segment

100
80
60
40
20
0

uninjected TYR TP73 CRISPR
p73 CRISPR zebrafish have increased apoptosis of spinal motor neurons

D uninjected

E Tp73 CRISPR

72 hpf GFP TUNEL

Tg[Hb9:Gal4-UAS:GFP]

Confocal: 10x; 5μm/step, 21 steps

Hb9 = motor neuron promoter
hpf = hours post fertilization
MN = motor neuron
* = p < 0.05
May have identified a new ALS risk gene.
- Rare and deleterious variants TP73 are found in ALS patients
- These variants impair TP73 function
 - Loss of C2C12 myoblast ability to escape differentiation
- Development and survival of motor neurons are negatively affected in Tp73 mutant zebrafish
- Expands the list of cellular processes involved in ALS pathogenesis.
Acknowledgements

Jorde Lab
Julie Feusier
Justin Tackney
David Witherspoon
Scott Watkins
Brett Kennedy
Karin Chen
Kristi Russell
Clement Goubert

Stefan Pulst Lab
Summer Gibson

Josh Bonkowsky Lab
Spyridoula Tsetsou
Matt Keefe

Funding
Utah Genome Project
Biogen
Utah Neuroscience Initiative
(GM118335)
Conclusions

- NGS is changing the landscape not only of diagnosis, but redefining what diseases exist.
- NGS results can be challenging to interpret, as often the results are the first of their kind.
- CRISPR genome editing is a powerful, efficient, and inexpensive method for testing gene function.
- The zebrafish is a uniquely powerful vertebrate model system for testing certain diseases and NGS results.
Funding

The Vanishing White Matter Foundation

ELA - Association Européenne Contre les Leucodystrophies

ALD Connect

NIH Director's NEW INNOVATOR AWARD
People