HERPES SIMPLEX VIRUSES 1 AND 2

0

MIRANDA CHIMZAR, MD

ARUP LABORATORIES AND UNIVERSITY OF UTAH

PATHOLOGY RESIDENT (PGY2)

OBJECTIVES

- Examine the evolution and classification of Herpes Simplex Viruses 1 and 2 (HSV-1 and HSV-2)
- Explain the symptoms, transmission, management, and prevention of infection
- Describe the testing modalities for Herpes Simplex Viruses 1 and 2 along with their indications and limitations

HERPESVIRIDAE FAMILY

- Enveloped virus with linear, double stranded DNA (Straus, 1990)
- Includes Herpes Simplex viruses 1 and 2, Varicella-zoster virus, Epstein-Barr virus, Cytomegalovirus, and Human herpes virus 6, 7, Kaposi sarcoma-associated herpesvirus (HHV-8), Herpes B virus (Bennett, 2019)
- Divided further into subfamilies:
 - Alpha herpes viruses: Rapid growth in many tissues, destroy host tissues
 - Beta slow growing in limited cell types
 - Gamma slow growing in lymphoid cells
- Only primates infected by two herpes simplex viruses (Wertheim, 2014)

HERPES SIMPLEX VIRUS STRUCTURE

- DNA: Linear (Ahmad, 2020)
- Capsid: ~125 nm diameter icosahedral
- Envelope: Derived from host organelle with viral membrane proteins
 - Glycoproteins B and D help virus bind and enter host cells (Straus, 1990)
- Tegument: Complex multi-subunit protein layer
 between the capsid and envelope (Ahmad,
 2020)

THE EVOLUTION OF THE HUMAN HERPES SIMPLEX VIRUSES (WERTHEIM, 2014)

THE EVOLUTION OF THE HUMAN HERPES SIMPLEX VIRUSES (WERTHEIM, 2014)

6

C Encyclopædia Britannica, Inc.

 \bigcirc

 \bigcirc

HERPES SIMPLEX VIRUS 1

- Primarily oral transmission (World Health Organization, 2022)
 - HSV-1 infections with genital lesions increasing in frequency, especially in young women and men who have sex with men (CDC, 2021)
- Mostly childhood infections (World Health Organization, 2022)
- Estimated 3.7 billion people <50 years old
 - Highest in low and middle income countries (Johnston, 2021)
 - Serologies >90% in sub-Saharan Africa and Latin America
- 50-70% of healthy adults in United States have positive serologies (Mandell, 2020)

HERPES SIMPLEX VIRUS 2

- Primarily sexually transmitted (World Health Organization, 2022)
- Estimated 491 million people ages 15-49
 - 11.9 % of people ages 14-49 have been infected in the United States (CDC, 2021)
- Almost 2 times more women than men (World Health Organization, 2022)
- More frequent recurrence and subclinical shedding (CDC, 2021)
- 2 to 3 fold increased risk in acquiring HIV

COMPARISON OF HSV1 AND HSV2

	HSV-1	HSV-2
Site of lesions	Primarily oral, increasingly genital	Primarily genital
Prevalence (Worldwide)	3,700,000,000	491,000,000
Prevalence (United States)	50-70%	11.9%
Associated risks		HIV, women 2x more than men
Clinical considerations	If infected by HSV-2, 3x more likely to be subclinical	More subclinical shedding, more frequent recurrence

(World Health Organization, 2022; CDC 2021, Mandell, 2020)

SYMPTOMS

- Initial infection: Fever, body aches, swollen lymph nodes, sores (Johnston, 2021)
- Virus dormant in sensory nerve ganglions (Straus, 1990)
- Subsequent outbreaks: burning or tingling prior to sores appearing (Johnston, 2021)
 - "Cold sores"
- Encephalitis: Altered mental status, headache, seizures (Leonard, 2022)

TRANSMISSION

• Contact with the virus (World Health Organization, 2022)

- Open sores, saliva, body fluid, mucus membranes
- Greatest risk with active sores, but can also transmit while dormant
- Rarely from mother to baby
 - 10 in 100,000 births worldwide

NEONATAL HERPES

• Transmission (Demmeer-Harrison (1), 2022):

- Intrauterine: Rare, 1 in 250,000 deliveries
 - Ascending infections with prolonged rupture of membranes
- Perinatal: 85%
- Postnatal: 10%
- Risk (Demmeer-Harrison (2), 2022):
 - 2% if active lesions
 - 25 to 60% if first time infection
 - <37 weeks gestation, use of scalp electrodes, skin lacerations

MANAGEMENT OF MATERNAL INFECTIONS

- Not recommended to screen pregnant women for HSV infections, but should collect a thorough history (CDC, 2021)
- If partner is infected by HSV and mother not previously infected, refrain from sex in the third trimester
- Cesarean delivery for active genital lesion (Preboth, 2000)
- No active lesion or prodromal symptoms may proceed with vaginal birth
- Consider antiviral therapy

TESTING, SYMPTOM MANAGEMENT, AND PREVENTION

- Testing: (CDC, 2021)
 - Symptomatic, high risk populations including ≥10 sexual partners, HIV+, positive for their sexually transmitted diseases
- Symptom Management:
 - Antiviral medications: Acyclovir, famciclovir, and valacyclovir
 - Reduces viral shedding and allows sores to heal quicker (Pethboth, 2000)
- Prevention (World Health Organization, 2022):
 - Avoid oral or sexual contact especially with those with open sores
 - Condoms offer some protection (CDC, 2021)
 - Don't share food, beverages, or cutlery

AVAILABLE TESTING

• Current lesions (Leonard, 2022):

- Viral culture traditional gold-standard
 - Direct Fluorescent Antibody Stain
- Nucleic Acid Amplification Test (NAAT)/Polymerase Chain Reaction (PCR) testing
- History of lesions in the past:
 - Serologic testing
- Immunohistochemical staining

VIRAL CULTURES

- Direct Fluorescent Antibody Stain
 - Rapid results
 - Lower sensitivity, must confirm with viral culture

17

https://www.uline.com/Product/Detail/S-24320/Labware/Transfer-Pipette-7-mL?pricode=WC1579&gadtype=pla&id=S-24320&gclid=EAIalQobChMIyOrwze77-glVUeCGCh1abA9vEAQYBCABEglkZ_D_BwE

VIRAL CULTURES

PCR Components

PCR Components

 \bigcirc

Bosterbio.com 20

PCR Components

PCR Process (One Cycle)

1. Denaturing

Bosterbio.com ²¹

95°C - Strands Separate

Bosterbio.com

PCR Process (One Cycle) **PCR Components** G 1. Denaturing 95°C - Strands Separate (5 sec.) **DNA Sample** Primers Nucleotides + Probe 56°C - Primers Bind Template 2. Annealing (20 sec.) 96 well plate **Taq Polymerase** Mix Buffer 76°C - Synthesise New Strand 3. Extension PCR Cycle Thermal Cycler

Bosterbio.com²³

PCR TESTING PROBES

Hybridization Probe

formation

TaqMan Probe

24

https://en.wikipedia.org/wiki/TaqMan

formation

PCR TESTING - TYPING

- Melting Curve Stage
 - Denature
 - Anneal

- Slowly heat until denatured
- Better matching of probe = higher melting point

SEROLOGIC TESTING

- Chemiluminescent Immunoassay
- Do not order in neonates (Leonard, 2022)
- Options: Combined vs Type specific

SEROLOGIC TEST INTERPRETATION

- Combined IgG develops in days to weeks (Leonard, 2022)
- IgG specific to HSV-1 or HSV-2 may take up to 6 months to form

28

Weeks since infection

- But why do we even need to know the type?
 - HSV-2 more subclinical shedding and recurrence
 - Epidemiologic information
- Repeat testing in one month

IMMUNOHISTOCHEMICAL STAINING

- Stain thin sections on glass microscope slides (ThermoFisher Scientific, 2022)
- Specific antigens targeted by antibodies
- Coupled to fluorophore or pick up stain to visualize
- Dark brown nuclear staining (Solomon, 2022)

https://www.lsbio.com/antibodies/hsv-antibody-herpes-simplex-virusantibody-ihc-ls-c743555/769001

COMPARISON OF TESTING MODALITIES (Leonard, 2022)

Test Modality	Indications	Benefits	Limitations	Cost (aruplab.com)
Herpes Virus Culture	Acute infection with active lesions, especially in neonates	Specific	Time May not differentiate type False negatives late in disease	\$\$
DFA	Acute infections with active lesions, generally not used alone	Quick	Lower Sensitivity, must confirm negatives with cultures	\$\$
PCR	CSF, blood	Quick, sensitive and specific, able to determine type	False-negatives early in the disease, little data in use in neonates	\$\$\$
Herpes Simplex Virus Combined, IgG and IgM	Blood	No active lesions needed	IgM is not clinically relevant, cross reactive Does not differentiate type False negative early on	\$\$
Herpes Simplex Virus type specific glycoproteins, IgG	Differentiates type to aid with treatment and counseling, blood	No active lesions needed	False negative early on, some patients never develop type specific	\$
Immunohistochemistry	Paraffin imbedded tissue, body fluid		Invasive sample collection, cannot distinguish HSV1/2	\$\$\$

SUMMARY

- Herpes Viridae family with an envelope and double stranded, linear DNA
- Symptoms: Flu-like symptoms, burning/tingling, sores involving mouth, nose, eyes, or genitals
- Transmission: Contact with infected person, more likely if symptomatic
- Symptom Management: Acyclovir
- Testing: DFA, viral culture, PCR, serology, immunohistochemical stain

REFERENCES

- Ahmad, I., D.W. Wilson. (2022). HSV-1 Cytoplasmic Envelopment and Egress. Int. J. Mol. Sci. 21(17), 5969-6001.
- Bennett, J.E., R. Dolin, M.J. Blaser. (2019). Mandell, Douglas, and Bennett's Principles and Practices of Infectious Disease, 9th Ed. Philadelphia: Elsevier.
- Demmeer-Harrison, G.J. (2022). Neonatal Herpes Simplex Virus Infection: Clinical Features and Diagnosis. Up to Date, accessed September 14th 2022.
- Demmeer-Harrison, G.J. (2022). Neonatal Herpes Simplex Virus Infection: Management and Prevention. Up to Date, accessed September 14th 2022.
- Herpes Simplex Virus. World Health Organization, accessed September 14th 2022.
- Johnston, C., A. Wald. (2021). Epidemiology, Clinical Manifestations, and Diagnosis of Herpes Simplex Virus Type 1 Infection. Up to Date, accessed September 14th 2022.
- Leonard, N., P. Slev. (2022). Herpes Simplex Virus HSV. ARUP Consult. Accessed October 17th 2022.
- Preboth, M. (2000). ACOG Practice Bulletin on Management of Herpes in Pregnancy. Am Fam Physician, 61(2): 556-561.
- Sexually Transmitted Infections Treatment Guidelines, 2021. (2021). Center for Disease Control and Prevention, accessed October 20th 2022.
- Solomon, I., L. Comption, D.A. Milner. (2022). Herpes Simplex Virus 1 and 2 (HSV-1, HSV-2) Infections. ExpertPath, accessed December 2nd 2022.
- Straus, S.E. (1990). Introduction to Herpesviridae. Principles and Practice of Infectious Disease, 3rd Ed. Churchill Livingston Inc.
- ThermoFisher Scientific (2022). Overview of Immunohistochemistry (IHC). Accessed December 2nd 2022.
- Wertheim, J.O., M.D. Smith, D.M. Smith, K. Scheffler, S.L. Kosakovsky Pond. (2014). Evolutionary Origins of Human Herpes Simplex Viruses 1 and 2. Mol. Biol. Evol., 31(9): 2356-2364.

SPECIAL THANKS TO:

• Virology Lab

- Janine Langer
- Danny Parker
- Sheri Ferguson
- Rachel Forbes
- Molecular Infectious Disease Rapid Lab
 - Sterling Allen

• Feedback Team

- Dr. Benjamin Bradley
- Dr. Patricia Slev
- Dr. Lisa Peterson
- Dr. Joseph Rudolf