HERPES SIMPLEX VIRUSES 1 AND 2

MIRANDA CHIMZAR, MD
ARUP LABORATORIES AND UNIVERSITY OF UTAH
PATHOLOGY RESIDENT (PGY2)
OBJECTIVES

• Examine the evolution and classification of Herpes Simplex Viruses 1 and 2 (HSV-1 and HSV-2)

• Explain the symptoms, transmission, management, and prevention of infection

• Describe the testing modalities for Herpes Simplex Viruses 1 and 2 along with their indications and limitations
HERPESVIRIDAE FAMILY

- Enveloped virus with linear, double stranded DNA (Straus, 1990)
- Includes Herpes Simplex viruses 1 and 2, Varicella-zoster virus, Epstein-Barr virus, Cytomegalovirus, and Human herpes virus 6, 7, Kaposi sarcoma-associated herpesvirus (HHV-8), Herpes B virus (Bennett, 2019)
- Divided further into subfamilies:
 - **Alpha herpes viruses:** Rapid growth in many tissues, destroy host tissues
 - **Beta** – slow growing in limited cell types
 - **Gamma** – slow growing in lymphoid cells
- Only primates infected by two herpes simplex viruses (Wertheim, 2014)
HERPES SIMPLEX VIRUS STRUCTURE

• DNA: Linear (Ahmad, 2020)

• Capsid: ~125 nm diameter icosahedral

• Envelope: Derived from host organelle with viral membrane proteins
 • Glycoproteins B and D help virus bind and enter host cells (Straus, 1990)

• Tegument: Complex multi-subunit protein layer between the capsid and envelope (Ahmad, 2020)
THE EVOLUTION OF THE HUMAN HERPES SIMPLEX VIRUSES (WERTHEIM, 2014)
THE EVOLUTION OF THE HUMAN HERPES SIMPLEX VIRUSES (WERTHEIM, 2014)
HERPES SIMPLEX VIRUS 1

• Primarily oral transmission (World Health Organization, 2022)
 • HSV-1 infections with genital lesions increasing in frequency, especially in young women and men who have sex with men (CDC, 2021)

• Mostly childhood infections (World Health Organization, 2022)

• Estimated 3.7 billion people <50 years old
 • Highest in low and middle income countries (Johnston, 2021)
 • Serologies >90% in sub-Saharan Africa and Latin America

• 50-70% of healthy adults in United States have positive serologies (Mandell, 2020)
HERPES SIMPLEX VIRUS 2

• Primarily sexually transmitted (World Health Organization, 2022)
• Estimated 491 million people ages 15-49
 • 11.9 % of people ages 14-49 have been infected in the United States (CDC, 2021)
• Almost 2 times more women than men (World Health Organization, 2022)
• More frequent recurrence and subclinical shedding (CDC, 2021)
• 2 to 3 fold increased risk in acquiring HIV
COMPARISON OF HSV1 AND HSV2

<table>
<thead>
<tr>
<th></th>
<th>HSV-1</th>
<th>HSV-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site of lesions</td>
<td>Primarily oral, increasingly genital</td>
<td>Primarily genital</td>
</tr>
<tr>
<td>Prevalence (Worldwide)</td>
<td>3,700,000,000</td>
<td>491,000,000</td>
</tr>
<tr>
<td>Prevalence (United States)</td>
<td>50-70%</td>
<td>11.9%</td>
</tr>
<tr>
<td>Associated risks</td>
<td></td>
<td>HIV, women 2x more than men</td>
</tr>
<tr>
<td>Clinical considerations</td>
<td>If infected by HSV-2, 3x more likely to be subclinical</td>
<td>More subclinical shedding, more frequent recurrence</td>
</tr>
</tbody>
</table>

(World Health Organization, 2022; CDC 2021, Mandell, 2020)
SYMPTOMS

• Initial infection: Fever, body aches, swollen lymph nodes, sores (Johnston, 2021)

• Virus dormant in sensory nerve ganglions (Straus, 1990)

• Subsequent outbreaks: burning or tingling prior to sores appearing (Johnston, 2021)
 • “Cold sores”

• Encephalitis: Altered mental status, headache, seizures (Leonard, 2022)
TRANSMISSION

• Contact with the virus (World Health Organization, 2022)
 • Open sores, saliva, body fluid, mucus membranes
 • Greatest risk with active sores, but can also transmit while dormant
 • Rarely from mother to baby
 • 10 in 100,000 births worldwide
NEONATAL HERPES

• Transmission (Demmeer-Harrison (1), 2022):
 • Intrauterine: Rare, 1 in 250,000 deliveries
 • Ascending infections with prolonged rupture of membranes
 • Perinatal: 85%
 • Postnatal: 10%

• Risk (Demmeer-Harrison (2), 2022):
 • 2% if active lesions
 • 25 to 60% if first time infection
 • <37 weeks gestation, use of scalp electrodes, skin lacerations
Placenta Infarcts
- Necrotizing, calcifying funisitis
- Plasma cell deciduitis
- Lymphocytic villitis
- Hydrops fetalis
- Fetal/Neonatal demise
- Microcephaly, hydranencephaly
- Eye watering, pain, conjunctival erythema
- Skin sores and scars

Liver: Geographic necrosis

Viral cytopathic change

Hyperbolic pigmentation

Necrotizing Pneumonia

https://en.wikipedia.org/wiki/Microcephaly
https://en.wikipedia.org/wiki/Hydranencephaly
https://www.pratisandhi.com/the-aftermath-of-pregnancy/
https://expertpath.com
MANAGEMENT OF MATERNAL INFECTIONS

- Not recommended to screen pregnant women for HSV infections, but should collect a thorough history (CDC, 2021)
- If partner is infected by HSV and mother not previously infected, refrain from sex in the third trimester
- Cesarean delivery for active genital lesion (Preboth, 2000)
- No active lesion or prodromal symptoms may proceed with vaginal birth
- Consider antiviral therapy
TESTING, SYMPTOM MANAGEMENT, AND PREVENTION

• Testing: (CDC, 2021)
 • Symptomatic, high risk populations including ≥10 sexual partners, HIV+, positive for their sexually transmitted diseases

• Symptom Management:
 • Antiviral medications: Acyclovir, famciclovir, and valacyclovir
 • Reduces viral shedding and allows sores to heal quicker (Pethboth, 2000)

• Prevention (World Health Organization, 2022):
 • Avoid oral or sexual contact especially with those with open sores
 • Condoms offer some protection (CDC, 2021)
 • Don’t share food, beverages, or cutlery
AVAILABLE TESTING

• Current lesions (Leonard, 2022):
 • Viral culture – traditional gold-standard
 • Direct Fluorescent Antibody Stain
 • Nucleic Acid Amplification Test (NAAT)/Polymerase Chain Reaction (PCR) testing

• History of lesions in the past:
 • Serologic testing

• Immunohistochemical staining
VIRAL CULTURES

- Direct Fluorescent Antibody Stain
 - Rapid results
 - Lower sensitivity, must confirm with viral culture

[Diagram showing steps of virus culture process]
VIRAL CULTURES

1. Centrifuge
2. Incubate
3. Centrifuge
4. Cytopathic Effects or Immunofluorescence

PCR Components

- DNA Sample
- Primers + Probe
- Nucleotides
- Taq Polymerase
- Mix Buffer
- 96 well plate
- PCR Cycle

Thermal Cycler
PCR Components

- DNA Sample
- Primers + Probe
- Nucleotides
- Taq Polymerase
- Mix Buffer
- 96 well plate

PCR Process (One Cycle)

1. **Denaturing**
 - 95°C - Strands Separate

PCR Cycle

Thermal Cycler
PCR Components

- DNA Sample
- Primers + Probe
- Nucleotides
- Taq Polymerase
- Mix Buffer
- 96 well plate

PCR Process (One Cycle)

1. **Denaturing**

 - 95°C - Strands Separate

Thermal Cycler

- PCR Cycle
PCR Components

DNA Sample
Primers + Probe
Nucleotides
Mix Buffer
96 well plate

Taq Polymerase

Thermal Cycler

PCR Process (One Cycle)

1. Denaturing
95°C - Strands Separate (5 sec.)

2. Annealing
56°C - Primers Bind Template (20 sec.)

3. Extension
76°C - Synthesise New Strand
PCR TESTING PROBES

Hybridization Probe

TaqMan Probe

https://en.wikipedia.org/wiki/TaqMan
PCR DATA
PCR TESTING - TYPING

- Melting Curve Stage
 - Denature
 - Anneal
 - Slowly heat until denatured
- Better matching of probe = higher melting point
SEROLOGIC TESTING

- Chemiluminescent Immunoassay
- Do not order in neonates (Leonard, 2022)
- Options: Combined vs Type specific
SEROLOGIC TEST INTERPRETATION

- Combined IgG develops in days to weeks (Leonard, 2022)
- IgG specific to HSV-1 or HSV-2 may take up to 6 months to form

- But why do we even need to know the type?
 - HSV-2 more subclinical shedding and recurrence
 - Epidemiologic information

- Repeat testing in one month
IMMUNOHISTOCHEMICAL STAINING

• Stain thin sections on glass microscope slides (ThermoFisher Scientific, 2022)
• Specific antigens targeted by antibodies
• Coupled to fluorophore or pick up stain to visualize
• Dark brown nuclear staining (Solomon, 2022)

<table>
<thead>
<tr>
<th>Test Modality</th>
<th>Indications</th>
<th>Benefits</th>
<th>Limitations</th>
<th>Cost (aruplab.com)</th>
</tr>
</thead>
</table>
| Herpes Virus Culture | Acute infection with active lesions, especially in neonates | Specific | Time
May not differentiate type
False negatives late in disease | $$ |
| DFA | Acute infections with active lesions, generally not used alone | Quick | Lower Sensitivity, must confirm negatives with cultures | $$ |
| PCR | CSF, blood | Quick, sensitive and specific, able to determine type | False-negatives early in the disease, little data in use in neonates | $$$ |
| Herpes Simplex Virus Combined, IgG and IgM | Blood | No active lesions needed | IgM is not clinically relevant, cross reactive
Does not differentiate type
False negative early on | $$ |
| Herpes Simplex Virus type specific glycoproteins, IgG | Differentiates type to aid with treatment and counseling, blood | No active lesions needed | False negative early on, some patients never develop type specific | $ |
| Immunohistochemistry | Paraffin imbedded tissue, body fluid | Invasive sample collection, cannot distinguish HSV1/2 | | $$$ |
SUMMARY

• Herpes Viridae family with an envelope and double stranded, linear DNA

• Symptoms: Flu-like symptoms, burning/tingling, sores involving mouth, nose, eyes, or genitals

• Transmission: Contact with infected person, more likely if symptomatic

• Symptom Management: Acyclovir

• Testing: DFA, viral culture, PCR, serology, immunohistochemical stain
REFERENCES

• Herpes Simplex Virus. World Health Organization, accessed September 14th 2022.

• Johnston, C., A. Wald. (2021). Epidemiology, Clinical Manifestations, and Diagnosis of Herpes Simplex Virus Type 1 Infection. Up to Date, accessed September 14th 2022.

SPECIAL THANKS TO:

• Virology Lab
 • Janine Langer
 • Danny Parker
 • Sheri Ferguson
 • Rachel Forbes

• Molecular Infectious Disease Rapid Lab
 • Sterling Allen

• Feedback Team
 • Dr. Benjamin Bradley
 • Dr. Patricia Slev
 • Dr. Lisa Peterson
 • Dr. Joseph Rudolf