Application of Advances in Molecular Testing in the Clinical Management of Breast Cancer Patients

Adam L. Cohen, MD, MS Associate Professor Huntsman Cancer Institute, University of Utah Adam.cohen@hci.utah.edu

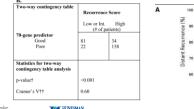
Park City AP Pathology Update February 10, 2020

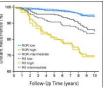
Disclosures

- I have no relevant conflicts of interest to disclose.
- I run clinical trials with many pharmaceutical companies
- The views expressed here are mine alone and may not represent the views of the University of Utah, the State of Utah, or the Huntsman Cancer Institute

Objectives

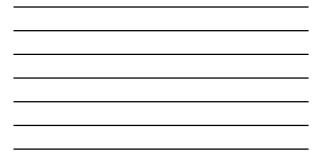
- Recognize predictive and prognostic molecular markers in breast cancer
- Choose appropriate patients for gene expression profiling of breast tumors
- Understand the impact of the definition of tumor subtype on treatment decisions


Case 1


- A 55 year-old woman has a screening mammogram, which shows a suspicious speculated asymmetry in the right breast.
- Biopsy shows a grade 1, ER 95%, PR 90%, HER2 1+ invasive ductal carcinoma
- She has a bilateral mastectomy (for no good reason) and has a 1.8cm tumor that is grade 1 and 1 of 4 sentinel lymph nodes has a micrometastasis.
- An Oncotype was sent.
- Was the Oncotype appropriate?

Features of gene expression tests

Feature	Oncotype	MammaPrint	Prosigna/ROR	Breast Cancer Index
Number of Genes	21	70	50	7
Able to be done on FFPE	Yes	Yes	Yes	Yes
Output	Score (0-100)	Binary (High/Low)	Score (0-100)	Score (0-10)
Population	ER-positive, HER2- negative Node negative Node positive	<4 lymph nodes	ER-positive Node negative or node positive	ER-positive, node negative
Incorporates clinical variables	Calculator on website integrates age, size, and grade	No	Score incorporates tumor size	No
Predictive of chemotherapy benefit	Yes	Yes	Unknown	Unknown


Gene expression tests give similar data

JCO August 1, 2013 vol. 31 no. 22 2783-2790

UNANE MURILIAR INTERNATIONAL NERVELIMEN 2006 Aug 10/355(6):560-9.

Prospective Validations

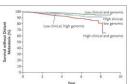
- MINDACT
 Validation of Mammoprint Randomized trial of chemotherapy vs no chemo for people with high clinical risk but low genomic risk OR low clinical risk but high clinical risk

		No CT		CT R-C]
ER status	HER2 status	Grade	Nodal status	Tumor Size	Clinical Risk in Mindact
	12 regative		к.	\$3 cm	C-low
				3.1.5 cm	Chigh
		well differentiated	1-3 positive nodes	\$2 cm	C-low
				2.1-5 cm	Chigh
				62 cm	C-low
		moderately differentiated	N-	2.1-5 cm	Chigh

poorly diffe

Signing of PIS & IC 1 & En o/Clinical Prognosis review

T ↓ R-T


Cardoso F et al. N Engl J Med 2016;375:717-729

t positive

Prospective Validations

- Chemo only benefits people with high clinical and genomic risk
- People with clinical low risk cancers don't need gene expression profiling

Cardoso F et al. N Engl J Med 2016;375:717-729

Prospective validations

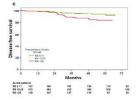
- TAILORx
 - Validation of Oncotype for node negative cancers

 - No chemotherapy if Oncotype Recurrence Score < 11
 Randomized to chemo or no chemo if Oncotype Recurrence Score 11-25

Prospective Validations

٠	TAI	LO	Rx
---	-----	----	----

- Oncotype RS < 11
 - <1% distant recurrence at five years without chemo
- Oncotype RS 11-25
 - Jncotype RS 11-25 No benefit from adjuvant chemotherapy in entire population Benefit seen in some subgroups: High clinical risk but gae <50 and Oncotype recurrence score 21-25


Tumor Grade	Invasive Disease-free Survival (95% CI)	Freedom from Distant Recurrence (95% CI)
All grades	93.8 (92.4-94.9)	99.3 (98.7-99.6)
Low grade	95.8 (93.5-97.3)	99.8 (98.3-100)
Intermediate grade	93.6 (91.7-95.1)	99.0 (98.0-99.5)
High grade	91.3 (83.9-95.4)	100 (NC-NC)

N Engl J Med 2019; 380:2395-2405

Prospective Validations

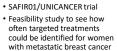
German PlanB

- Validation of Oncotype for node positive breast cancers
- Recurrence score <11 treated without chemotherapy even if N1
 95% disease free survival at 5 years
- RxPonder
 - US validation of Oncotype for node positive cancers
 - Results pending

Breast Cancer Res Treat. 2017; 165(3): 573-583.

Bottom line

- Gene expression profiling is not needed if:
 - Low clinical risk by MINDACT criteria
 - N2-3 • T3-4
 - Comorbidities preclude chemotherapy


Case 1

- A 55 year-old woman has a screening mammogram, which shows a suspicious speculated asymmetry in the right breast.
- Biopsy shows a grade 1, ER 95%, PR 90%, HER2 1+ invasive ductal carcinoma
- She has a bilateral mastectomy (for no good reason) an has a 1.8cm tumor that is grade 1 and 1 of 4 sentinel lymph nodes has a micrometastasis.
- An Oncotype was sent.
- Was the Oncotype appropriate?

Case 1 continues

- It is 5 years later and the patient is now 60 years old and presents with abdominal pain. CT scans show lytic bone lesions and two liver lesions. Biopsy of a liver lesion shows metastatic ductal carcinoma that is still ER 95%, PR 90%. She is started on anastrozole and palbociclib. Her cancer remains stable for 22 months and she then has enlargement of both liver lesions. The oncologist requests a new liver biopsy to be sent for next-generation sequencing.
- What is the chance that the next-generation sequencing result will change the next step in therapy?

Molecular Profiling to Determine Treatment

SAFIR01: A mixed success

- Issues with targeting somatic genetic alterations
 - Context matters
 - Current drugs are suboptimal
 - 50% of women don't have targetable alterations

Targetable mutations in breast cancer

PREDICT

- UCSD cohort of metastatic cancer patients sequenced using NGS
- 60 breast cancer patients
- 45 were matched to treatments based on NGS
 33% DCR at 6 months compared to 21% for unmatched patients


- However,
 20 of the matched patients were based on:
 HER2 amplification
 PIK3CA mutation

 - ESR1 mutation
 - ESNI mutation
 Every breast patient with disease control at 6 months received anti-HER2 therapy,
 everolimus, or tamoxifen
 All drugs already approved for breast cancer

Mol Cancer Ther, 2016 Apr;15(4):743-52. doi: 10.1158/1535-7163.MCT-15-0795. Epub 2016 Feb 12.

PIK3CA in breast cancer

- Mutated in ~40% of ER-positive primary breast cancers
- Alpelisib is an inhibitor of the alpha isoform of PI3K
- SOLAR-1 randomized trial
 - Addition of alpelisib to fulvestrant led in metastatic, ER-positive, HER2-negative, PIK3CA mutated breast cancer led to:
 Median PFS 11 months vs 5.7 months
 - Minimal to no benefit if PIK3CA wildtype

Detecting PIK3CA mutations

- FDA approved companion diagnostic
 - Neogenomics
 - PCR based
- Tumor based NGS panels
- ctDNA or cfDNA
 - Sensitivity ranges 25-80%
 Lower in bone only disease
 - Specificity > 95%

ESR1 mutations in breast cancer

- Activating mutations in the estrogen receptor
- Rare (1-10%) in primary breast cancers
- Decreases PFS with aromatase inhibitor but not SERD (fulvestrant)
 However,
 - Unknown effect when AI is combined with targeted agent
 - 40% of women treated with AI still have PFS over 1 year
 - Determination of effect of mutations is immature

Case 2

- A 57 year-old woman presents with a progressive right chest wall/breast mass and right arm swelling. PET/CT shows the chest wall mass, mediastinal adenopathy, and a mass in her deltoid muscle. Biopsy shows invasive ductal carcinoma, ER 0, PR 0, HER2 1+ (negative)
- What other immunohistochemistry is needed?

Immunotherapy in breast cancer

IMpassion130

- Mpassion130 Metastatic triple negative breast cancer with no prior treatment for metastatic disease. (Systemic treatment for early stage disease allowed >12 months prior) A tercolizumab (anti-PD-L1 antibody) +nab-pacitaxel v nab-pacitaxel In women with PD-L1 positive tumors, atezolizumab:

- H Wohnel With DCL positive fulfilds, atezolizumab: Increased PFS (HR 0.62, median 7.5 months vs S months) May increase OS (HR 0.62, median 25 months vs 15.5 months)

Progression free Saminal in the PO-L3. Positive Subgroup Modern 1-10: Rate of						
2	in of Learning a of Pathentic	Andrew PENCI				
Annianal-Nd-Palitan Raste-Nd-Palitan	186/180 215/184	72-87-82 30-38-34	29.1 (E.2 90.2) 18.4 (10.0-20.2)			
Personal Property of Learning	ALCONT OF	daran da ya				
No. of Hall Associational III (16) 201 Telepolitical Paradioni III (17) 42	* * *		2 1 No 10 1 No 10			
D Grand Sandral in the PD C2 Positive Balgroup						
Madan 3-1-Eaterst Ha, of Fasterst, Orweld Saminal Sa, of Falsens (Mth.C) (Mth.C)						
Annihumah-Nak-Paditand Pandon-Nak-Paditand	64, UE) 85, UB1	11 / 11 - 10 (11:12:22			
Ranker Ald Halland	~					
1 3 A		A A A	2 8 5 8			

PD-L1 positivity

- Assay and cutoff depend on tumor type and PD-L1 inhibitor
- For atezolizumab for TNBC
 - Ventana assay using SP142
 - TPS = Tumor infiltrating cells Positive if >=1%

• Note:

- Cutoff with this assay is different for urothelial cancer or NSCLC
- · Not validated on bone biopsies

Case 2 continued

- A 57 year-old woman presents with a progressive right chest wall/breast mass and right arm swelling. PET/CT shows the chest wall mass, mediastinal adenopathy, and a mass in her deltoid muscle. Biopsy shows invasive ductal carcinoma, ER 0, PR 0, HER2 1+ (negative)
- · Her tumor is PD-L1 positive, so she is treated with nab-paclitaxel and atezolizumab for 12 months.
- Although the tumors in the chest wall and deltoid originally shrank, they are now growing again.
- The oncologist is considering using olaparib rather than chemotherapy.
- What biomarker needs to be tested for olaparib?

PARP inhibitors

- PARP inhibitors target cells with defects in homologous recombination
- Particularly germline BRCA1/2 pathogenic variants
- Approved in ovarian cancer Olaparib, rucaparib, niraparib, talozoparib

PARP inhibitors in breast cancer

OlympiAD

- Randomized trial of olaparib vs chemotherapy
 Metastatic breast cancer

- Germline BRCA1 or BRCA2 pathogenic variant
 Response rate 60% with olaparib vs 29% with chemotherapy
- Open questions
 - Treatment of early stage disease?

 - Somatic BRCA1/2 mutations
 Germline variants in other homologous
 recombination pathway genes

Case 3

- 37 yo woman palpates a mass in her right breast and notes pain and skin changes.
- Imaging shows a 10 cm mass that on biopsy is grade III, ER 0, PR 0, HER2 2+, FISH HER2 signals/nucleus 2.8, HER2/CEN17 1.8. Axillary node contains carcinoma on biopsy.
- Is the HER2 positive or negative?

Case 3

- 37 yo woman palpates a mass in her right breast and notes pain and skin changes.
 Imaging shows a 10 cm mass that on biopsy is grade III, ERO, PRO, HER2 24, FISH HER2 signals/nucleus 2.8, HER2/CEN17 1.8. Axillary node contains carcinoma on biopsy.
- Receives neoadjuvant chemotherapy without HER2-targeting drugs
- Mastectomy shows 1cm of residual cancer with dermal involvement, LVI, 1/16 positive nodes.

- Started non adjuvant capecitabine.
 4 months later relapse on chest wall. HER2 2+ IHC with FISH on relapse has HER2 copy number 4.1 and HER2/CEN17 ratio 2.1 Is HER2 positive or negative?

Case 3

- 37 yo woman palpates a mass in her right breast and notes pain and skin changes.
- pain and skin changes. I maging shows a 10 cm mass that on biopsy is grade III, ER 0, PR 2012, PR 20

- 4 months later relapses on chest wall. HER2 2+ with FISH on relapse has HER2 signal number 4.1 and HER2/CEN17 ratio 2.1
- Recheck of HER2 FISH on the mastectomy specimen shows HER2 signal number 4.1 and HER2/CEN17 ratio 2.5
- Treated with vinorelbine, trastuzumab, pertuzumab with progression within two months

HER2 testing

- Not a complete review of ASCO-CAP guidelines
- Medical Oncologist take
 - Most people are obvious (group 1 of group 5) but 5-10% are borderline Clear benefit of anti-HER2 therapy in
 - group 1 Clearly no benefit in group 5
 - · Group 4 seems to act like HER2-
 - negative · Groups 2 and 3 are too rare to tell

Problem with HER2 uncertainty

- Treatment paradigms are now completely different for HER2-positive and HER2-negative breast cancers
 Whether to do neoadjuvant therapy
 Whether to do gene expression profiling
 Whether to do gene expression profiling

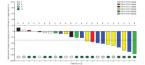
 - What drugs to give after surgery
 Sequence of metastatic therapies
 Eligibility for clinical trials

What will not save us: Gene expression

		RT-PCR in OncotypeDx				
		Equivocal	Negative	Positive	Total	
IHC/FISH	Equivocal	o	23	o	23	
	Negative	5	779	o	784	
	Positive	12	14	10	36	
	Total	17	816	10	843	

What will not save us: Circulating Tumor Cells

- Targets in CTCs may not reflect the full biology
 - Phase 2 trial of lapatinib in women with HER2-positive CTCs but HER2-negative tumors
 - 7 of 96 women screened
 - No responses, 1 stable disease


cer Res Treat, 2012 Jul;134(1):283-9 Breast

JCO November 10, 2011 vol. 29 no. 32 4279-4285

What might help

- Drugs targeting low HER2 expression
 - Trastuzumab deruxtecan (DS-8201)

 - Antibody drug conjugate
 Approved 12/2019 for HER2-positive metastatic breast cancer
 - May have activity if IHC is 1+ or 2+ regardless of gene amplification

Conclusion

- Gene expression profiling is appropriate for stage 1-2, ER-positive, HER2-negative breast cancer that is high clinical risk to determine the need for adjuvant chemotherapy
- aujuvanit Linemotinerapy There are predictive molecular alterations for determining therapy in some metastatic breast cancers PR3CA mutation PP-11 BRCA1/2
- Large NGS panels remain to be proven useful in metastatic breast cancer
- Borderline HER2 results are frustrating for patients, providers, and pathologists

• Questions?

UNITED AT AN A LAR STRATEGY