What's New In Tick-borne Disease? Lyme Disease Relapsing Fever and beyond...

Marc Roger Couturier, Ph.D., D(ABMM)

Medical Director, Infectious Disease and Immunology ARUP Laboratories Associate Professor of Pathology University of Utah

- 1. Understand the epidemiology of tick-borne diseases and the ticks that vector the diseases.
- 2. Recognize the growing list of tick-borne diseases.

3. Recall the testing available for detection of tick-borne diseases.

Anatomy of the tick...

Hard Shell Tick (Ixodid) vs Soft Shell (Agasid)

https://www.cdc.gov/dpdx/ticks/index.html

Hard Ticks-Life Cycle

https://www.cdc.gov/dpdx/ticks/index.html

Ixodid Ticks – male vs. female

female

male

https://www.cdc.gov/dpdx/ticks/index.html

Hard Shelled Ticks of the Northeast

Amblyomma americanum

ARTP^{*}LABORATORIES | Institute for Learning

Amblyomma americanum

- *Ehrlichia ewingii Ehrlichia chaffeensis* Human monocytic ehrlichiosis
- Francisella tularensis
- STARI (Southern Tick Associated Rash Illness)
- Heartland virus

Rhipicephalus sanguineus

ARTP^{*}LABORATORIES | Institute for Learning

Rhipicephalus sanguineus

Rickettsia rickettsii (Rocky mountain spotted fever)
In the southern USA only

Dermacentor variabilis

Dermacentor variabilis.

- Ehrlichia spp. (Human monocytic ehrlichiosis)
- Rickettsia rickettsii (Rocky mountain spotted fever)
- Francisella tularensis (Tularemia)

Ixodes scapularis

Ixodes scapularis

- Borrelia burgdorferi Borrelia mayonii Lyme disease
- Borrelia miyamotoi (Tick-borne relapsing fever-like)
- Deer tick virus (Powassan virus, lineage II)
- Babesia spp.
- Anaplasma phagocytophilum

(Human granulocytic Anaplasmosis)

Easiest way to identify

Smaller than you may expect

https://www.cdc.gov/lyme/resources/tickbornediseases.pdf

Smaller than you may expect

https://www.cdc.gov/lyme/transmission/index.html

Harder to identify when "full"

https://www.cdc.gov/dpdx/ticks/index.html

Why are the ticks so bad this year?

A song of humans, hosts, forests, and food!

ERSITY OF UTAH

http://www.commonweeder.com/the-harvard-forest/

http://www.commonweeder.com/the-harvard-forest/

http://www.commonweeder.com/the-harvard-forest/

White-footed mouse

http://www.npr.org/sections/goatsandsoda/2017/03/06/518219485/forbidding-forecast-for-lyme-disease-in-the-northeast

http://www.npr.org/sections/goatsandsoda/2017/03/06/518219485/forbidding-forecast-for-lyme-disease-in-the-northeast

- Borrelia burgdorferi (Lyme disease)
- Borrelia mayonii (Lyme disease)
- Borrelia miyamotoi (Tick-borne relapsing fever-like)
- Deer tick virus (Powassan virus, lineage II)
- Babesia spp.
- Anaplasma phagocytophilum (Human granulocytic Anaplasmosis)

Lyme Disease

34

Lyme disease (LD)

- Borrelia burgdorferi and B. mayoni (in N. America)
 - Gram-negative spirochete, motile by polar flagella
- · Fastidious, not cultured in the clinical laboratory
- Vector
 - Ixodes scapularis (eastern/central)
 - Ixodes pacificus (west coast regions)
 - Infected Ixodes (nymph & mature adult) MUST feed >24 hours for transmission
 - @24 hours 5% of infected ticks will transmit
 - @48 hours 50% of infected ticks will transmit
 - @96 hours 100% of infected ticks will transmit

Symptoms

- Early LD or Stage 1 (3-30 days post bite)
 - Red, expanding rash called erythema migrans (EM) or "bull's eye rash" (7-14 days)
 - Present in up to 80% of cases
 - Fatigue, chills, fever, headache, muscle and joint aches, and swollen lymph nodes
 - All cases present w/combinations of these symptoms

Symptoms

- Early disseminated LD or Stage 2 (days to weeks)
 - Additional EM lesions in other areas of the body
 - Facial or Bell's palsy
 - Severe headaches and neck stiffness due to meningitis
 - Pain and swelling in the large joints
 - Shooting pains that may interfere with sleep
 - Heart palpitations and dizziness due to changes in heartbeat
- Symptoms will resolve over weeks without treatment but can lead to serious complications

Symptoms

- Late disseminated LD or Stage 3 (months to years)
 - Can occur even after treatment for Lyme
 - Muscle & joint pain
 - Cognitive defects ("slow")
 - Sleep disturbance
 - Fatigue

Diagnostic tests

- Shortly after bite
 - Silver stain (not diagnostic)
 - PCR from lesion biopsy
- Second stage of disease (dissemination)
 - *Serology (may be negative due to therapy)*
 - PCR from joint fluid, lesion
 - Blood and CSF are poor samples
- Late stage of illness
 - *Serology testing only*

Case Presentation

- 21 year old male from central Nova Scotia
- Experienced outdoorsman, hiker, hunter, and fisherman
- 3 day fishing and camping weekend in Andover, Maine
 - Memorial Day, 2002
- Noted tick attached to calf (unknown duration), removed with fishing pliers, cauterized pliers and wound with whiskey
- Continued fishing and camping

Case cont.

Lovejoy Bridge, Ellis River

Institute for Learning

Case cont.

• 3 days post-camping trip developed rash on right calf

(not the actual rash)

- No other symptoms
- No physician seen (remember it is 2002)

Fast Forward

- 2012 Now 31 year old microbiologist (and laboratory director)
- Participates in lab blood draw for QC purposes as "negative serum sample" for Lyme disease ELISA and Western blots
- + total antibody ELISA (screen)
 - Not a great negative QC point...
- Just for fun...
 - IgM blot negative
 - IgG blot positive 7 of 10 bands
- Does this patient have Lyme disease?

No...but it is not always that easy

- 2003-2009 Patient lived in Edmonton, Alberta Canada
 - Not a lyme endemic region
 - One vacation to lyme endemic region in 2006 & 2009
 - No observed tick bites, no rashes, no other symptoms
- 2009-2017 Patient lived in Salt Lake City, UT
 - Not a lyme endemic region
- Patient grew up in central Maine

- 37 year old male from Andover, Massachusetts
- Never hikes, hates camping, generally disgusted by insects and nature
- Enjoys sitting in his back yard drinking, BBQing, and entertaining friends and family
- Enjoys golfing (2-3 rounds/week) but he's not very good at it
- Does not recall a tick bite
- No rash
- Develops flu-like illness; body aches, headache, low grade fever

ARTP^{*}LABORATORIES | Institute for Learning

Department of Pathology

Case 2. Continued

- Patient tested for LD
- Screen: ELISA +
- Immunoblot:
 - IgM + (3 of 3 bands)
 - IgG + (6 of 10 bands)
- Is this LD?
- YES. Clear cut LD

Quiz: What activity is the highest risk for LD in New England?

- 1. Camping
- 2. Hiking
- 3. Golfing
- 4. Yard work
- 5. Sleeping in cabins

Current State of LD Testing

Two-Tiered Testing for Lyme Disease

Institute for Learning

Screening Assays

- Classic:
 - Whole Cell Lysate antigen source ELISA
- Evolved:
 - C6 peptide ELISA (26-amino acid recombinant region of VsIE)
 - Immunetics/Oxford/Quest
 - VsIE Chemiluminescent Immunoassay (CIA)
 - Diasorin (FDA clearance 2007)
 - rVslE1/pepC10 (OspC) ELISA
 - Zeus (FDA clearance 2013)

Screening Assay Performance

"Standard"

"Newer"

TABLE 1 Select studies that evaluated the performance characteristics of the WCS, VlsE, C6, and pepC10 immunoassays alone or in combination with supplemental Western blot testing

	Sensitivity	y (%)	Specificit	ty (%)
Assay ^a	Early (stage 1)	Late (stages 2, 3)	Healthy donors ^b	Patients with non-LD infections or conditions
WCS ELISA	74.9	97.7, 98.4	96.4	89.3
WCS ELISA + WB	35.2	77.3, 95.9	99.5	99.2
C6 ELISA	66.5	88.6, 98.4	98.8	99.5
C6 ELISA + WB	34.5	75, 95.1	99.5	99.5
VlsE CIA ^c	69.8	100	99.5	93.7
pepC10 kELISA	47.3	46.1, 10.3	100	98.0
VlsE/pepC10 kELISA	67.2	88.5, 94.1	99.2	96.7

^{*a*} WCS, whole-cell sonicate; VlsE, variable major protein (Vmp)-like sequence, expressed; WB, Western blot; ELISA, enzyme linked immunosorbent assay; CIA, chemiluminescent immunoassay; kELISA, kinetic ELISA.

^{*b*} Data from healthy donors from regions in which Lyme disease is endemic and from those in which it is not endemic were combined.

Theel. J Clin Micro. 2016 54(5), 1191-1196.

LABORATORIES

^c Lyme disease stages 2 and 3 were not separated out in this study.

Institute for Learning

Back to the Algorithm

UNIVERSITY OF UTAH SCHOOL °F MEDICINE De

Institute for Learning

LABORATORIES

Details on the Blots

- IgM blot: 2 of 3 conserved bands*
 - Only run on patients with suspected symptom onset <30 days
 - If positive and IgG blot is negative after 30 days = false positive
 - Blot criteria do not apply after 30 days of symptoms

Unchanged since 1995

- IgG blot: 5 of 10 conserved bands*
 - Difficult to interpret in patients from endemic regions with unclear history
 - Think case 1 🙂

Institute for Learning

ABORATORIES

Blots

21 1		_		
22 1	1.11			1
23 11 1				
24	1.0			-
25	1.1	SI 11		
26	1			
27 -				
28 =		1.11		
29 2011	1.51		1	1
30				
31 -				
1 1 1			-	
and it is	100000000000000000000000000000000000000		F FF PROPERTY AND	100 100 101
TTR I I				_

IgG	2 e C	Line Immunoassay					tentro l						
Ē	manoi serom o IgG-conjugate	► 93 kDa	► 66 kDa	▼ 58 kDa	► 45 kDa	► 41 kDa	▼ 39 kDa	▼ 31 kDa*	▼ 30 kDa	28 kDa	► 23 kDa +	🔰 18 kDa	
	11	1	Т	I	T	Т	T	T	T	T	1	T	þ
4. 1814.000	11	1	.1	1	1	1	1	1	1	-		-	
L. JALAN	11	_	_	-	-	_	-	-	-	-	-	-	1
4	11	-		-		_		-	-	_			1
I trees	11		1	1	1	1	1	-	_		1	1	ī
4teans	11	_	_	-	-	-		_	_	-		-	1
4. 10.0.00	-	_	_	_	-	_	-	-	_	-		-	
a team	11	_	1	1	1	1	1	-			1	1	
A	11	1	-	1		-1		-	-	1	Т	1	5
I. terran	11	- 1		1	-1	-	1	-	_	1	1	1	-

Automated Immunoblotting & Densitometry

Do we really need blots?

Alternative Two-Tier algorithm

TABLE 2 Comparison of the traditional TTTA to a 2-EIA TTTA andthe C6 ELISA alone in sera from patients with well-characterized Lymedisease^a

	Sensitivity (%)			Specificity (%)		
Testing algorithm	Stage 1 (<i>n</i> = 114)	Stage 2 (<i>n</i> = 26)	Stage 3 (<i>n</i> = 29)	Healthy donors ^{<i>b</i>} $(n = 1,246)$	Patients with a non-LD infection or condition (n = 54)	
Traditional ^c	42.1	73.1	100	99.4	100	
C6 ELISA alone	56.1	100	100	98.4	98.1	
2-ELISA ^d	52.6	100	100	99.4	100	

^{*a*} Adapted from reference 17.

^{*b*} Data from healthy donors from regions in which Lyme disease is endemic and from those in which it is not endemic were combined.

^c Traditional TTTA, WCS ELISA followed by Western blot analysis.

^{*d*} 2-ELISA, WCS ELISA followed by C6-ELISA.

Reference 17 in figure: Branda et al. 2011. Clin Infect Dis 53:541-547.

Alternative Two-Tier algorithm

Modified Two-Tiered Testing Standard Two-Tiered Testing (MTTT) Algorithms (STTT) Algorithms Second-Tier Tests **First-Tier Tests** Second-Tier Tests **First-Tier Tests VIsE CLIA** C6 EIA **VIsE CLIA ViraStripeIB** WCS EIA C6 EIA C6 EIA IgM and/or IgG WCS EIA WCS EIA **VIsE CLIA**

- CDC's Lyme Serum Repository specimens used
 - Carefully curated clinically well defined positives
 - Common interfering conditions for "negatives" and non-endemic volunteer negatives

Pegalajar-Jurado et al. J Clin Microbiol 2018: 56(8).

Institute for Learning

Commentary Highlight

Commentary

Revisiting the Lyme Disease Serodiagnostic Algorithm: the Momentum Gathers

Adriana R. Marques Karen C. Carroll, Editor

Pegalajar-Jurado et al. J Clin Microbiol 2018: 56(8).

Institute for Learning

TABLE 1

Sensitivity of MTT algorithm versus that of the STT algorithm in acute-phase samples from patients with erythema migrans

Reference(s) (no.)	MTT algorithm ^a		STT algorithm ^b			
(10.)	Test program ^o	Acute-phase EM sensitivity (%)	Test program	Acute-phase EM sensitivity (%)		
Branda et al. (16)	WCS Vidas f/b 52.6 C6 EIA		WCS Vidas f/b WB	42.1		
Branda et al. (27)	WCS W EIA f/b C6 EIA	38.2	C6 EIA f/b WB	36.4		
	WCS W EIA f/b VIsE CLIA	36.4	VIsE CLIA f/b WB	34.5		
	VISE CLIA f/b C6 EIA	54.5	WCS W f/b WB	25.4		
Molins et al. (28) ^d	WCS Vidas f/b C6 EIA	50	WCS Vidas f/b WB	47.5		
Molins et al. (29) ^d	WCS Vidas f/b C6 EIA	50	LYM/G Vidas f/b WB	42.5		
	LYM/LYG f/b C6 EIA	55	WCS Vidas f/b WB	47.5		
Pegalajar-Jurado et al. (4) ^d	WCS Captia f/b C6 EIA	55	WCS Captia f/b WB	50		
	WCS Captia f/b VIsE CLIA	57.5	VIsE CLIA f/b WB	42.5		
	VISE CLIA f/b C6 EIA	50	C6 EIA f/b WB ^e	42.5		
Wormser et al. (11, 25)	WCS EIA f/b C6 EIA ^f	58.4	C6 EIA f/b WB	37.6		
			WCS f/b WB	38.3		

Department of Pathology

Examples of Future Areas of Investigation

- Novel/expanded antigen investigations for multiplex antibody detection
 - Bead-based detection
- Immuno-PCR (iPCR)
 - Optimize high specificity of C6 peptide with amplification of PCR
 - Reporter antibody contains DNA tag which is amplified after binding C6 specific antibodies
- Metabolomic profiling

https://www.cdc.gov/lyme/diagnosistesting/labtest/otherlab/index.html

Institute for Learning

Metabolomic profiling

- CDC study to detect early LD with better sensitivity
- Characterize low-molecular-weight (<15kDa) molecules in patients with early LD vs absence or baseline in healthy controls
- Liquid chromatography mass spectrometry
- 44 markers for early LD mainly lipids and lipophilic molecules
- More sensitive (88%) than traditional two-tier algorithm (43%) and 2-ELISA methods (48%)
- Not ready for clinical labs & will require FDA clearance

Examples of Unapproved Testing for Diagnosis

- Urine antigen detection
- Culture, immunofluorescence staining, or cell sorting of cell walldeficient or cystic forms of *B. burgdorferi*
- Lymphocyte transformation tests
- Quantitative CD57 lymphocyte assays
- "Reverse Western blots"
- In-house criteria for interpretation of immunoblots
- IgM or IgG tests without a previous screening test

https://www.cdc.gov/lyme/diagnosistesting/labtest/otherlab/index.html

LD in Summary

- LD is a complicated infection to diagnose
 - Symptoms and exposure history can be difficult to accurately ascertain
- Emotionally and politically charged
- Technological advancements have been slow to materialize
 - New avenues of testing show promise but require more clinical validation

Case of the Chills

- 56 yo male returned from fishing vacation in southeastern California mountains 7 days prior to symptom onset
 - Stayed in upscale resort rental cabins
 - Did not recall any insect bites, no documented ticks seen
 - Spring 2012
- Fevers >104°F, 3x over ~2 d
 - Drenching sweats followed by intense chills
 - Symptoms resolved for a week then returned
- No other recent travel history

Tick Born Relapsing Fever (TBRF) and beyond

Tick Borne Relapsing Fever (TBRF)

- Causative organism in the USA...
 - Borrelia hermsii

 - Borrelia hermsii
 Borrelia parkeri
 Vector →
 Ornithodorus parkeri
 Ornithodorus turicata
- Ornithodorus hermsi

– Ixodes scapularis *Borrelia miyamotoi Vector →

**TBRF genetic group, but clinically not TBRF

Approximate Geographic Distribution

Case Distribution

Each dot, placed randomly within the county of exposure (where known), represents one case.

https://www.cdc.gov/relapsing-fever/distribution/index.html

Hard Shell Tick (Ixodid) vs Soft Shell (Agasid)

https://www.cdc.gov/dpdx/ticks/index.html

Institute for Learning

Ornithodorus spp.

Dworkin et al. Infect Dis Clin North Am. 2008 Sep; 22(3): 449-viii

Argasidae life cycle

https://www.cdc.gov/dpdx/ticks/index.html

TBRF

• Recurring febrile episodes ~3 days, separated by afebrile period ~7 days

- >75%: headache, myalgia, chills, nausea
- >50%: arthralgia, vomiting
- >25%: abdominal pain, dry cough, eye pain, diarrhea, photophobia, neck pain

https://www.cdc.gov/relapsing-fever/clinicians/index.html

The Illness

- Fever up to 106.7°F "chill phase" (10-30 mins)
 - May become delirious, agitated, tachycardic and tachypneic
- Followed by the "flush phase"
 - Drenching sweats and a rapid decrease in body temperature.
 - Transiently hypotensive.
- Patients who are not treated will experience several episodes of fever before illness resolves.

- Treatment:
 - Doxycycline 2x daily, 7 days
- Immune control

https://www.cdc.gov/relapsing-fever/clinicians/index.html

Antigenic shift

- Genomic organization unique
- Allows shift of antigen on cell surface
 - "Hide and seek"
- Eventually WBCs win

https://www.cdc.gov/relapsing-fever/clinicians/index.html

ERSITY OF UTAH

- Peripheral blood smear
- IgG serology
- Real-time PCR

Blood smear

- Peripheral blood smear, performed like blood parasite screen or CBC
 - Giemsa, Wright, or Wright-Giemsa
- Good for initial diagnosis, low sensitivity
- Turn-around-time = hours
- Requires skilled readers, patience, and experience

Blood Smear in the Literature

Badger MS. Wilderness Env Med J 2008. 19(4): 280-286.

Institute for Learning

In Reality

In Reality

In Reality (with Photoshop assistance)

In Reality (with Photoshop assistance)

- Retrospective diagnosis or support of recent diagnosis
- Four-fold rise in IgG titer
- Cross-reactivity with Lyme
 - Lyme false-positives
- Not widely available
 - Imugen (Oxford)
 - Quest Diagnostics

PCR

- High sensitivity
- High specificity (if well designed)
- No FDA cleared assays
- Challenges
 - Detect all relevant species to N. America vs Eurasia/Africa or both
 - Do NOT detect Lyme *Borrelia* species
 - Find samples or organism to validate with

Remember this patient?

Patient sample tested by in-house design, sequenced positive for *B. hermsii*.

• Patient stayed at cabin in southeastern California mountains

PCR Development at ARUP

- Designed to detect *B. hermsii*, *B. parkeri*, *B. turicatae*, and *B. miyamotoi* (identical sequence) from blood
 - Can also detect: *B. crocidurae, B. duttoni, B. hispanica, B. recurrentis,* and *B. microti*
 - TBRF Borrelia spp. from Europe, Asia, Africa
 - Differ by one base pair, slightly less sensitive can differentiate this group by melt curve analysis
 - Will not detect *B. persica* (Middle Eastern endemic)
- No cross-reactivity with Lyme *Borrelia* spp or 68 other pathogens
 - Including Anaplasma, Babesia, and multiple Plasmodium species

PCR Testing in Prime Time

- Available commercially at major reference labs:
 - ARUP Laboratories
 - Mayo Medical Laboratories
 - Quest Diagnostics

TBRF In Summary

- TBRF causes a textbook illness reminiscent of malaria or *Babesia* but with distinct patterning of fevers
- Caused by many species of Borrelia
 - Vectored by several different ticks in different regions
- Detected by multiple mechanisms, commercially available
- Likely underreported due to insensitivity of blood smear
 - PCR is significantly more sensitive

A Fatal Headache

- 5 yo boy admitted w/ right-sided headache, drowsy, fever 101°F
 - Abnormal brain EEG, normal CSF count
- 2 days later fever 103°F, lymphocytic predominance in CSF
 - Became unconscious and unresponsive to stimuli
- 4 days after admission, completely comatose and encephalitic
 - Patient ceased breathing in the afternoon
- 6 days later passed away

...the year was 1958...

...the town was Powassan, Ontario

...no tick bite was ever reported

McLean DM, Donahue W. Can Med Assoc J 1959; 80: 708-711.

Deer Tick Virus or Powassan virus, lineage II

Deer Tick Virus (DTV)

- DTV is one genotype of Powassan virus
 - Powassan virus lineage I = POWV = Ixodes cookei
 - Powassan virus lineage II = DTV = Ixodes scapularis
- Flavivirus closely related to tick-borne encephalitis group of viruses in Europe & Asia
- Discovered in 1958 in brain tissue
 - Fatal pediatric encephalitis in Powassan, Ontario

McLean DM, Donahue W. Can Med Assoc J 1959; 80: 708–711.

Case Distribution

- Likely underreported, but possibly increasing
 - 1958 1998 = 27 cases reported
 - 2003 2016 = 85 cases reported
- Cases found everywhere *lxodes* exist
 - Colorado as rare exception
 - Incidentally found in Dermacentor andersoni

Hermance and Thangamani. 2017 Vector Borne and Zoonotic Diseases. 17(7), 453-462.

Case Distribution – ArboNET 2017

https://diseasemaps.usgs.gov/mapviewer/

Institute for Learning

UNIVERSITY OF UTAH School ^{of} Medicine

Case Distribution – ArboNET 2018

https://diseasemaps.usgs.gov/mapviewer/

Institute for Learning

Case Distribution – ArboNET 2019

https://diseasemaps.usgs.gov/mapviewer/

Symptoms

Timeline of infection:

Hermance and Thangamani. 2017 Vector Borne and Zoonotic Diseases. 17(7), 453-462.

Institute for Learning

Clinical Diagnosis

Symptomatic/retrospective

- Serology - IgM of serum or CSF

Post mortem

- Culture of virus
- PCR detection of viral RNA
- Histopathology with immunohistochemistry

None available through commercial labs – CDC or state PHL only

IgM Serology

Hermance and Thangamani. 2017 Vector Borne and Zoonotic Diseases. 17(7), 453-462.

Institute for Learning

DTV In Summary

- Emerging, life threatening tick-borne viral illness
 - Vectored by Ixodes tick
- Likely underreported infection
 - Very limited testing capacities
 - Should only be investigated after more common causes ruled out
- Cases with encephalitis are likely to be identified (or maybe not)

