Inflammatory and Infectious Diseases of the CNS

Christian Davidson, MD
Division of Neuropathology
Department of Pathology
University of Utah
Objectives

• Understand the history, imaging, and classic histopathology of demyelinating diseases
 • Multiple Sclerosis
 • Progressive Multifocal Leukoencephalopathy

• Understand the usual clinical history and basic histopathologic work-up of CNS infections:
 • Bacterial
 • Fungal
 • Parasitic CNS infections
Myelin Pathologies

Demyelinating
- Immune-mediated destruction of biochemically normal myelin
- Multiple sclerosis, PML, acute disseminated encephalomyelitis

Dysmyelinating (leukodystrophies)
- Inherited destruction of chemically (i.e. genetically) abnormal myelin
- May involve both central and peripheral myelin
- Metachromatic leukodystrophy, globoid cell leukodystrophy, adrenoleukodystrophy

Hypomyelinating
- Paucity of biochemically normal myelin deposition during development
- Alexander’s disease, vanishing white matter disease

Myelinolytic
- Intramyelinic edema of biochemically normal myelin
- Central pontine myelinolysis, vitamin B12 deficiency, toxins
Multiple Sclerosis

- Inflammatory, sporadic destruction of biochemically normal myelin by the immune system

- Clinical history:
 - Young women, often with vision problems
 - Neurologic symptoms related to the location of the lesion
 - Typically NOT diagnosed histologically
 - Two lesions separated in time and space (and typically, symptoms)
 - CSF Protein Electrophoresis shows oligoclonal bands

From “multiple-sclerosis-research.org”
MS- MRI (classic)
“Dawson’s Fingers”

From “mayoclinic.org/diseases-conditions/multiple-sclerosis/multimedia/multiple-sclerosis-mri-scan”
MS- MRI (mimicking tumor)

Multiple Sclerosis

- **Cellular components:**
- Reactive astrocytes
- Lymphocytes
 - Predominantly T-cells
 - Often perivascular
- Foamy macrophages
Reactive astrocytes

Smear: Abundant eosinophilic cytoplasm, numerous processes

Sentinels/squiddies, from ‘The Matrix’
Reactive astrocytes

Frozen: eosinophilic cytoplasm, evenly spread out
Astrocytes: Reactive vs neoplastic

Reactive

Grade III Astrocytoma
Astrocytes: Reactive vs neoplastic

Reactive astrocytes

Astrocytoma

GFAP Immunohistochemistry
Demyelination

Perivascular lymphocytes

Foamy macrophages
Demyelination Suspected on FS: What to report...

- “Inflammatory lesion present, macrophages and lymphocytes suggest demyelination; recommend flow cytometry AND broad microbial cultures”

- NOT....
 - “Demyelination, c/w multiple sclerosis”
 - “Favor MS”
Demyelination:
Work-up of permanent sections......
MS Plaques
B/L foci of MCP demyelination
Macrophages (highlighted by CD163 IHC)

T-cells (highlighted by CD3 IHC)
Loss of myelin (LFB)

Sparing of axons (Neurofilament IHC stain for axons)
Immunocompromised states

- HIV/AIDS
- Iatrogenic
 - Steroids
 - Antibodies (anti-TNF-\(\alpha\) or anti-\(\alpha_4\) integrin)
 - Transplant
 - Chemotherapy
- Marrow suppressive disease
 - Leukemia
 - MDS
 - Aplastic anemia
- Congenital
 - CVID
- Others

ALWAYS CULTURE!!!!
Progressive Multifocal Leukoencephalopathy (PML)

• First suggested to be an opportunistic infection by EP Richardson in 1961
• Caused by JC virus
• Polyomavirus (others are SV40 and BK)
 • dsDNA virus
 • Binds to sialic acid residues on the cell surface
• 75-80% of all adults infected (serology)
• Usually diagnosed clinically
• Symptoms:
 • mild change in mental status, progressing to encephalopathic symptoms
• Histo: foamy macrophages and bizarre oligodendroglial cells
PML: Imaging

• FLAIR shows
 • Sharp border beneath the subcortical U-fibers (arrow)
 • Hazy, ill-defined medial border (dashed arrow)

PML
Histology

Normal White Matter

PML
PML
Histology- mitoses
PML
Histology

Reactive astrocytes

Macrophages

GFAP

CD163
PML
Histology
Bacterial/Fungal Infections

<table>
<thead>
<tr>
<th>Type of Infection</th>
<th>Organisms</th>
<th>Clinical History</th>
<th>Work-up</th>
</tr>
</thead>
</table>
| **Bacteria** | **Meningitis** | **Neonates:** Group B Strep, E. coli, Streptococcus pneumoniae
Pediatric: *Strep. pneumo, N meningitides, H. influenza*
Adult: all the above + *Listeria monocytogenes* and Gram-negative bacilli
Immunocompromised: *Strep. pneumo, Mycobacteria* | Fever, photophobia, stiff/painful neck | Gram, GMS, PAS-Fungus, AFB |
| **Abscess** | **Staphylococcus aureus**
Streptococcus viridans
Bacterioides sp. | Neurologic symptoms dependent on location | Gram, GMS, PAS-Fungus, AFB |
| **Fungus** | **Meningitis** | **Cryptococcus** (immunocompromised),
Coccidioides, Blastomyces | Fever, photophobia, stiff/painful neck | Gram, GMS, PAS-Fungus, AFB |
| **Abscess** | **Cryptococcus** (immunocompetent),
Aspergillus, Mucor | Neurologic symptoms dependent on location | Gram, GMS, PAS-Fungus, AFB |
Mycobacterium tuberculosis

- Microscopy shows **giant-cell granulomatous inflammation with caseating necrosis**

- Other findings:
 - Inflammation can lead to fibrinoid necrosis in veins and arteries
 - Endarteritis obliterans

- Fungi That Can Be Associated with Necrotizing Granulomas
 - Cryptococcus
 - Blastomyces
 - Coccidioides
 - Aspergillus
<table>
<thead>
<tr>
<th>Parasites</th>
<th>Species</th>
<th>Environment/History</th>
<th>Work-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxoplasmosis</td>
<td>Toxoplasma gondii</td>
<td>Cats are definitive hosts. Vulnerable: heme malignancies, BM/solid organ transplant, HIV/AIDS, immunocompromised</td>
<td>Identify bradyzoites Toxo IHC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurocysticercosis</td>
<td>Taenia solium</td>
<td>Eating pork infected by viable larvae or cysticerci. Industrialized nations: Typically immigrants from endemic areas (Cent. America in US)</td>
<td>H&E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoebiasis</td>
<td>Primary amoebic meningoencephalitis (PAM): Naegleria fowleri</td>
<td>PAM: Playing in warm, fresh water. Rapid progression from seizures to coma, death within a week</td>
<td>H&E Send to CDC for definitive species identification</td>
</tr>
<tr>
<td></td>
<td>Granulomatous amoebic encephalitis (GAE): Acanthamoeba sp., Balamuthia mandrillaris</td>
<td>GAE: Targets malnourished, debilitated, chronically ill, immunocompromised; similar to any space-occupying lesion; location dictates symptoms</td>
<td></td>
</tr>
</tbody>
</table>
Toxoplasmosis

Abundant necrosis

Bradyzoite

Tachyzoites

Toxo IHC
<table>
<thead>
<tr>
<th>Parasites</th>
<th>Species</th>
<th>Environment/History</th>
<th>Work-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxoplasmosis</td>
<td>Toxoplasma gondii</td>
<td>Cats are definitive hosts. Vulnerable: heme malignancies, BM/solid organ transplant, HIV/AIDS, immunocompromised</td>
<td>Identify bradyzoites Toxo IHC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurocysticercosis</td>
<td>Taenia solium</td>
<td>Eating pork infected by viable larvae or cysticerci. Industrialized nations: Typically immigrants from endemic areas (Cent. America in US)</td>
<td>H&E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoebiasis</td>
<td>Primary amoebic meningoencephalitis (PAM): Naegleria fowleri</td>
<td>PAM: Playing in warm, fresh water. Rapid progression from seizures to coma, death within a week</td>
<td>H&E Send to CDC for definitive species identification</td>
</tr>
<tr>
<td></td>
<td>Granulomatous amoebic encephalitis (GAE): Acanthamoeba sp., Balamuthia mandrillaris</td>
<td>GAE: Targets malnourished, debilitated, chronically ill, immunocompromised; similar to any space-occupying lesion; location dictates symptoms</td>
<td></td>
</tr>
</tbody>
</table>
Cysticercosis

Scolex with hooks and suckers (arrow)

Outer surface = wavy eosinophilic lamina
<table>
<thead>
<tr>
<th>Parasites</th>
<th>Species</th>
<th>Environment/History</th>
<th>Work-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxoplasmosis</td>
<td>Toxoplasma gondii</td>
<td>Cats are definitive hosts. Vulnerable: heme malignancies, BM/solid organ transplant, HIV/AIDS, immunocompromised</td>
<td>Identify bradyzoites Toxo IHC</td>
</tr>
<tr>
<td>Neurocysticercosis</td>
<td>Taenia solium</td>
<td>Eating pork infected by viable larvae or cysticerci. Industrialized nations: Typically immigrants from endemic areas (Cent. America in US)</td>
<td>H&E</td>
</tr>
<tr>
<td>Amoebiasis</td>
<td>Primary amoebic meningoencephalitis (PAM): Naegleria fowleri</td>
<td>PAM: Playing in warm, fresh water. Rapid progression from seizures to coma, death within a week</td>
<td>H&E</td>
</tr>
<tr>
<td></td>
<td>Granulomatous amoebic encephalitis (GAE): Acanthamoeba sp., Balamuthia mandrillaris</td>
<td>GAE: Targets malnourished, debilitated, chronically ill, immunocompromised; similar to any space-occupying lesion; location dictates symptoms</td>
<td>CDC:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- DPDx (send pictures or slides)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Send to CDC for definitive species identification</td>
</tr>
</tbody>
</table>
Amoebiasis

Perivascular *Acanthamoeba*

Acanthamoeba cysts

Balamuthia mandrillaris

Naegleria fowleri

- Amoeba can mimic macrophages.
- Note the small nucleus with large **karyosome**.
- *Balamuthia* karyosomes are less prominent.

From ResearchGate

From med-chem.com
Leukocyte-rich lesions
‘Day-of-frozen-section’ special requests

• Lymphocytic Infiltrate?
 • Flow cytometry

• All inflammatory lesions
 • Broad microbial cultures (aerobe, anaerobe, fungal, AFB)
Thank you!

Please contact me at
christian.davidson@path.utah.edu
with any questions.