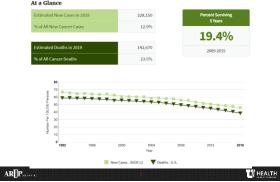
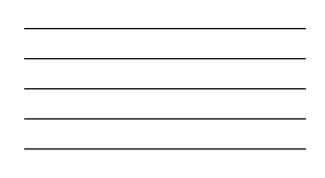


Assistant Professor, Pathology
University of Utah School of Medicine
Section Head, Solid Tumor Molecular Oncolo
Medical Director, Molecular Oncology
ARUP Laboratories
ARTP
AKUPANA

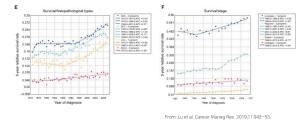

FEBRUARY 12, 2020

Lung Cancer: Epidemiology (Worldwide) WHO – Globocan 2018

Lung Cancer: Epidemiology (US) NIH – 2019 SEER Database

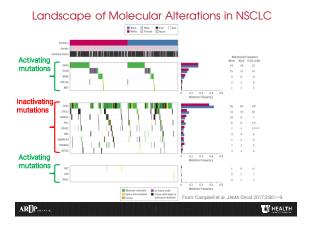


Lung Cancer: Epidemiology (US) NIH – 2019 SEER Database



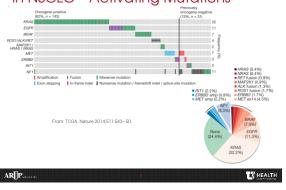
Lung Cancer: Epidemiology (US) NIH – 2019 SEER Database

Lung Cancer: Epidemiology (US) NIH – 2019 SEER Database Mortality over Time

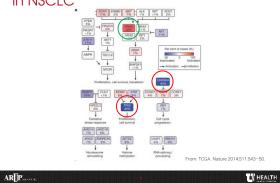


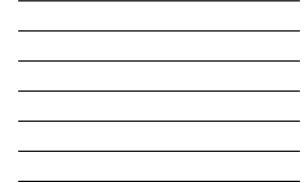
ARJP

AR[P.....


HEALTH

HEALTH




Landsape of Molecular Alterations in NSCLC – Activating Mutations

Landsape of Molecular Alterations in NSCLC

Ancillary Testing in NSCLC

- What specimens to test on?
- What to test for?
- What methods to use for testing?

AR	P	o the	
	Current G	Guidelines	
	CAP/IASLC/AMP	NCCN	
	Guidelines	Guidelines	 _
	2018	1.2020	
AR	Persona 1		

Who/When to Test?

Clinical Presentation	Advanced or Metastatic	
	Disease	Advanced Stage Disease
	 Establish histologic subtype with adequate tissue for molecular testing (consider rebiopsy if appropriate) 	 Each institution should set its own policy regarding patients with early stage disease
listological Diagnosis	Adenocarcinoma Large cell NSCLC, NOS SCC: Consider testing in never-smokers, small biopsy or mixed histology	 Adenocarcinoma Consider testing for other histologies when clinical features indicate higher probability of driver mutation

What Specimens to Test?

- AMP/IASCL/CAP Guidelines specify that ANY cytology specimen can be used for molecular testing.
 - » Previous edition specified that small biopsies and cytology specimens where adenocarcinoma could not be excluded should be tested.
 - » No recommendations between testing the primary tumor vs. metastatic.

What Specimens to Test?

- NCCN 1.2020 Guidelines
- The purpose of the pathologic evaluation will vary depending on sample type:
 - » Biopsy or cytology specimen for initial diagnosis in a case of suspected NSCLC
 - » Resection specimen
 - » Obtained for molecular evaluation in the setting of established NSCLC diagnosis

ARJP

HEALTH

Small Biopsies and Cytology Specimens

- Primary purpose is to:
 - » Make an accurate diagnosis based on the WHO 2015
 - classification.
 - » Preserve the tissue for molecular studies, especially in advanced/metastatic disease.
- In small biopsies/cytology specimens with poorly differentiated carcinoma, the terms "Non-small cell carcinoma" (NSCC) or "Non-small cell carcinoma – not otherwise specified" (NSCC-NOS) should be used should be used as little as possible and only when more specific diagnosis is not possible.
- "NSCC-favor adenocarcinoma" and "NSCC-favor squamous cell carcinoma" are acceptable.
- Preservation of material for molecular testing is critical. Effort should be undertaken to minimize block reorientation and the number of IHC stains for cases that cannot be classified on histologic examination alone.

Small Biopsiesand Cytology Specimens

- In small biopsies and cytology specimens obtained for molecular testing in the context of and established diagnosis after progression on targeted therapies, the primary purpose is to:
 - » Confirm the original pathologic type with minimal use of tissue for IHC only in suspected small cell carcinoma transformation or different histology.
 - » Preserve material for molecular analysis.
- FFPE material is suitable for most molecular analyses, except bone biopsies previously treated with acid decalcifying solutions.
 - » Non-acid decalcification approached may be successful for subsequent molecular testing.

ARJP

LE HEALTH

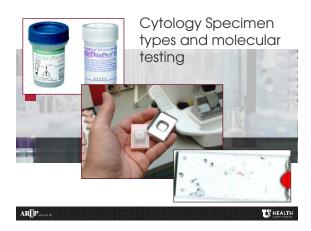
Small Biopsies and Cytology Specimens – NCCN 1.2020

 While many molecular pathology laboratories currently also accept cytopathology specimens such as cell blocks, direct smears or touch preparations, laboratories that do not are strongly encouraged to identify approaches to testing of non-FFPE cytopathology specimens.

ARJP


U HEALTH

Immunohistochemistry



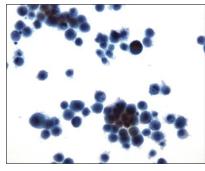
Immunohistochemistry

- Judicious use of IHC is recommended to preserve tissue for molecular testing, most notably in small specimens.
- In small specimens, a limited number of immunostains with 1 adenocarcinoma marker (TTF-1, napsin-A) and one squamous (p40, p63) should suffice for most diagnostic problems. Virtually all tumors that lack squamous morphology and express p63 and TTF-1 are preferably classified as adenocarcinoma. A simple panel of TTF-1 and p40 may be sufficient to classify most NSCC-NOS cases.
- Testing for NUT expression by IHC should be considered in all poorly differentiated carcinomas that lack glandular differentiation or specific etiology, particularly in non-smokers or in patients presenting at a young age, for consideration of a pulmonary NUT carcinoma.
- IHC should be used to differentiate primary lung adenocarcinoma, SCC, large cell NE carcinoma and mesothelioma.

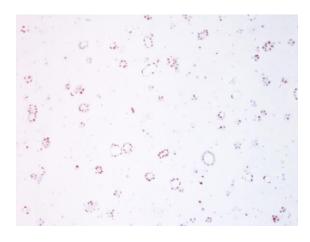
HEALTH

Fine Needle Aspiration (FNA)

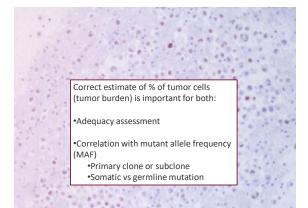
- Advantage of targeting a specific lesion and can be performed with minimal invasion
- Advantage of having a relatively pure population of lesional cells


Exfoliative Cytology

- Testing for high-risk HPV is standard of care in cervical screening and is used to clinically guide treatment
- Urovysion FISH for urine cytology specimens


	7	
AR	PARATA	

HEALTH


Effusion Cytology

AR

Specimen types and preparation

HEALTH

Liquid-Based Collection

ThinPrep!

CTTIC

ARJP

- Advantages:
 » Technical skills not necessary for slide
 - preparation » Preservative solution designed for DNA(RNA) preservation
 - Disadvantages:
 - Inability to perform immediate assessment
 Potential solution the evaluation of 1 stained preparation from sample to be tested

Cell Blocks

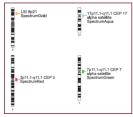
- Best understood cytopathology specimen regarding extraction of DNA/in situ methods
- No need for separate validation from FFPE samples (in most cases)

· Applies to FNA, exfoliative and effusion cytology

AR[]P.....

HEALTH

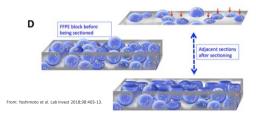
Direct Smears


- High quality of nucleic acids extracted with the common staining techniques, (Papanicolaou, Romanowsky/Diff-Quik)
- Great resource for thyroid FNAs
- Alcohol rather than formalin-based fixation
- Ease of immediate assessment
- Disadvantage:
 - » The slide with lesional material must be sacrificed for molecular testing and is lost from the diagnostic archive
 - » Slide scanning or photographic archive
 - » Partial scraping and re-coverslipping

AR

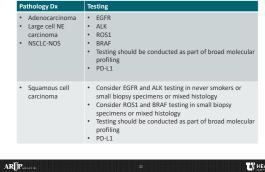
FISH in Cytology Specimens -

Urovysion Loss of 9p21 and chromosome 3, 7 and 17 aneuploidy correlates with urothelial carcinoma



From: Fritcher et al., 2011.

Abbott Molecular, Des Plaines, IL


Truncation Artifact Present in FFPE Slides

• Specific validation needed for cytology (smear, single layer) specimens.

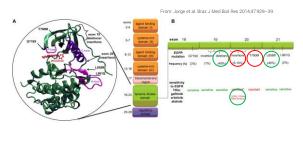
ARTP	31	HEALTH

What to Test For? - NCCN 1.2020

LE HEALTH

What to Test For? - CAP/IASLC/AMP

Pathology Dx	Testing
Adenocarcinoma	• EGFR • ALK • ROS1
Other histologies	 May test when clinical features indicate a higher probability of an oncogenic mutation


ARJP

NCCN 1.2020 Sensitizing EGFR Mutation Positive First Line Therapy

		Preferred	Alternative
Sensitizing EGFR Mutation Positive	EGFR mutation discovered prior to first-line systemic therapy	OsimertinibErlotinib	AfatinibGefitinibDacomitinib
	EGFR mutation discovered during first-line therapy	Complete planned systemic therapy, including maintenance therapy, or interrupt, followed by Osimertinib	 Erlotinib Afatinib Gefitinib Dacomitinib

ARJP	34	HEALTH

Most Common EGFR Mutations in NSCLC

AR

HEALTH

How to test? 2018 CAP/IASLC/AMP Guidelines

- Analytic methods must be able to detect mutation in a sample with 20% or more malignant cell content.
- Plaftorms such as unmodified Sanger sequencing with a sensitivity limit of 50% tumor cellularity are not sufficient in practice because many lung cancer samples are small and comprise a majority of benign stromal cells. PCR-based methods are more sensitive by comparison.
 - It is no longer appropriate to offer a low-sensitivity test that cannot test tumors with 20% to 50% tumor content and requires patients to undergo more procedures, and potentially more invasive procedures, solely to procure a tissue sample with high tumor content.
- It is not appropriate to use IHC for EGFR mutation testing.
 - » Same goes for EGFR FISH.

ARTP

NCCN 1.2020 Sensitizing EGFR Mutation Positive Progression on Osimertinib

			Subsequent Therapy
Asymptomatic		\rightarrow	 Consider definitive local therapy for limited lesions Continue Osimertinib
Symptomatic	Brain		 Consider definitive local therapy for limited lesions Continue Osimertinib
	Systemic	Isolated Lesion	 Consider definitive local therapy for limited lesions Continue Osimertinib
		Multiple Lesions	See initial systemic therapy options

ARTP

ARTPANICE

1790M Testing			Subsequent Therapy
Asymptomatic			Consider definitive local therapy for limited lesions Osimertinib for T790M+ Continue E/A/G/D
Symptomatic	Brain		Consider definitive local therapy for limited lesions Osimertinib for T790M+ Continue E/A/G/D NCCN Guidelines for CNS tumors
	Systemic	Isolated Lesion	 Consider definitive local therapy for limited lesions Osimertinib for T790M+ Continue E/A/G/D
		Multiple Lesions	T790M+: Osimertinib (if not previously given)
			T790M-: Initial systemic therapy options

How to Test for Resistance?

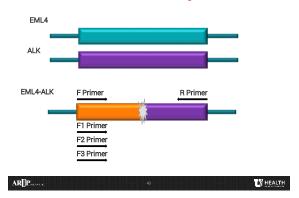
NCCN Guidelines 1.2020	2018 CAP/IASLC/AMP Guidelines
For patients with an underlying EGFR sensitizing mutation who have been treated with EGFR TKI, minuma appropriate testing includes high sensitivity evaluation for p.T790M. Assays for the detection of T790M should be designed to have an analytic sensitivity of 5% allelic fraction.	Recommendation: Laboratories testing for EGFR 1790M mutation in patients with secondary clinical resistance to EGFR-targeted kinase inhibitors should deploy assays capable of detecting EGFR T790M mutations in as little as 5% of EGFR alleles.
When there is no evidence of T790M, testing for alternate mechanisms of resistance (MET amplification, ERB82 amplification) may be used.	 A second acquired resistance mutation, C7975, can arise in tumors that have progressed after Osimertinib treatment for T790M Testing for C7975 is not recommended for routine management at this time.

Other Specific Treatments

Genetic Alteration	First Line Treatment	
	Preferred	Alternative
ALK Rearrangement	AlectinibBrigantinib	CeritinibCrizotinib
ROS1 Rearrangement	Crizotinib	EntrectinibCeritinib
BRAF V600E Mutation	Dabrafenib + TrametinibVemurafenib	Dabrafenib
NTRK1/2/3 Rearrangement	Larotrectinib	Entrectinib
PD-L1 Expression Positive	Pembrolizumab	

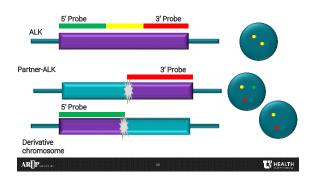
ADE	Para	

HEALTH


How to Test for Other Genetic Alterations

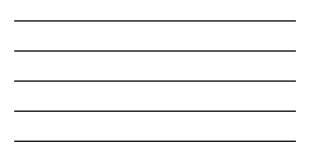

Genetic Alteration	Recommendations	
	NCCN 1.2020	2018 CAP/IASLC/AMP
ALK Gene Rearrangements	FISH IHC Can be deployed as an alternative strategy FDA approved IHC (ALK DSF3) can be utilized as a stand-alone test NGS methodologies can detect ALK fusions Targeted real-time PCR are used in some settings	 IHC is an equivalent alternative to FISH for ALK testing RT-PCR and NGS have shown comparable performance with IHC when designed to detect the majority of fusions
ROS1 Gene Rearrangements	FISH can be deployed (it may underdetect FIG-ROS1 variant IHC can be deployed; however needs confirmation. Screening modality NoS5 can detect, although DNA- based NGS can undertetect ROS1 fusions PCR unlikely to detect fusions with novel partners	 ROS1 IHC may be used as a screening test in lung adenocarcinoma patients; however, positive ROS1 IHC results should be confirmed by a molecular or cytogenetic method

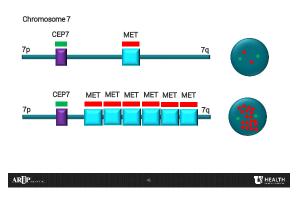
How to Test for Other Genetic Alterations


Genetic Alteration	Recommendations	
	NCCN 1.2020	2018 CAP/IASLC/AMP
BRAF Point Mutations	Real-time PCR, Sanger sequencing (paired with tumor enrichment) and NGS employed methodologies IHC only after extensive validation	 Not indicated as a routine stand-alone assay outside the context of a clinical trial Appropriate to include as part of larger testing panels performed either initially or when routine EGFR, ALK, and ROS1 testing are negative
KRAS Point Mutations	No recommendations	 Not indicated as a routine stand-alone assay outside the context of a clinical trial Appropriate to include as part of larger testing panels performed either initially or when routine EGFR, ALK, and ROS1 testing are negative
NTRK (NTRK1/2/3) Gene Fusions	FISH, IHC PCR, NGS can be used IHC is complicated by baseline expression in some cases FISH may require 3 probe sets DNA-based NGS may underdetect NTRK1 and NTRK3 fusions	No recommendations

PCR for Gene Rearrangements

FISH for Gene Rearrangements Break-apart Probes

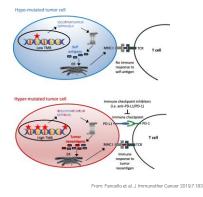



Gene Rearrangement Detection by NGS

ARTP BRANC N. 45	
------------------	--

NCCN 1.2020 Emerging Biomarkers

Genetic Alteration	Available Targeted Agents	2018 CAP/IASLC/AMP Guidelines
High-level MET Amplification OR MET Exon 14-skipping Mutation	Crizotinib	 Not indicated as a routine stand-alone assay outside the context of a clinical trial Appropriate to include
RET Rearrangements	CabozanitnibVandetanib	as part of larger testing panels performed either initially or when routine
ERBB2 (HER2) Mutations	Ado-trastuzumab emtasine	EGFR, ALK, and ROS1 testing are negative
Tumor Mutational Burden (TMB)	Nivolumab + IpilibumabNivolumab	No mention


ARJP

HEALTH

Mutational Tumor Burden (TMB)

- NOT to be confused with Tumor Burden of a specimen: Percentage of tumor cells over total cells.
- TMB is defined as the total number of mutations, including both base substitutions and short insertions/deletions, per coding area of a tumor genome.
 - » Usually expressed as number of mutations per Megabase (Mb; 1 million base pairs)
- Initially calculated based on exome studies, currently consensus is that targeted NGS panels with at least 1.5 Mb coverage have similar findings to those of an exome.
- TMB varies significantly between different cancer types
 Melanoma has some of the highest number of mutations
 GI cancers, such as pancreatic cancer and MMR-proficient colorectal cancer, having some the lowest.
- NSCLC spans a range in TMB, with a relatively higher TMB seen in smoking-related lung cancer, whereas lower tumors in neversmokers

AR	

Mutational Tumor Burden (TMB) in NSCLC

- Relation between higher TMB and response to checkpoint inhibition has been suggested by several studies.
- Rizvi et al. tested pembrolizumab in lung tumors with high nonsynonymous mutational and neoantigen levels and found that this was associated with longer PFS and improved durable clinical benefit

AR

AR[]P.....

HEALTH

HEALTH

Checkmate 227

- Open-label, randomized Phase 3 trial
- Nivolumab, or Nivolumab + Ipilimumab, or Nivolumab + Platinum Doublet Chemotherapy vs. Platinum Doublet Chemotherapy
- Patients with chemotherapy-naive Stage IV or recurrent NSCLC
- Demonstrated superior PFS in patients with high TMB (≥10 mutations per Mb), irrespective of PD-L1 expression or histology, who received combination immunotherapy instead of chemotherapy in the first-line metastatic setting (hazard ratio [HR], 0.58; 95% CI, 0.41-0.81)
- However...

ARTP

LE HEALTH

Checkmate 227

- Subsequent OS data have revealed a statistically nonsignificant benefit of ipilimumab + nivolumab in patients with high TMB (HR, 0.77; 95% CI, 0.56-1.06)
- Comparable survival benefit was seen in patients with TMB <10 mut/Mb (HR, 0.78; 95% CI, 0.61-1.00)
- The supplemental biologics license application seeking frontline FDA approval of ipilimumab with nivolumab for advanced NSCLC with TMB ≥10 mut/Mb was withdrawn pending final data from part 1a of Checkmate 227

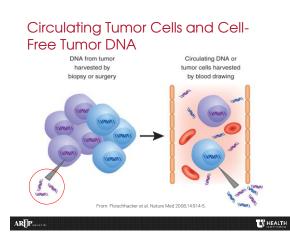
A	pΠ	p.		
20.0	ч.	1.14	-	e a

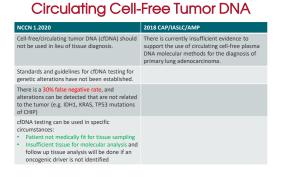
HEALTH

Checkmate 227 - Latest Update (12/2019)

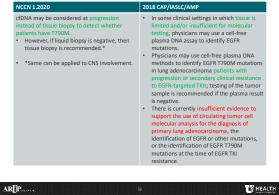
- Hellmann et al. N Engl J Med. 2019 Nov 21;381(21):2020-2031.
- An overall survival benefit with nivolumab + ipilimumab, as compared with chemotherapy, was observed regardless of the subgroup of PD-L1 expression level.
- Among the 679 patients (58.2%) in whom the TMB was evaluated, a similar degree of overall survival benefit was observed in patients who received nivolumab + iplilimumab, regardless of TMB status (10 mut/Mb cutoff), despite the previous observation of improved PFS in patients with high TMB.
- Combining the two key biomarkers (PD-L1 and TMB) did not identify a subgroup that had an increased magnitude of benefit with nivolumab + ipilimumab over chemotherapy, although the sample sizes become more modest in these analyses.

HEALTH

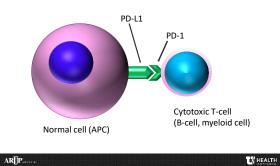


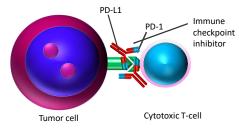

BUSTER WAS CAUGHT BARKING UP THE WRONG TREE AGAIN.

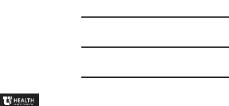
Challenges with TMB


- TMB as a biomarker has other limitations
 - » Lack of standardization between the testing platforms used
 - $\, {}^{\rm >}$ Lack of an identified, fixed TMB threshold defining a tumor as having "high" TMB
 - » Various thresholds of TMB have been used by different studies
 - » Possible algorithmic approach
- TMB harmonization project

ARTPARATE	HEALTH




Circulating Cell-Free Tumor DNA



PD-1/PD-L1 Interaction in Normal Immunomodulation

PD-1/PD-L1 Interaction in Cancer

20

PD-L1 Major Updates in the Last Year - NSCLC

- Changes in pembrolizumab (Keytruda®) approval as first line monotherapy in non-small cell lung cancer (NSCLC)
 - » 22C3 companion diagnostic tumor proportion score (TPS) cutoff of 1% (no more 50%)
 - » Different algorithms for ≥50% vs. 1-49% TPS in NCCN 1.2020 Guidelines

HEALTH

Dako 22C3 PharmDx pembrolizumab (Keytruda®) NSCLC – APRIL 2019 UPDATE

Indication	Comment
NSCLC 1ª Ine MONOTHERAPY treatment • EGFR/ALK non-mutant NSCLC AND • Stage III, non-candidates for surgery/definitive chemorradiation • Metastatic	FDA approved with PD-11 22C3 21% tumor proportion score (TPS) APRIL 2019 UPDATE
NSCLC 2 nd line MONOTHERAPY treatment • EGFR/ALK non-mutated NSCLC • EGFR/ALK mutant NSCLC with progression on EGFR or ALK specific, FDA approved therapy	FDA approved with PD-L1 22C3 • ≥1% tumor proportion score (TPS)
NSCLC 1 st treatment, in COMBINATION with chemotherapy • EGFR/ALK non-mutated metastatic non- squamous NSCLC Metastatic squamous NSCLC	FDA approved NO 22C3 IHC TESTING REQUIRED

ARTP

HEALTH

Indications for pembrolizumab (Keytruda®) treatment

Indication	Comment
SITE AGNOSTIC dMMR/MSI tumors 2 nd line treatment	FDA approved NO 22C3 IHC TESTING REQUIRED dMMR IHC or MSI TESTING REQUIRED

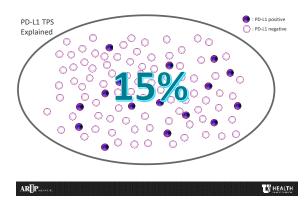
ARJP

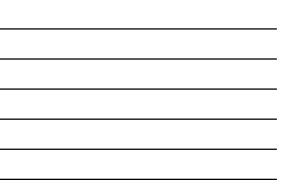
Dako 28-8 pharmDx - nivolumab (Opdivo®) - NSCLC

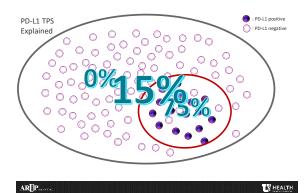
Clone	28-8 rabbit anti-PD-L1 monoclonal antibody
Platform	EnVision FLEX visualization system Autostainer Link 48
NSCLC 2 nd line treatment (squamous and non- squamous)	FDA approved (COMPLEMENTARY) for treatment with nivolumab (Opdivo [®] , Bristol-Myers Squibb, New York, NY)
Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.	≥1% tumor proportion score (TPS) in NON- SQUAMOUS NSCLC 28-8 IHC OPTIONAL FOR NON-SQUAMOUS NSCLC NO TESTING FOR SQUAMOUS CELL CARCINOMA

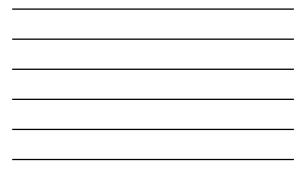
ARJP.....

HEALTH


PD-L1 22C3 (NSCLC) and 28-8 Scoring: Tumor Proportion Score (TPS)


 $TPS = \frac{\# of PD-L1 \ positive \ tumor \ cells}{Total \ \# of \ PD-L1 \ positive \ and \ PD-L1 \ negative \ tumor \ cells} \times 100\%$


What to score?


- Score partial or complete cell membrane staining.
- Exclude cytoplasmic staining from scoring.
- Score only viable tumor cells
 Exclude infiltrating immune cells, normal cells, necrotic cells, debris.
- Staining intensity not important.

ARJP



Ventana PD-L1 SP142 atezolizumab (Tecentriq®)

HEALTH

SP142 Interpretation - NSCLC

Ventana PD-L1 SP263 durvalumab (Imfinzi®)

Clone	SP263 rabbit monoclonal anti-PD-L1 SP263 antibody	
Platform	OptiView DAB IHC Detection Kit OptiView Amplification Kit VENTANA BenchMark ULTRA instrument	
Non small cell lung cancer 2 nd line treatment Unresectable/stage III AND Progression after platinum therapy and radiotherapy	NO IHC TESTING REQUIRED	

AR[]P.....

HEALTH

Immune Checkpoint Inhibitor Treatment in NSCLC

- Generally or tumors that DO NOT harbor
 - » EGFR mutations
 - » ALK rearrangements
- Patients with either one of the above generally do not respond as well to ICI treatment, irrespective of PD-L1 expression
- Clinical scenarios can exceptions for nivolumab/pembrolizumab (patients who have failed EGFR/ALK-specific treatment)

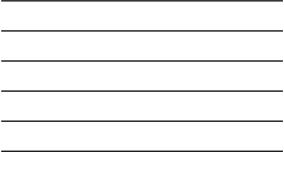
AR[]P.....

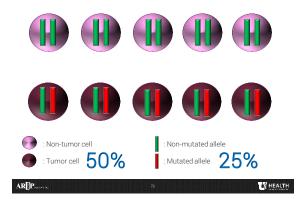
HEALTH

Scale of Sensitivities					
Analytical Sensitivity	Clinical Sensitivity				
 How sensitively can a test detect a rare change? Low AS can be overcome with enrichment (circling of tumor) FN related to allelic dilution (low tumor burden - % of tumor cells 	 How many of the possible changes are detected? Inherent in test design FN related to genetic alterations falling outside the range of testing 				

Preanalytical Processing

- Assessment for adequacy:
 - » Ratio of tumor to non-tumor nucleated cells in a specimen
 - » An extremely small specimen with high tumor cellularity may be superior to an abundant specimen with low tumor cellularity
- Evaluation of specimen quantity is an important first step
 - » Limiting material used for morphological diagnosis to necessary amount
- Thinking of ways of to better utilize the small cytology specimens


AR[]P.....

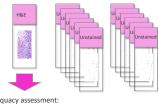

HEALTH

HEALTH

Analytical Sensitivities of Different Sequencing Platforms

Platform	Limit of Detection – Mutant Allelic Frequency	Comments	Percentage of Tumor Cells for Testing (Tumor Burden)*
Sanger Sequencing	15-20%	Not a quantitative method	30-40%
Melt Curve Analysis	≈10%	Not a quantitative method	≈20%
Pyrosequencing	≈5%	Conservatively at 10%	10-20%
NGS	1-2%	May detect less than that	5-10%
	Mol Diagn 2010;12:42 Clin Pathol 2014;141		*Assuming that tumor cells are heterozygous for the mutation

How many cells do I need?


- How much DNA does one cell contain?
 - » 6-7 pg of DNA
- How many cells are needed for 1 ng of DNA?
 - » 1000/6 = 166.66
 - » 1000/7 = 142.85
 - » 140-170 cells

Cell requirements for common tests

Test	DNA Input	Number of Cells	Comments
Single gene assays (pyro-quant, PCR)	1 ng	160	
Sanger sequencing	10 ng	1600	
NGS	10-50 ng or more	1600-8000	10 ng min, shoot for 50 or more
SNParray	50-80 ng	8000-13000	
PD-L1 IHC	N/A	100	On 1 slide
ALK/ROS1/RET FISH	N/A	100	
MET FISH	N/A	40	
ALK/ROS1 IHC	N/A	50-10	

Initial Processing of Specimens

- Adequacy assessment: • % of tumor cells based on platform, for sequencing, PCR, etc.
- ≥100 viable tumor cells for PD-L1, ALK/ROS1/RET FISH
- ≥40 viable tumor cells for MET FISH
- \geq 50-100 viable tumor cells for ALK/ROS1 IHC

AR[]P.....

HEALTH

DNA Input Number of Slides Comments NGS 10-50 ng 10-20 9 P 1-10 ng EGFR 1-2 • •• BRAF 1-5 ng 1 More if equivocal/positive ROS1 ALK/ROS1 (FISH N/A 2 • • • • or IHC) PD-L1 IHC 3 if sent outside N/A 2 • ---KRAS 1-5 ng 1 RET/MET FISH N/A 2 MET exon 14 mutation, ERBB2 N/A Varies þ HEALTH AR mutation

Slide requirements for common tests

Work with your molecular lab

- Consider including pertinent IHC slides along with slides/blocks sent for testing
- Consider including tumor burden estimate in the report comment
 - $\, {}^{\, \text{\tiny >}}\,$ e.g. "The tumor cells represent approximately 30% of the entire cell population."
- Consider including molecular adequacy information in the report comment
 - » e.g. "The cell block H&E matches the smears in cellularity and may be used for ancillary testing."
 - » Or "The cell block material is scant; smears from passes 1 and 2 are the most cellular and may be used for ancillary testing."

HEALTH

Summary – Test Ordering

- Consider the recommended testing based on pathology diagnosis and clinical presentation
- · Panel testing is recommended whenever possible
- Recommended testing will cover the majority of actionable information for treatment
- For small biopsy/cytology specimens, it becomes very important to understand what testing you can do and what the chances of getting actionable information are

ARJP

HEALTH

Summary – Molecular Laboratory

- Labs are encouraged to validate testing for cytology/low input specimens
- Existing platforms can be adapted for low input specimens
- Novel techniques may be suitable for low input specimens
- Strategies can be developed to optimize the collection/adequacy assessment/usage of cytology specimens for molecular testing

Thank you!

AR[]P.....

HEALTH

A nonprofit enterprise of the University of Utab and its Department of Pathology

© 2020 ARLP LABORATORES