

Error Proofing the Laboratory

Bonnie Messinger, CPHQ, CMQ/OE(ASQ)

Six Sigma Black Belt

"Error"

 failure of a planned action to be completed as intended

or the

 use of a wrong plan to achieve an aim

(IOM)

"Error"

(IOM)

Error in Healthcare Systems

Human error arises from the

- Expectations
- Resources
- Setting
- Flow
- Incentives
- Information
- Skills and attitudes

of the person performing the work

The Problem of Quality

Fact:

Suppressing human error often results in suppressing innovation

Objectives

Attendees will be able to:

- Describe the three components of laboratory error
- Use the principles of process to design to eliminate the potential for error
- Differentiate between manufacturing and service systems and identify the most appropriate improvement strategies for each

Human Cause Process Cause Systemic Cause

Human Error

Streams of Consciousness

Perception and Learning

Unimportant

Important but Known

Important and Unknown

Competition between coalitions promotes (or demotes)

explicit attentional awareness

(Dobbs, Scientific American Mind, June 2005)

Goals what you are trying to do Mindset the situation as you perceive it Knowledge what you think you know

(Salvendy, Handbook of Human Factors and Ergonomics, 1997)

Performance Shaping Factors

Performance Shaping Factors

Performance Shaping Factors

Slips & Lapses vs. Mistakes

Slips & Lapses	Mistakes
Execution failure	Cognitive failure
More frequent	Less frequent
False negative	False positive
Difficult to eradicate	Easier to eradicate
Main cause of liability	Main cause of disciplinary action

Action

Done Right

executed by the rule, at the right time

Not Done

- failed to execute
- Done Wrong
 - executed the wrong rule,
 - over executed,
 - executed incompletely
 - executed at the wrong time

The Rales 1. Do this

11. Don't do that 111. Read the signs

Trigger

- Awareness-based
 - consciousness
- Skill-based
 - -familiarity and/or dexterity
- Knowledge-based
 - -cognition
- Judgment-based
 - synthesis

What Were You Thinking?

Addressing Human Error

Our job is NOT making people understand how poorly they performed, our job is to figure out why that act seemed reasonable at the time and remove the "reasonableness" of the decision.

Behavior Modification

Assessment

Employees bring

- Consciousness
 - Be awake, aware
- Dexterity
 - Able to manipulate objects and information
- Cognition
 - Know what should be done
- Synthesis
 - Apply in multiple contexts

Traditional Response to Error

- Errors of ignorance
 - More training
- Errors of negligence
 - Punishment
- Errors of omission
 - Training and punishment

After four years of futile searching, five aficionados of paleontology failed to find the final frozen foot of the elephant in the pictograph.

After four years of futile searching, five aficionados of paleontology failed to find the final frozen foot of the elephant in the pictograph.

Forgetting Curve

Behavior Modification

Humans need ...

- to be treated with dignity and respect,
- to make a contribution,
- to have a witness.

At low tide, no man is an island

By HikingArtist.com

You don't get to safe systems that have human beings in them by yelling at them or asking them to try harder.

I am right... Do you get it now?

-Donald Berwick

By HikingArtist.com

Error-Proofing through Behavior Modification

- Humans are complex and, thus, inherently fallible.
- Human error WILL occur.
- Fallibility varies from person to person.
- Humans are only one component of a working system.
- The effect of human error can be reduced in systems that are designed for minimal error.

Error-Proofing through Behavior Modification

Weak

Patches aimed at fixing people

- Call for increased vigilance
- Training
- Memos
- Warnings
- Double checks

(Gosbee, Laboratory Errors and Patient Safety, May-June 2005)

~ **%** 30 % 5 ĘĘ 27 $4^{2} = 4^{2$ かど か。 24 51 ~ 2 ~ 2 ~ 68 ~ 69 ~ 62 ~ 62 $\frac{56}{47} = \frac{56}{14} = \frac{56}{65} = \frac{41}{65} = \frac{23}{65} = \frac{41}{65} = \frac{68}{17} = \frac{68}{17} = \frac{68}{17} = \frac{68}{17} = \frac{14}{17} = \frac{68}{17} = \frac{14}{17} = \frac{68}{17} = \frac{14}{17} = \frac{14$ $\int_{34}^{3} \frac{6}{61} \int_{34}^{3} \frac{6}{85} \int_{13}^{3} \frac{6}{5} \int_{79}^{3} \frac{6}{79} \int_{10}^{3} \frac{6}{5} \int_{13}^{3} \frac{6}{5} \int_{79}^{7} \frac{6}{79} \int_{13}^{3} \frac{6}{5} \int_{13}^{7} \frac{6}{5} \int_{79}^{7} \frac{6}{79} \int_{13}^{3} \frac{6}{5} \int_{13}^{7} \frac{6}{5} \int_{79}^{7} \frac{6}{79} \int_{13}^{7} \frac{6}{5} \int_{13}^{7} \frac{6}{5} \int_{79}^{7} \frac{6}{5} \int_{13}^{7} \frac{6}{5} \int_{79}^{7} \frac{6}{5} \int_{13}^{7} \frac{6}{5} \int_{13}^{7} \frac{6}{5} \int_{79}^{7} \frac{6}{5} \int_{13}^{7} \frac{6}{5}$

X0 30 دن ۲. 1 8 တ 45 72 66 X) 29 23 35 J4 14 ∞ 26 1> ડેઠ 47 6× 40 31 L \sim 10 13 *61* Slide 35

18⁹ 49 40 31 slide 36 19

Numbers from 1 to 49

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27		29	30
31	32	33		35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	

Importance of Design

Every system is perfectly designed to achieve exactly the results it gets.

-Paul Batalden

If your operation can't tolerate error you should remove the opportunities for error

1. Find

2. Clarify

3. Discover

Shigeo Shingo

1. Find the problem!

Never Assume

Never Assume

3. Discover the cause

It's not always about finding a simple solution to a complex problem, occasionally it's about simplifying the problem.

-Adam Bosworth

Design Modification

Best rate	Method of ensuring accuracy	Example
1 in 1,000	 Clear process documents Reliance on vigilance, memos, training, warnings Audits 	Hand washing
1 in 10,000	 All of the above plus Processes designed for human behaviors Reminders, checklists, clear communication Re-training, competency testing 	Sub-optimal specimens Order errors
1 in 100,000	 All the above plus Systems for identifying and preventing error (error-proofing) Standardization Elimination of distractions, interruptions and fatigue 	Mislabeled specimens Corrected reports
1 in 1,000,000	 All the above plus Automation, software enhancements Advanced process design (remove steps that require memory or knowledge) 	Lost specimens Interfaced result entry

(With thanks to Dr. Michael Astion)

Error-proofing Engineering

• Microwave will not work if the door is open (a prevention device)

• Car beeps if keys are left in the ignition (a detection device)

Spelling errors corrected in MS Word[™] as you type (a reversing device)

Processes and instructions

- Designed for humans
- Clear directives

Training

- Accounting for attentional deficits
- Resources, materials and equipment
 - Right resource
 - Right time

Environment

• Matched to the task

Work

Manageable workload

Slips & Lapses vs. Mistakes

Slips & Lapses	Mistakes
Execution failure	Cognitive failure
More frequent	Less frequent
False negative	False positive
Difficult to eradicate	Easier to eradicate
Main cause of liability	Main cause of disciplinary action

Slips and Lapses

Attentional deficits, execution error: Most difficult to eradicate

FMEA

Five Error-proofing Principles

- Eliminate
- Task or Risk
- Replace → Function or Process
- Facilitate → Human behaviors
- Detect
 - Mitigate

Defects or Dissatisfaction

→ Effects

(Godfrey, ASQ, 2005)

Eleven Solution Directions

- Trimming
- Self-elimination
- Standardization
- Unique Shape
- Copying
- Prior Action

- Flexible Films or Thin Membranes
- Color
- Combining
- Counting
- Automation

(Godfrey, ASQ, 2005)

Problem: Mislabeled Specimen Illegible Handwriting Transcription Error

Elimination:

Standardization

Problem: Handling Error Spilled Sample Misracked Tube

Replacement: Automation

Problem: Plate position error

Facilitation:

Facilitation:

Problem: Lost Calculi Stones

Problem: **Potential for Harm**

Mitigation: Copying

Mistakes

Cognitive deficits; contextual misalignment: Information processing

6 Core Questions

- Who?
- What?
- When?
- Where?
- How?
- How much?

The Visual Workplace

I-Driven Visuality

Translates information into behavior

 What do I need to know that I don't know in order to do my job or in order to do it better?

 What do I know that others need to know (that I need to share) in order for them to do their work better, faster or at less cost?

I-Driven Visuality

Traditional method of influencing behavior

- 1. Classes
- 2. OJT
- 3. Manuals
- 4. Procedures
- 5. Online information
- 6. Meetings
- 7. Questions

Visual method of ensuring behavior 1. Visual Devices

Who?

Tags are easier than a check out log

http://www.leanmarketplace.com/5s-tool-kit

Who?

http://www.leanmarketplace.com/5s-tool-kit

What?

http://www.mistakeproofing.com/example7.html

What?

http://www.mistakeproofing.com/example7.html

What?

http://www.mistakeproofing.com/example7.html

Where?

http://www.gembapantarei.com/2009/04/visual_management_resource_for_lean_hospitals_1.html

Where?

http://www.gembapantarei.com/2009/04/visual_management_resource_for_lean_hospitals_1.html

Where?

How?

http://www.myspace.com/vantilden/blog/495869074

How Much?

http://www.armstrongmedical.com/index.cfm/go/product.detail/sec/3/ssec/14/fam/150

Information Deficits

By HikingArtist.com

"Like holes in a torn fishing net, something of value escapes with every missing answer."

At first, only the small fish are lost, but as time passes, the holes are enlarged and more and more value escapes, never to be captured.

Can't Rather Than Don't

-Henry Ford's Safety Principle

Error Proofing through Process Interventions

Intermediate

Repairs aimed at changing processes

- Checklists
- Read-back/Repeat-back policy
- Eliminate look-alike/sound-alike
- Eliminate or reduce distractions
- Minor software enhancements; benign failures (Gosbee, Laboratory Errors and Patient Safety, May-June 2005)

The Rest of the Story

Optimizing a function does not mean optimizing the system

Systems Thinking

By HikingArtist.com

Systems Thinking

Complex Adaptive System

- collection of individual agents
- free to act
- not always predictable
- actions are interconnected
- actions change the context for other agents

(IOM, Crossing the Quality Chasm, 2001)

Complex Adaptive Systems

Adaptive

A set of interconnected things

Systems Thinking

The Systems Thinking approach to quality creates the conditions under which a good outcome

is not only possible, but probable.

(IOM, Crossing the Quality Chasm, 2001)

Systems Thinking

Relatively simple rules

complex, emergent, innovative

system behavior

(IOM, Crossing the Quality Chasm, 2001)

Culture Modification

Systems Thinking Fundamentals

All systems are unique and different

Assessment

Employees

- Consciousness
- Dexterity
- Cognition
- Synthesis

Employers

- Well-designed processes and clear instructions
- Training
- Resources, materials and equipment
- Environment
- Manageable workload

Culture

- Basic principles
- Collegiality
- Organizational learning
- Holistic quality
- Empowered Teams

Assessment

Basic principles

- Simple rules; cultural norms
- Management as role models

Holistic quality

- Embracing who we are
- Planning for who we will be

Collegial relationships

• Patients, practitioners, suppliers and the community as partners

Organizational learning

- Mistakes as opportunities
- Workforce open to growth

Empowered Teams

- Characterized by accountability
- Driven by front line champions

Error Proofing through System Interventions

Strong

Reforms intended to improve systems

- Major software enhancements
- Removing unnecessary steps
- Standardizing
- Process/ equipment design changes
- Leadership/ culture changes
- Redesign of work area

(Gosbee, Laboratory Errors and Patient Safety, May-June 2005)

Systems Thinking Fundamentals

The organization that embraces chaos

- focuses on information-seeking over stability,
- allows new ideas with disruptive potential, and
- is open to growth.

Slide 103

Chaos is a place of instability, a philosophy of embracing the unknown. As such, for many, it is a frightening place to be.

Systems Thinking Fundamentals

Usually improvement cannot be accomplished or sustained without giving the messy

business of social interactions, communication, power and organizational context its due.

(Carr, Patient Safety & Quality Healthcare, Sept/Oct 2008)

Systems Characteristics

- Simple Rules
- Non-Linearity
- Unpredictability
- Inherent Order
- Adaptable Elements
- Emergent Behavior
- Context and Embeddedness
- Co-evolution

(IOM, Crossing the Quality Chasm, 2001)

CAS Properties

Simple rules

Simple rules can produce complex results

CAS Properties

Simple rules

Aversion

move away from very nearby neighbors Alignment

adopt the same direction as those that are close

Attraction

avoid becoming isolated

Systems Thinking Application

- What are you trying to do? (alignment rule)
- What should you always do? (attraction rule)
- What should you never do? (aversion rule)
- What is your sphere of influence? (accountability rule)

Practically Speaking...

Don't fight the system. Change the rules and the system will change itself.

-Andrew Carey

Nonlinearity

The relationship of a change to its downstream effect may not be directly proportional

Change Types

Anticipatory Planned Greater chance of success Sticks

Reactive

Urgent Greater chance of failure Degrades Incremental Internally driven Strong work teams Continuous

Tuning

Strongest over time; purposeful; based on consensus; least frightening for employees; sustainable

Adaptation

Most common type of change; triggered by adverse event(s); short-lived Transformational Environmentally driven Strong leadership Episodic

Re-orientation

Likely to succeed; has the luxury of time to shape change, build coalitions, empower individuals; initiated in advance of change; based on strategic gamble

creation

Hsky; in Cated und a crisis; requires charge to core vilues: is arvidual ic istance

(Schneier, The Training Development Sourcebook, 1994)

Change Types

Anticipatory
Planned
Greater chance of success
Sticks

Reactive

Urgent Greater chance of failure Degrades Incremental Internally driven Strong work teams Continuous

Tuning

Strongest over time; purposeful; based on consensus; least frightening for employees; sustainable

Adaptation

Most common type of change; triggered by adverse event(s); short-lived Transformational Environmentally driven Strong leadership Episodic

Re-orientation

Likely to succeed; has the luxury of time to shape change, build coalitions, empower individuals; initiated in advance of change; based on strategic gamble

e-creation

Rsky; initiated under crisis; r quires change to core vilues; individual resistance high

(Schneier, The Training Sevelopment Sourcebook, 1994)

Change Types

	Incremental Internally driven Strong work teams Continuous	Transformational Environmentally driven Strong leadership Episodic
Anticipatory Planned Greater chance of success Sticks	Tuning Strongest over time; purposeful; based on consensus; least frightening for employees; sustainable	Re-orientation Likely to succeed; has the luxury of time to shape change, build coalitions, empower individuals; initiated in advance of change; based on strategic gamble
Reactive Urgent Greater chance of failure Degrades	Adaptation Most common type of change; triggered by adverse event(s); short-lived	AC creation Risky; notiated under crisis; requires charge to core values: it unvidual notistance is h _{it} n

(Schneier, The Training Development Sourcebook, 1994)

Transformational Change Incremental Change

- Radical • Simple
- Top down Bottom up
- Improvement changes —> Improvement is part of how work is done
- High risk
- Revolution throw out the baby with the bath water

- daily work
- Limited risk

 $\rightarrow \bullet$ PDCA make change, adjust; make change, adjust

Emergent behavior, novelty

Innovation is the defining characteristic of the system

Systems Thinking Application

Innovation cannot survive in a blame culture

- Human error To err is human
- At-risk behavior
 To drift is human
- Reckless behavior
 To cause harm is indefensible

(Outcome Engineering, The Just Culture Algorithm, 2007)

- Human error
 Console
- At-risk behavior To drift is human
- Reckless behavior
 To cause harm is indefensible

(Outcome Engineering, The Just Culture Algorithm, 2007)

- Human error
 Console
- At-risk behavior To drift is human
- Reckless behavior
 To cause harm is indefensible

- Human error
 Console
- At-risk behavior
 Coach
- Reckless behavior
 To cause harm is indefensible

- Human error
 Console
- At-risk behavior
 Coach

Reckless behavior
 To cause harm is indefensible

(Outcome Engineering, The Just Culture Algorithm, 2007)

- Human error
 Console
- At-risk behavior
 Coach
- Reckless behavior
 Punish

(Outcome Engineering, The Just Culture Algorithm, 2007)

Systems Thinking Application

We are always in the middle of a continuum of causes and effects; thus, there is no "wrong" place or time to start improving.

By HikingArtist.com

The best way to predict the future is to invent it

-Alan Kay

Inherent order

Even without a command center, systems have order

By HikingArtist.com

Systems Thinking Application

Change Agent:

A person whose presence, or thought processes, cause a change from the traditional way of handling or thinking about a problem.

It isn't necessary to be in charge to lead a charge.

Adaptable elements

Components within the system are capable of changing themselves.

Systems Thinking Application

"Go to the Gemba."

By HikingArtist.com

	Manufacturing	Service
Major Focus	Control variability	Adapt to variability
Measures of Quality	Activity measures- time, cost, quantity	Value Demand and Failure Demand
Cost is in	Rework, defects, scrap	Poor flow, non-value- added activities
Standardization	Controls cost	Angers customers
Improvement Method	Tools-based	Context-based
Focus	Efficiency	Efficacy
Processes	Clockware	Swarmware

http://www.newsystemsthinking.com/about_command_v_systems.asp

Embeddedness – Interconnectedness

All systems exist within larger or smaller patterns of systems

Patterns Within Patterns

Analytical Thinking

Breaks down into parts; studies each part and breaks down again.

Good for:

- Process problems
- New problems; new processes
- Local outcomes
- Known factors and influences
- Clockware

Systems Thinking

Expands to take into account more interactions.

Good for:

- Big picture problems
- Recurring problems
- Problems with global application
- No clear solution
- Swarmware

Systems Thinking Application

Look for recurring patterns

- Has this happened before? When?
- What was the same about the previous occurrence? What was different?
- Is this a common problem in the industry?
- Has anyone else solved it?
- How will my solution affect upstream processes?
- How will it affect downstream processes?

Turn the lens around

Why is the problem unsolved? What are the high performers doing right? What caused the "right thing" to happen?

By HikingArtist.com

Co-evolution

A complex adaptive system is a pendulum, continually moving through states of balance and chaos. Changes made by one agent force an adaptive change in the next.

The first step in creating a culture of innovation requires

overcoming paradigm paralysis

Importance of Context

nature. YOU go Any improvement strategy, no matter how brilliant, has little chance of success if it operates outside the context of our belief about ourselves and our work.

Systems Thinking Fundamentals

"Management systems that conform to a rigid and complex "quality" blueprint in the hope of rubberstamping success will fail...

Systems Thinking Fundamentals

...The successful strategy is one that creates a unique culture of quality that has the ingenuity and intelligence to continually evolve."

(Benson, Journal for Healthcare Quality, September/October 2005)

The Key to Error-Proofing

- Understanding human limitations
- Designing processes within the context of the current reality
- Establishing an open, learning, patientcentered culture

