A Quick Guide to the Analytics Behind Genomic Testing

Elaine Gee, PhD Director, Bioinformatics ARUP Laboratories

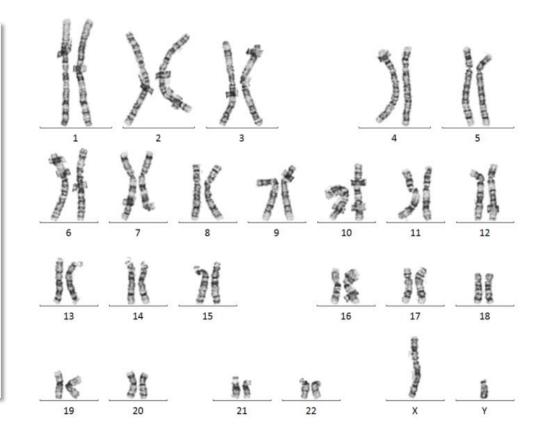
Learning Objectives

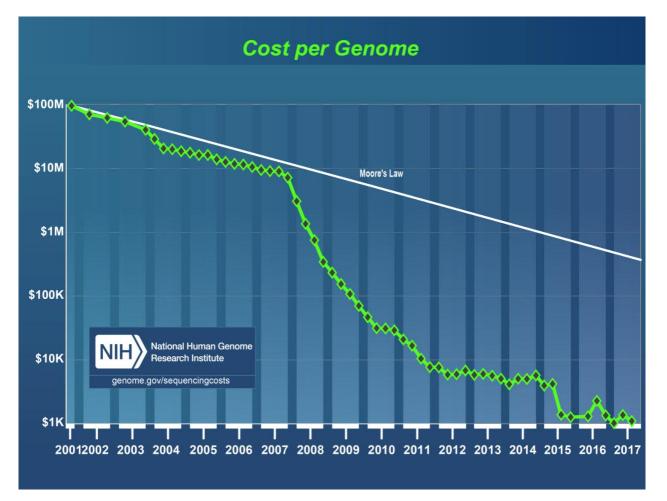
Catalogue various types of bioinformatics analyses that support clinical genomic testing

Enumerate types of variant classes

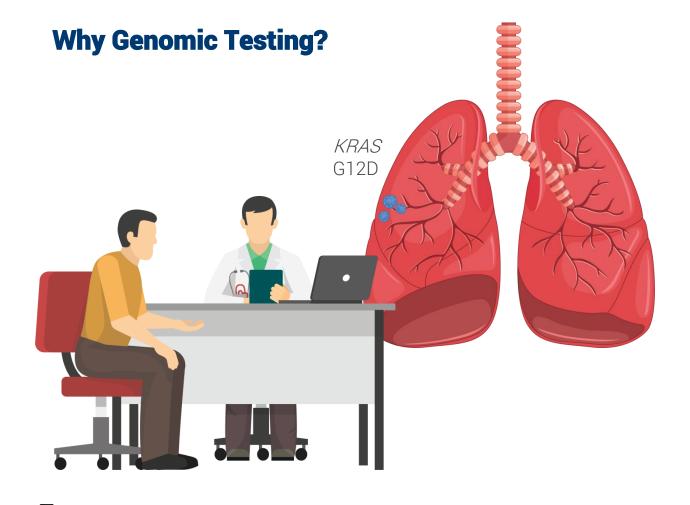
Describe algorithmic methods for variant detection by NGS

Compare and contrast germline and somatic clinical bioinformatics pipeline methodologies


Discuss the infrastructure complexity required to support analytics for NGS testing at scale in the cloud

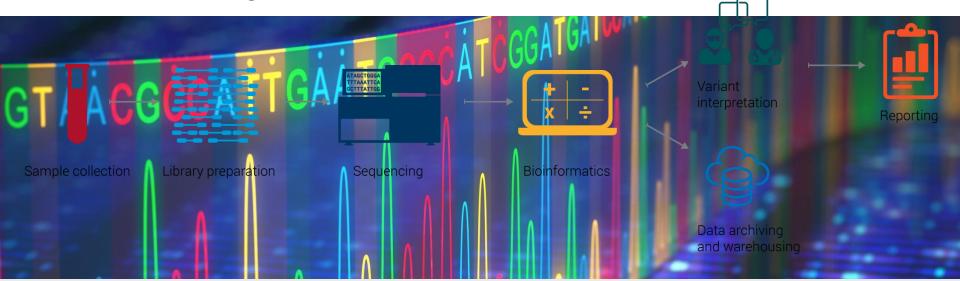

Explain validation strategies for bringing best-in-class pipelines into clinical production

The Human Reference Genome


~**3B base pairs** structured into **23 chromosome pairs**

3,098,825,702	base pairs	
20,805	coding genes	
14,181	pseudogenes	
196,501	gene transcripts	

ARP LABORATORIES NATIONAL REFERENCE LABORATORY



1 in 4 cancer deaths are from lung cancer.

~222,500

new cases of lung cancer in the U.S. in 2017.

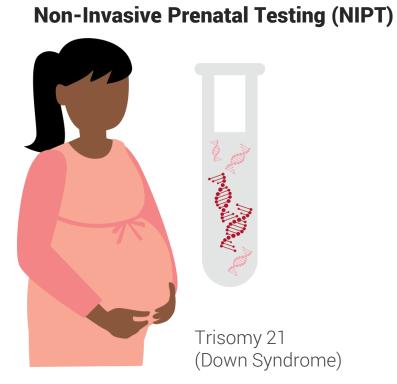
Genomic Testing

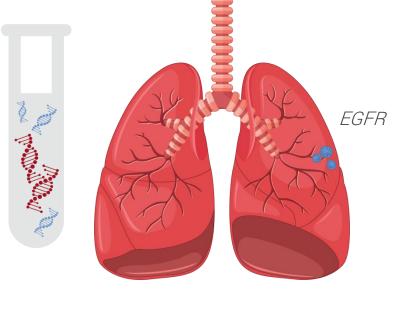
Short-Read Sequencers Illumina

liumina Ion-Torrent

Long-Read Sequencers PacBio NanoPore 10X Nanostring

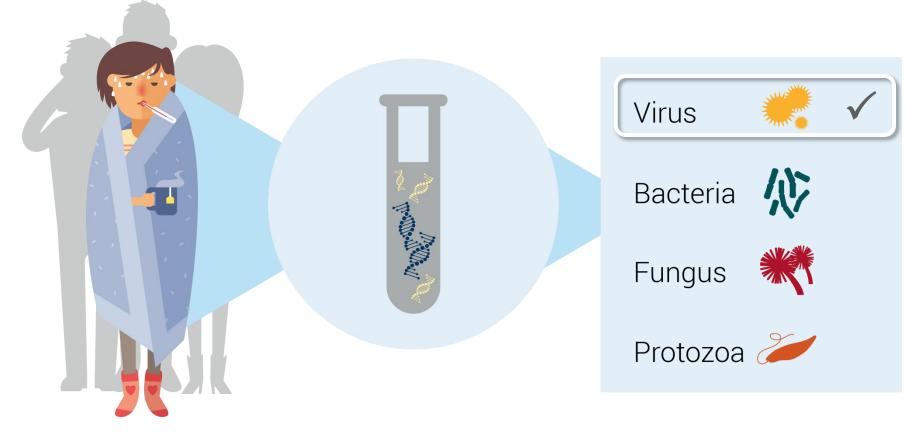
ARP LABORATORIES NATIONAL REFERENCE LABORATORY


Types of NGS Testing—Somatic & Germline


7

ARP LABORATORIES | NATIONAL REFERENCE LABORATORY

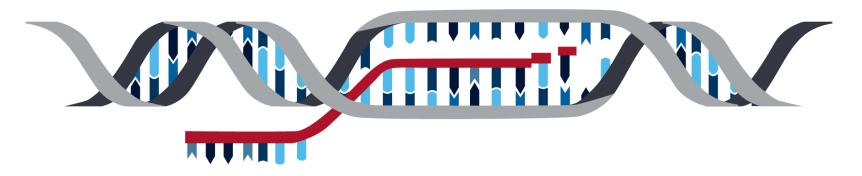
Types of NGS Testing-cfDNA and ctDNA



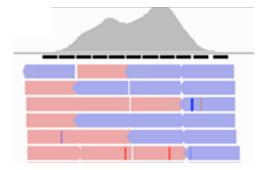
Liquid Biopsy

Non-small cell lung cancer

Types of NGS Testing—Infectious Disease



ARP LABORATORIES | NATIONAL REFERENCE LABORATOR


Types of NGS Testing-RNA-Seq

- Alternate transcripts
- Novel gene isoforms
- Gene fusions

Role of Clinical Bioinformatics

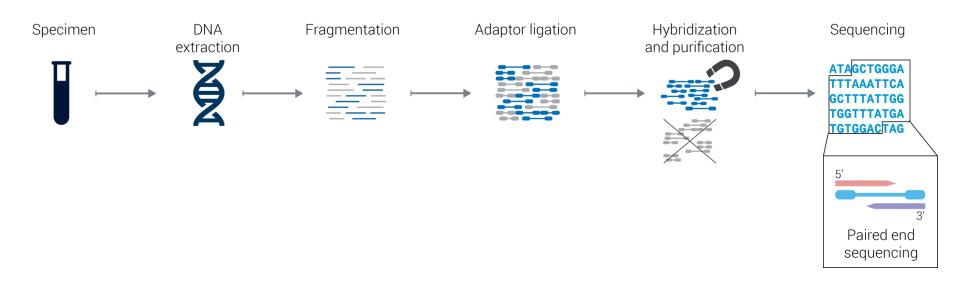
Build pipelines

Provide **supplemental information** for clinical interpretation and **quality control**

gnomAD

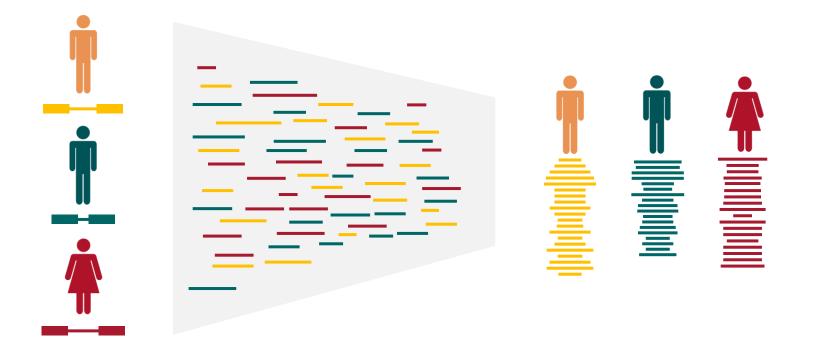
Other computationally heavy analytics are involved in **evaluating**:

Design of new panels

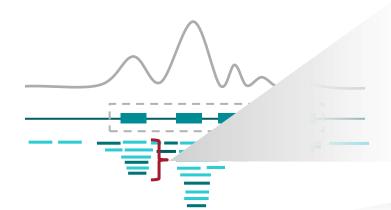

Identification of genetic patterns in patient cohorts

Discovery of gene pathways

Understanding **bioinformatics** requires understanding **the laboratory process.**



Variant Calling Pipeline


Steps in a bioinformatics pipeline:

- 1. Sample demultiplexing
- 2. Read alignment
- 3. BAM polishing steps
- 4. Variant calling
- 5. Variant annotations
- 6. QC calculations

Step 1: Sample Demultiplexing

Step 2: Read Alignment

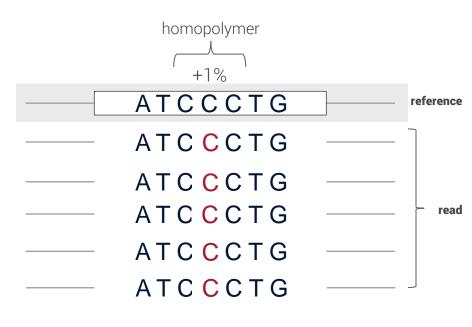
Read Alignment

Coor	12345678901234 5678901234567890123456789012345
ref	AGCATG <mark>TTAGATAA**GATAGCTG</mark> TGCTAGTAGGCAGT <mark>CAGCGCCAT</mark>
+r001/1	TTAGATAAAGGATA*CTG
+r002	aaaAGATAA*GGATA
+r003	gcctaAGCTAA
+r004	ATAGCTTCAGC
-r003	ttagctTAGGC
-r001/2	CAGCGGCAT

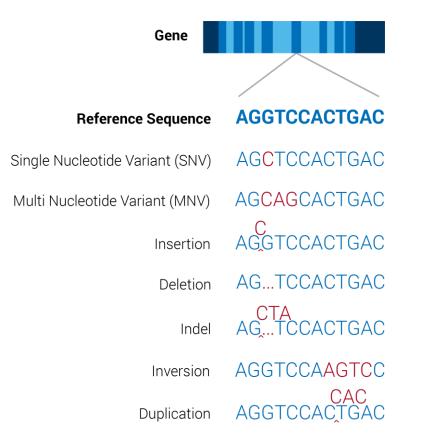
SAM	Format

QHD VN:1.5 SO:coordinate QSQ SN:ref LN:45							
30 8M2I4M1D3M	= 37 39	TTAGATAAAGGATACTG	*				
9 30 3S6M1P1I4M	* 0 0	AAAAGATAAGGATA	*				
9 30 5S6M	* 0 0	GCCTAAGCTAA	* SA:Z:				
5 30 6M14N5M	* 0 0	ATAGCTTCAGC	*				
9 17 6H5M	* 0 0	TAGGC	* SA:Z:				
7 30 9M	= 7 -39	CAGCGGCAT	* NM:i:				
	30 8M2I4M1D3M 30 3S6M1P1I4M 30 5S6M 30 6M14N5M 17 6H5M	30 8M2I4M1D3M = 37 39 30 3S6M1P1I4M * 0 0 30 5S6M * 0 0 30 6M14N5M * 0 0 17 6H5M * 0 0	30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA 30 5S6M * 0 0 GCCTAAGCTAA 30 6M14N5M * 0 0 ATAGCTTCAGC 17 6H5M * 0 0 TAGGC				

- 2:ref,29,-,6H5M,17,0;
- L:ref,9,+,5S6M,30,1;
- :1

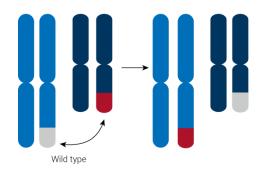

Step 3: BAM Polishing Steps

PCR Duplicate Removal

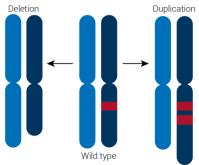


Base Quality Score Recalibration

Q30 Phred base quality score \rightarrow 99.9% \rightarrow 1/1000



Step 4: Variant Calling by Class



Structural Variants

Translocation

Copy Number Alterations

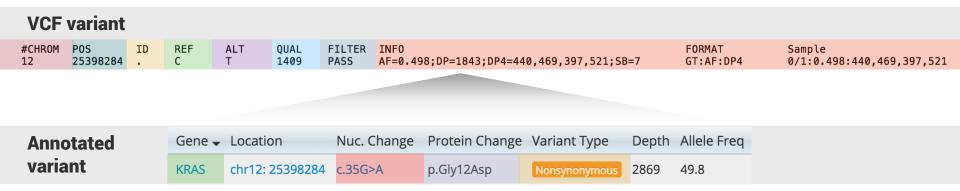
Example Variant Calling Algorithms

SNV/Insertion/Deletion

- Position based callers (GATK Unified Genotyper, LoFreq)
- Local de-novo assembly of haplotypes (GATK Haplotype Caller)
- Graph based variant callers (Graph Genome)
- Neural networks (Deep Variant)

Duplications/Structural variants

- Pattern growth approach (Pindel)
- Split reads, discordant paired-end reads (Manta, DELLY, CREST)
- kmer + de-novo assembly (BreaKmer)
- Unmapped or partially mapped reads (ITD Assembler)
- Depth of coverage + background error correction + principal component analysis (XHMM)
- Tumor/normal
- B allele frequency

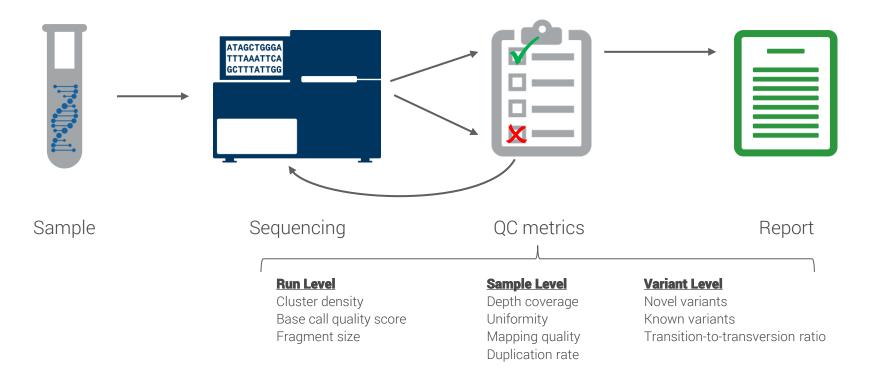

Example *KRAS* G12D Variant Cell

P1332 P132 P123	 12 25,398,261-25,398,306 Go	▶ @ 🖪 x 🖵 I]
0 tp 25,398,270 tp 25,398,280 tp 25,398,290 tp 1 <th>p13.32 p13.2 p12.3 p12.1 p11.21 q11 q12 q13.11 q13.2 q14.2</th> <th>2 q15 q21.2 q21.31 q21.33 q23.1</th> <th>q23.3 q24.12 q24.23 q24.32</th> <th></th>	p13.32 p13.2 p12.3 p12.1 p11.21 q11 q12 q13.11 q13.2 q14.2	2 q15 q21.2 q21.31 q21.33 q23.1	q23.3 q24.12 q24.23 q24.32	
G T T T T T T T T T T T T T			≥5,398,300 bp 	
T C A A C C C A C T C T T C C C A C C A C C A C C A C T A C T A C C A C T A C C A C T A C C A C T A C C A C T A C C A C T A C C A C T A C C A C T A C T A C C A C T A C C A C T A C T A C C A C T A C T A C C A C T A C T A C C A C T A C T A C C A C C A C T A C T A C T A C	0 - 2234			
T C A A C C C C T C C A C C A C C A C C A C C A C C A C T A C C A C C A C T A C C A C C A C T A C C A C T A C C A C T A C C A C T A C C A C T A C C A C T A C C A C T A C C A C T A C C A C T A C C A C T A C C A C T A C C A C T A C T A C C A C T A		т	_	JE JE RE
I C A A G G C A C T C T T G C C T A C G C C A C C A G C T C C A A C T A C C A G T T T L A S K G V G G A G V V V L K				JE REL
T C A A G G C A C T C T T G C C T A C G C C A C C A G C T C C A A C T A C C A C A A G T T T L A S K G V G G A G V V V L K		T T T		The AT
T C A A G G C A C T C T T G C C T A C G C C A C C A G C T C C A A C T A C C A C A A G T T T T L A S K G V G G A G V V V L K				
LASK GVGGAGVVVLK	I		I	
	L A S K G V G	G A G V V	C C A C A A G T T T V L K	

ARPLABORATORIES NATIONAL REFERENCE LABORATORY

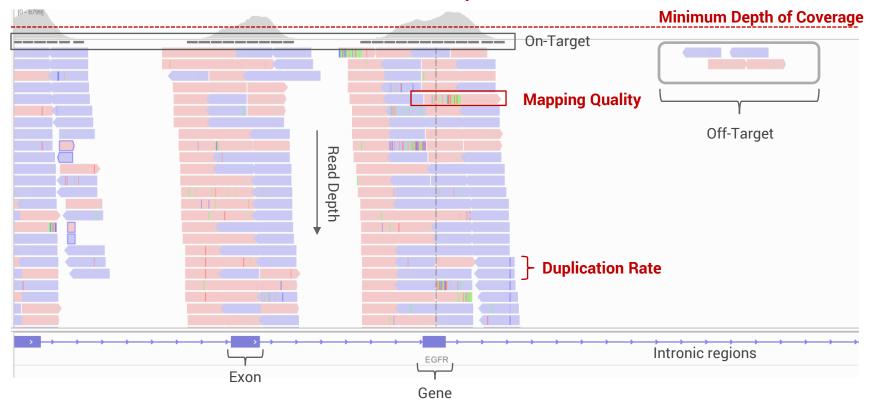
Step 5: Variant Annotations

The VCF variant includes:


- chromosome
- position
- ||
- reference base
- alternate base
- variant quality
- meta-information
 - information and individual format fields
 - filter flags

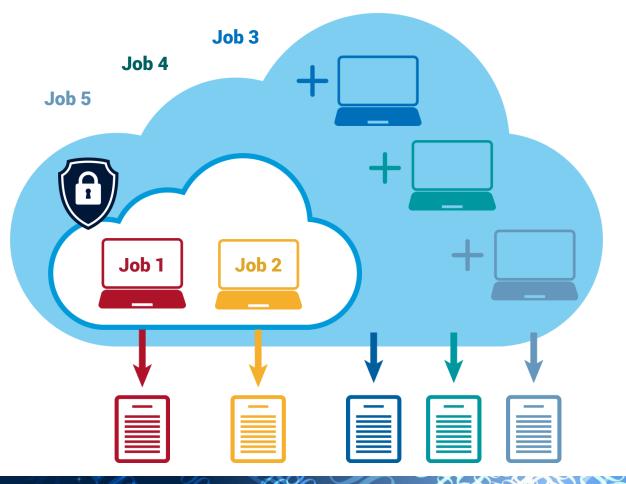
The annotated variant includes:

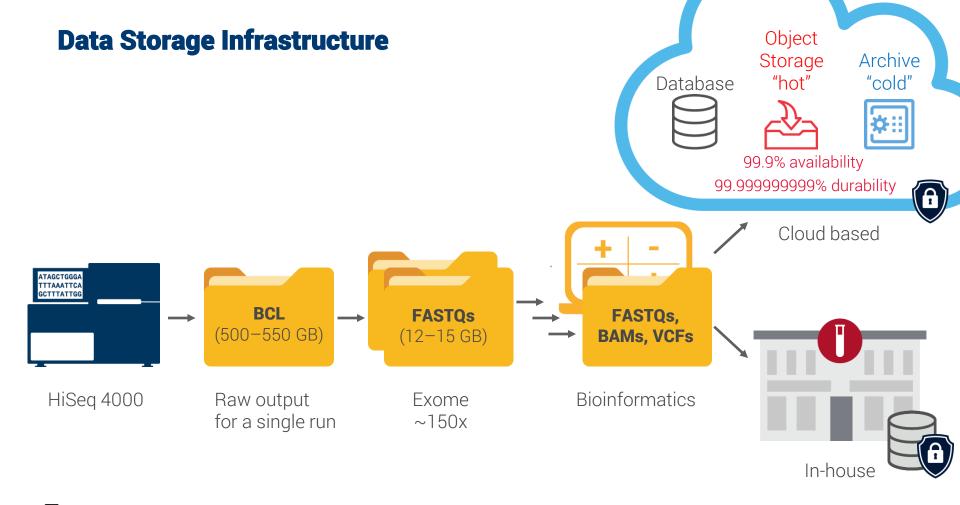
- Gene
- Gene Transcript
- Nucleotide change (cdot)
- Protein change (pdot)
- Variant Type
 - Polymorphism
 - Synonymous
 - Non-synonymous
 - Nonsense
 - Missense


– Frame shift

Step 6: QC Calculations

Sample-Level QC Metrics for Targeted Capture


Uniformity


ARP LABORATORIES NATIONAL REFERENCE LABORATOR

Compute Infrastructure for Data Processing

How does a bioinformatics job get executed in clinical production?

ARP

ARP LABORATORIES NATIONAL REFERENCE LABORATORY

Bioinformatics Pipeline Validation

- Recommendations from CAP/AMP
 - 17 recommendation statements
 - 59 variants tested in each variant class
- Example Statistics
 - Positive percentage agreement (PPA)
 - Positive predictive value (PPV)
 - Reproducibility
 - Allelic fraction lower limit of detection
- Validation required prior to use in clinical production

Summary

Catalogue various types of bioinformatics analyses that support clinical genomic testing

Enumerate types of variant classes

Describe algorithmic methods for variant detection by NGS

Compare and contrast germline and somatic clinical bioinformatics pipeline methodologies

Discuss the infrastructure complexity required to support analytics for NGS testing at scale in the cloud

Explain validation strategies for bringing best-in-class pipelines into clinical production

Questions?

Elaine Gee, PhD

Director of Bioinformatics ARUP Laboratories elaine.gee@aruplab.com Good Working Environment

Provide

Excellent

Patient