# Genetic Data Sharing and Reanalysis of Genomic Test Results: Challenges and Benefits to Implementation

Erica Andersen, PhD, FACMG Section Chief, Cytogenetics and Genomic Microarray Associate Professor, Clinical Pathology

Rong Mao, MD, FACMG Section Chief, Molecular Genetics and Genomics Professor, Clinical Pathology

September 23, 2020





### **Financial Disclosure**

ARUP receives funding from the NIH to support some of the activities described in this presentation





## Objectives

- Review current practices and policies relating to genetic data sharing and case reanalysis/variant reevaluation in clinical laboratories
- Compare and contrast reanalysis/reevaluation processes for common genomic tests, including next generation sequencing and chromosomal microarray
- Describe key aspects of data sharing and reevaluation process implementation through retrospective data review and case presentations





## Why Share (and Re-Evaluate) Clinical Genetic Data?

- 5000-7000 rare genetic diseases exist, each with variable frequency and many with considerable clinical variability
- Genetic heterogeneity: multiple disease-causing genes/variants (and background genomic variation) alter clinical presentation, outcomes Source: ACMG, Genet. Med, 2017

#### Protein/ cellular function Class II Class III Normal Class I Class IV Class IV Therapy Readthrough Correctors Potentiators Potentiators Potentiators (+ potentiators) Spicing modulators Mutations G542X ΔF508 G551D R117H 3272 6A→G W1282X (examples) N1303K G551S R334W A455E Modified from: Bradbury (2016) CFTR and Cystic Fibrosis: A Need for Personalized Medicine

#### Example: Diverse allelic variants in cystic fibrosis guide therapies





### Increasing Demands on Clinical Genetics Laboratories

Extensive sharing of laboratory and clinical data from individuals who have undergone genomic testing will provide the robust information necessary to improve clinical care and empower device and drug manufacturers developing tests and treatments for patients





5

### Increasing Demands on Clinical Genetics Laboratories







### Increasing Demands on Clinical Genetics Laboratories

- Laboratories share a responsibility to inform clinicians of variant reclassification or discovery of a new gene-disease relationship
- Clinical laboratories should have reanalysis policies and protocols that keep pace with resources used in routine/live case/variant review
- Responsibilities apply also the individuals tested in the research setting





<sup>2</sup>0<sup>3</sup> <sup>2</sup>0<sup>3</sup> <sup>2</sup>0<sup>3</sup>

# Benefits of Sharing Variant Classifications and Evidence with ClinVar



- Improved genetic variant classification within and across laboratories
  - Identify classification differences, work towards consensus
  - Prioritize variants for re-evaluation, update clinicians/patients
  - Standardized nomenclature/descriptions of variants and conditions, classifications/terms for clinical significance
- Compliance with evolving regulatory and medical standards
- Strategic business positioning: preferential ordering from laboratories that share data, selective reimbursement from payers

Source: clinicalgenome.org/docs/benefits-of-sharing-variantclassifications-and-evidence-with-clinvar/







|                                                                  | ar Genon                            | nic variation as it relat                                                                         | es to human health                                                   |                          | d search                                                                                                                   |                                             | Search ClinVar                                     |
|------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|
| About                                                            | Access                              | Submit St                                                                                         | ats FTP                                                              | Help                     |                                                                                                                            | Wa                                          | s this helpful? 🔒                                  |
|                                                                  |                                     |                                                                                                   |                                                                      |                          |                                                                                                                            | Follow 💡                                    | 🔒 Print 🕹 Dowr                                     |
| NM_0                                                             | 00335.4(                            | SCN5A):c.16040                                                                                    | >A (p.Arg5350                                                        | Gln)                     |                                                                                                                            |                                             | Cite this record                                   |
| Interpre                                                         | etation:                            | -                                                                                                 | rpretations of path<br>Jncertain significar                          |                          |                                                                                                                            |                                             |                                                    |
| Review<br>Submis:<br>Last eva<br>Accessio<br>Variatio<br>Descrip | sions:<br>aluated:<br>on:<br>on ID: | ★ ☆☆☆☆ criter<br>6 (Most recent: 1<br>Aug 28, 2019<br>VCV000067672.3<br>67672<br>single nucleotid |                                                                      | ing interpretations      |                                                                                                                            |                                             |                                                    |
| Variant de                                                       | etails                              | Aggregate interpreta                                                                              | tions per condition                                                  |                          |                                                                                                                            |                                             |                                                    |
| Condition                                                        | ns                                  | Interpreted                                                                                       | Interpretation                                                       | Number of<br>submissions | Review status                                                                                                              | Last<br>evaluated                           | Variation/condition                                |
| Consta                                                           |                                     | condition                                                                                         |                                                                      |                          |                                                                                                                            | evaluateu                                   | record                                             |
| Gene(s)                                                          |                                     | condition<br>Brugada syndrome                                                                     | Uncertain<br>significance                                            | 1                        | criteria provided,<br>single submitter                                                                                     | Nov 22, 2017                                | RCV000638649.1                                     |
| Gene(s)                                                          |                                     |                                                                                                   |                                                                      |                          |                                                                                                                            |                                             |                                                    |
| Gene(s)                                                          |                                     | Brugada syndrome                                                                                  | significance                                                         | 1                        | single submitter                                                                                                           | Nov 22, 2017                                | RCV000638649.1                                     |
| Gene(s)                                                          |                                     | Brugada syndrome<br>Long QT syndrome<br>3<br>Brugada syndrome                                     | significance<br>Pathogenic<br>Uncertain                              | 1                        | single submitter<br>criteria provided,<br>single submitter<br>criteria provided,                                           | Nov 22, 2017<br>Aug 3, 2016                 | RCV000638649.1<br>RCV000677695.1                   |
| Gene(s)                                                          |                                     | Brugada syndrome<br>Long QT syndrome<br>3<br>Brugada syndrome<br>1                                | significance<br>Pathogenic<br>Uncertain<br>significance<br>Uncertain | 1 1 1                    | single submitter<br>criteria provided,<br>single submitter<br>criteria provided,<br>single submitter<br>criteria provided, | Nov 22, 2017<br>Aug 3, 2016<br>May 28, 2019 | RCV000638649.1<br>RCV000677695.1<br>RCV000987228.1 |

Updated example from Landrum et al., Nucleic Acids Research, 2020

### Benefit: Resolving Inter-laboratory Classification Differences



#### Harrison et al., Genet. Med. 2017

Riggs et al., Hum. Mutat. 2018



### Clinical Laboratories Meeting Minimum Requirements for Data Sharing to Support Quality Assurance



|                                         | Laboratory                                     | Meets         | Additional Achievements                |                                        |                                   |  |
|-----------------------------------------|------------------------------------------------|---------------|----------------------------------------|----------------------------------------|-----------------------------------|--|
|                                         |                                                | Requirements  | >95% from<br>past 5 years <sup>1</sup> | Discrepancy<br>resolution <sup>2</sup> | Consenting mechanism <sup>3</sup> |  |
| Ambry                                   |                                                | 0             |                                        |                                        |                                   |  |
| ARUP                                    | Open and transpare<br>review and knowled       |               | 0                                      | •                                      | <b>°</b>                          |  |
| Athena Diagnosti                        | the highest quality c                          | are of patien | ts                                     |                                        |                                   |  |
| Center for Pediate<br>Mercy Hospital ar | ric Genomic Medicine, Children's<br>nd Clinics | ⊘             |                                        | ê                                      |                                   |  |
| Color Genomics, I                       | nc.                                            | ⊘             |                                        |                                        | <b>@</b>                          |  |
| GeneDx                                  |                                                | $\bigcirc$    |                                        | <b>(</b>                               | ĝ                                 |  |

Source: <u>clinicalgenome.org/tools/clinical-lab-data-sharing-list/</u> (Accessed 9/6/20, modified)





### **Practical Challenges**

- How to share data: determining which data to share (test type, variant-level vs. case-level), developing consent/opt-out policies
- Data management: ensuring data security, storing and migrating data, ensuring compatibility/interoperability across different databases/systems
- How to reevaluate/reanalyze: determining which data to re-review (test type, variant-level vs. case-level), developing reclassification processes and policies (clinician/patient vs. public database vs. laboratory-initiated), communicating updated information to clinicians/patients, prioritization of result updating
- Resource availability: current vs. retrospective review, manual vs. automated processes, time/financial costs; inadequate reimbursement for reevaluation/reanalysis





Perspectives and Experiences from the Molecular Laboratory

Rong Mao, MD, FACMG

Section Chief, Molecular Genetics and Genomics

Professor, Clinical Pathology





13

### **ARUP's Data Sharing and Reevaluation/Reanalysis Practices**

|                  | Databases                   | Reevaluation/Reanalysis Performed |                               |               |  |  |  |
|------------------|-----------------------------|-----------------------------------|-------------------------------|---------------|--|--|--|
| Technique        | Shared                      | Clinician-initiated               | Public Database-<br>Initiated | Lab-Initiated |  |  |  |
| Targeted Variant | N/A                         | No                                | Yes                           | Yes           |  |  |  |
| Single Gene      | ClinVar, Locus-<br>Specific | Yes                               | Yes                           | Yes           |  |  |  |
| Gene Panel       | ClinVar                     | Yes                               | Yes                           | Yes           |  |  |  |
| Whole Exome      | ClinVar,<br>GeneMatcher*    | Yes                               | Yes                           | Yes           |  |  |  |

#### \*Controlled access database





## **Limit of detection**

| Assay type            | Average limit of detection |
|-----------------------|----------------------------|
| Genome sequencing     | ~20 – 30%                  |
| Exome sequencing      | ~20 – 30%                  |
| NGS-based gene panels | 5 – 10%                    |
| Sanger sequencing     | 20%                        |
| Single mutation assay | <10%                       |

Farewell, et al. Genetics in Medicine 2015







### Why Clinicians order diagnostic exome sequencing

- Rare Disease Facts:
  - 7,000 identified rare diseases
  - 25-30M Americans are affected with a rare disease
  - Up to 25% of pediatric in-patient admissions are attributable to these diseases
  - 80% are genetic in origin with limited diagnostic testing options.
- The Road to Diagnosis:
  - 5-7 years searching for a proper diagnosis
  - Up to 8 physician consults searching for a proper diagnosis
  - 2-3 misdiagnoses prior to proper diagnosis

Iglesia et al. Genetics in Medicine 2014 and Ng et al. Nature Genetics 2009





# **Exome sequencing**

- Capture all the exons from all 20,000 genes
- Sequence all in parallel
- Get a complete sequence read-out of all the exons in the genome







### Exome results dependent on current knowledge







# What we know about genes that are associated with disease



Cooper, et al. Hum Mutat 2010



**AR P** LABORATORIES



# What is left to discover?



Clinical validity: Strength of evidence associating pathogenic variants in a gene to genetic diseases or syndrome





# What is left to discover?



Clinical validity: Strength of evidence associating pathogenic variants in a gene to genetic diseases or syndrome





# Increasing evidence allows disease-genes to be characterized



• Model system evidence





# Building a genomic knowledge base to improve patient care



# **Genomics data sharing resources**







### **Exome Reanalysis dependent on new information**



# **Example of phenotype expansion**

Exome case 1:

- 4-year-old Caucasian male
- Congenital anomalies including severe lacrimal stenosis, laryngeal web, stenosis of external auditory meatus with conductive hearing loss, and bilateral cataracts
- Teeth problem, slow hair growth, nasal hypoplasia, underdevelopment of tissue around base of thumb





# **Example of phenotype expansion**

Exome sequencing:

**AR** PLABORATORIES

| Gen    | Effect        | Variant                 | Info                        | Variant Classification |
|--------|---------------|-------------------------|-----------------------------|------------------------|
| TSPEAR | Coding silent | c.1566G>A<br>p.Pro522=  | HGMD HIT, reduced splicing. | VUS                    |
| TSPEAR | Nonsense      | c.589C>T<br>p.Arg197Ter | Early termination           | LP                     |

TSPEAR c.1566G>A p.Pro522= Reduced splicing

NATIONAL REFERENCE LABORATORY



| Show Caption ESE Predi |         | 8<br>Night Differences | Options    | Z<br>Report | Copy Snapshot             | (i)<br>Information and I | Help Close Wind | łow      |                      |    |
|------------------------|---------|------------------------|------------|-------------|---------------------------|--------------------------|-----------------|----------|----------------------|----|
|                        |         | NM_144991              | .2(TSPEAR) | :c. 15660   | G>A - [c. 1461 (Exc       | n 9) - c. 1566+106       | (Intron 9)]     |          |                      |    |
| SpliceSiteFinder-like  | [0-100] |                        |            |             | 86.1                      |                          |                 |          |                      |    |
| MaxEntScan 💼 🖬         | [0-12]  |                        |            |             | 10.2                      |                          |                 |          |                      |    |
| NNSPLICE D             | [0-1]   |                        |            |             | 1.0                       |                          |                 |          |                      |    |
| GeneSplicer            | [0-24]  |                        |            |             | -11.5                     |                          |                 |          |                      |    |
| Reference Sequence     | 40      | 1550                   | CCACTO     | CTTC        | 1566                      | 1566+10                  | 1566+           |          | 56+30                | ~  |
| SpliceSiteFinder-like  |         | 1                      | CCAGIC     | crit        | 75.6                      |                          | TOAGCCCC        | ocrete   | ATTOCT               | 90 |
| MaxEntScan 👝 I         | [0-16]  |                        |            |             | 0.6-                      |                          |                 |          |                      |    |
| NNSPLICE 3             | [0-10]  | 0.9                    |            |             |                           |                          |                 |          |                      |    |
| GeneSplicer            | [0-1]   | 7.1-                   |            |             |                           |                          |                 |          |                      |    |
| Branch Points          | [0-100] |                        |            |             | 0 []61.2                  |                          |                 |          |                      |    |
| SpliceSiteFinder-like  | [0-100] |                        |            |             | 73.9                      |                          |                 |          |                      |    |
| MaxEntScan _ 1         | [0-12]  |                        |            |             | 5.7                       |                          |                 |          |                      |    |
| NNSPLICE D             | [0-1]   |                        |            |             | 1.0                       |                          |                 |          |                      |    |
| GeneSplicer            | [0-24]  |                        |            |             |                           |                          |                 |          |                      |    |
|                        | 40      | 1550                   |            |             | -7.2                      | 1566+10                  | 1566+           |          | 56+30                |    |
| Mutated Sequence       |         |                        | CCAGTO     | CTTC        | CCAGTAAGG                 | CCCCCCGC                 | ATGAGCCCC       | GGCTCTCC | ATTGCT               | GG |
| SpliceSiteFinder-like  |         |                        |            |             | 1.4-                      |                          |                 |          |                      |    |
| MaxEntScan 2'          | [0-16]  |                        |            |             | 0.4                       |                          |                 |          |                      |    |
| NNSPLICE               | [0-1]   | 0.9                    |            |             | 1.2=                      |                          |                 |          |                      |    |
| GeneSplicer            | [0-21]  | 0                      |            |             | ☐60.8 <sup>□</sup> []61.0 |                          |                 |          | eractive<br>software |    |
| Branch Points          | [0-100] |                        |            |             | 00.8 061.0                | . [                      |                 | P DIO    | our wore             | -  |

27



# **Example of phenotype expansion**

#### TSPEAR

#### Phenotype-Gene Relationships

| Location | Phenotype                         | Phenotype<br>MIM number | Inheritance | Phenotype<br>mapping key | Gene/Locus | Gene/Locus<br>MIM number |
|----------|-----------------------------------|-------------------------|-------------|--------------------------|------------|--------------------------|
| 21q22.3  | ?Deafness, autosomal recessive 98 | 614861                  | AR          | 3                        | TSPEAR     | 612920                   |

doi:10.1093/hmg/dds212 Advance Access published on June 7, 2012

#### Defect in the gene encoding the EAR/EPTP domain-containing protein TSPEAR causes DFNB98 profound deafness

Sedigheh Delmaghani<sup>1,2,3,†</sup>, Asadollah Aghaie<sup>2,3,4,†</sup>, Nicolas Michalski<sup>1,2,3</sup>, Crystel Bonnet<sup>2,3,4</sup>, Dominique Weil<sup>1,2,3</sup> and Christine Petit<sup>1,2,3,4,5,\*</sup>

<sup>1</sup>Institut Pasteur, Unité de Génétique et Physiologie de l'Audition, Paris, France, <sup>2</sup>INSERM UMRS 587, Paris, France,

#### **Phenotype-Gene Relationships**

| Location | Phenotype                                                             |
|----------|-----------------------------------------------------------------------|
| 21q22.3  | Ectodermal dysplasia 14, hair/tooth type with or without hypohidrosis |

#### RESEARCH ARTICLE

Mutations in *TSPEAR*, Encoding a Regulator of Notch Signaling, Affect Tooth and Hair Follicle Morphogenesis

Alon Peled<sup>1,2®</sup>, Ofer Sarig<sup>1®</sup>, Liat Samuelov<sup>1,3</sup>, Marta Bertolini<sup>4</sup>, Limor Ziv<sup>5</sup>, Daphna Weissglas-Volkov<sup>6</sup>, Marina Eskin-Schwartz<sup>1,2</sup>, Christopher A. Adase<sup>3</sup>, Natalia Malchin<sup>1</sup>, Ron Bochner<sup>1</sup>, Gilad Fainberg<sup>1</sup>, Ilan Goldberg<sup>1</sup>, Koji Sugawara<sup>7</sup>, Avital Baniel<sup>1</sup>, Daisuke Tsuruta<sup>7</sup>, Chen Luxenburg<sup>6</sup>, Noam Adir<sup>8</sup>, Olivier Duverger<sup>9</sup>,





# **Example of gene-disease relationships**

### Exome case 2:

- 8 yo Hispanic boy
- Neurologic: severe global DD, chorea, intractable seizure
- Brain MRI: bilateral perisylvian cortical dysplasia, nodular heterotopia
- **Dysmorphic features:** microcephaly, wide-spaced eyes, downturned corners of the mouth, U-shaped contour to the mouth with micrognathia
- Skeletal: hip dysplasia
- **EEG**: hypsarrhythmia
- **GI:** dysphagia, constipation
- Family History: No
- Proband ONLY





29

# **Example of gene-disease relationships**

#### Negative exome:

- No strong candidate gene/variant identified
- Some variants to discuss

| Gene    | Transcript   | Туре     | Zygosity | DNA<br>alteration | Protein<br>alteration | Inheritance mode    | Human disease                        | Classification |
|---------|--------------|----------|----------|-------------------|-----------------------|---------------------|--------------------------------------|----------------|
| CSTB    | NM_000100    | nonsense | het      | c.C136T           | p.Q46X                | Autosomal recessive | Progressive myoclonic<br>epilepsy 1A | Pathogenic     |
| POLR3B  | NM_018082    | missense | het      | c.G2158A          | p.V720I               | Autosomal recessive | Hypomyelinating leukodystrophy-8     | VUS            |
| GRID2   | NM_001510    | missense | het      | c.A101G           | p.D34G                | Autosomal recessive | Spinocerebellar ataxia- 18           | VUS            |
|         |              |          |          |                   |                       |                     |                                      |                |
| STARD9  | NM_020759    | missense | het      | c.G986A           | p.R329Q               | Autocomol reconsive | Unknown                              | VUS            |
| SIAKD9  | NM_020759    | missense | het      | c.C6955T          | p.R2319W              | Autosomal recessive | Ulknown                              | VUS            |
| TIMM17B | NM_001167947 | missense | hemi     | c.G304A           | p.A102T               | X-linked            | Unknown                              | VUS            |



# **Example of gene-disease relationships**

#### Exome reanalysis, compound Heterozygous Variants in STARD9

| Gene   | Transcript | Туре     | Zygosity | DNA<br>alteration | Protein<br>alteration | Inheritance mode | Human disease | Classification |
|--------|------------|----------|----------|-------------------|-----------------------|------------------|---------------|----------------|
| STADDO | NM_020759  | missense | het      | c.G986A           | p.R329Q               | Autosomal        | 2017 (PMID) 🖻 | VUS            |
| STARD9 | NM_020759  | missense | het      | c.C6955T          | p.R2319W              | recessive        |               | VUS            |

- STARD9 gene encodes a protein that belongs to the kinesin-3 family. It associates with mitotic microtubules and regulates spindle pole assembly (Torres et al., 2011).
- Okamoto, et al., 2017 (PMID 28777490, Epub ahead of print on Aug 4, 2017) identified a homozygous pathogenic frame-shift variant in the *STARD9* gene via WES in one patient with severe intellectual disability, dysmorphic features, generalized tonic seizure, acquired microcephaly, cortical blindness, and sleep apnea.





# A novel genetic syndrome with STARD9 mutation and abnormal spindle morphology

Nobuhiko Okamoto<sup>1,2</sup> | Yuki Tsuchiya<sup>3,4</sup> | Fuyuki Miya<sup>5,6</sup> | Tatsuhiko Tsunoda<sup>5,6</sup> | Kumiko Yamashita<sup>7</sup> | Keith A. Boroevich<sup>6</sup> | Mitsuhiro Kato<sup>8</sup> | Shinji Saitoh<sup>9</sup> | Mami Yamasaki<sup>10</sup> | Yonehiro Kanemura<sup>11,12</sup> | Kenjiro Kosaki<sup>13</sup> | Daiju Kitagawa<sup>3,4</sup>





#### **Clinical Report** 6 yrs female

- **Neurologic**: Server DD, Seizure, little/no speech, cortical blindness, and sleep apnea
- **Dysmorphic features**: microcephaly, sparse eyebrow, epicanthal fold,
- **Muscle**: hypotonia, deep tendon reflexes were absent
- Growth parameters: height 99cm (-4.0SD), weight 11.7kg ( -2.8SD), OFC47.0cm (-2.2SD)
- GI: poor feeding
- MRI: No structural abnormalities

1-1

#### Mutation: homozygous of c.1176odelC, p.L3920fs in STARD9



### Abnormal Spindle Morphology and Increase # of Centrosomes

#### Abnormal spindle morphology

# Increased number of centrosomes and fragmentation



#### Okamoto et al. 2017



**AR** PLABORATORIES

### **Research Collaboration with Huntsman Cancer Institute**

 Initial antibody test on adherent HeLa cells (no smear gel) – CEP192 antibody works nicely **2)** Optimized conditions using trypsinized HeLa cells (to mimic suspension cells) in smear gel:





Drs. Katherine Ullman and Dollie LaJoie





### There is obvious value in reanalysis of exome data

- Exome reanalysis is a routine clinical labs practice
- O'Daniel, 2017: "The majority of laboratories indicated that they had reanalyzed case-specific data to provide an updated report at least once (11 of 12 clinical labs). The instances were rare, however, with 7 of 12 labs indicating that reanalysis rarely or never occurred. Only one clinical laboratory routinely reanalyzed every case. When reanalysis was performed, roughly half used the existing variant call format (VCF) file and a half performed new alignment and variant calling. Of the clinical laboratories, six indicated reanalysis would be free of charge, five charge a fee, and one was still developing its policy."





# **ARUP exome reanalysis**

- By physician request, free of charge
- Systematic reanalysis of clinical exomes yield of additional diagnosis of 10-15%

Raw FASTQ files run through updated pipeline

Variant calling and filtering with current knowledge and population frequency

Clinical/medical review of phenotype updates and variants pathogenicity

Reanalysis report including new relevant findings, variants reclassification communicate to clinician


# Example of pipeline improvement and variant reclassification

### Exome case 3:

- 1 year old Caucasian/Native American/French Canadian male
- Severe DD, poor growth, microcephaly, hypotonia, cataracts, nystagmus, sensorineural hearing loss, dysmorphic facial features
- Exome sequencing trio was performed in 2015







### **Example of pipeline improvement and variant reclassification**

#### Exome sequencing identified one variant in *ERCC6*

| Gen   | Effect   | Variant              | Info              | Inheritance | Variant<br>Classification |
|-------|----------|----------------------|-------------------|-------------|---------------------------|
| ERCC6 | Nonsense | c.2569T>C, p.Arg857X | Early termination | Paternal    | Likely<br>Pathogenic      |

ERCC6 pathogenic variants cause <u>Cockayne syndrome, type B</u> (<u>OMIM#133540</u>), autosomal recessive. Affected patients with Cockayne syndrome can have a severe congenital phenotype that includes failure to thrive, severe developmental delay, congenital cataracts, sensorineural hearing loss, distinctive face with small deep-set eyes and prominent nasal bridge, kyphosis, and cachectic dwarfism.

Only one pathogenic variant detected.





## **Exome reanalysis requested for recurrence risk**







#### A second pathogenic variant of c.3607\_3608ins26 detected in ERCC6

| I        | 50,678,380 bp<br>        | 1                | 50,678,400 bp<br>    | 50,678,420 bp                              |     |
|----------|--------------------------|------------------|----------------------|--------------------------------------------|-----|
| Father   |                          |                  |                      |                                            |     |
|          |                          |                  |                      |                                            |     |
|          |                          |                  |                      |                                            |     |
|          |                          |                  | 28                   |                                            |     |
| Mother   | A                        |                  | 126<br>126<br>126    |                                            |     |
|          |                          |                  | 1261<br>1261         | >                                          |     |
|          |                          |                  | 26<br>26<br>26       |                                            |     |
|          |                          |                  | ]26]<br>]26]         |                                            |     |
| Proband  |                          |                  | 26                   |                                            |     |
| FIODAIIU |                          |                  |                      |                                            |     |
|          |                          |                  | 1261<br>1261<br>1261 | c.3607_3608ins26, p.Lys1203fs              |     |
|          |                          |                  | 26                   |                                            |     |
|          |                          |                  | 26                   |                                            |     |
| R C H    | CTTAGAGTTCTT/<br>K S N K | AGGCTTTTG<br>PKQ |                      | TGTTTCTCCAGGGTCTCTTCTTC<br>H K E L T E E E | A A |





#### A second pathogenic variant of c.3607\_3608ins26 detected in ERCC6

|                       |                        | NM_000124.3( | ERCC6):c.3607 | _3608ins26 - [c. 3 | 489 (Exon 18) - c | 3726 (Exon 18) | )]      |          |        |
|-----------------------|------------------------|--------------|---------------|--------------------|-------------------|----------------|---------|----------|--------|
| SpliceSiteFinder-like | [0-100]                |              |               |                    |                   |                |         |          |        |
| MaxEntScan 👝 👔        | [0-12]                 |              |               |                    |                   |                |         |          |        |
| NNSPLICE              | [0-1]                  |              |               |                    |                   |                |         |          |        |
| GeneSplicer           | [0-24]                 |              |               |                    |                   |                |         |          |        |
|                       | 90                     | 3600         | 3610          | 3620               | 3630              | 3640           |         | 3650     | 3660   |
| Reference Sequence    | <b>AAACAT</b>          | CTGAGACCAA   | AGCAAAAG      | CTAAGAACT          | CTAAGCATT         | GCAGAGAC       | GCCAAGT | TGAAGGA  | ACTCGA |
| SpliceSiteFinder-like | [0-100]                |              | $\mathbf{X}$  |                    |                   |                |         |          |        |
| MaxEntScan 👝 👔        | [0-16]                 |              |               |                    |                   |                |         |          |        |
| NNSPLICE 5            | [0-1]                  |              |               |                    |                   |                |         |          |        |
| GeneSplicer           | [0-21]                 |              |               |                    |                   |                |         |          |        |
| Branch Points         | [] [] [] []<br>[0-100] |              | ] 0000        | م لو               | 0 0               |                | 00      | 00 01    |        |
| SpliceSiteFinder-like | [0-100]                |              |               |                    |                   |                |         |          |        |
| MaxEntScan 👝 👔        | [0-12]                 |              |               |                    |                   |                |         |          |        |
| NNSPLICE              | [0-1]                  |              |               |                    |                   |                |         |          |        |
| GeneSplicer           | [0-24]                 |              |               |                    |                   |                |         |          |        |
|                       | 90                     | 3600         |               |                    |                   |                |         |          |        |
| Mutated Sequence      | SAAACAT                | CTGAGACCAA   | GGGCTGGCT     | GCTTAAGGT          | CCACCTTAA         | GCAAAAGC       | CTAAGAA | CTCTAAGC | ATTGCA |
| SpliceSiteFinder-like | [0-100]                |              |               |                    |                   |                |         |          |        |
| MaxEntScan 👆 👔        | [0-16]                 |              |               | -                  |                   |                |         |          |        |
| NNSPLICE 5            | [0-1]                  |              |               |                    |                   |                |         |          |        |
| GeneSplicer           | [0-21]                 |              |               |                    |                   |                |         | intera   |        |
| Branch Points         | [0-100]                |              |               |                    | 0 00              | 0000           | 00 00   | biosoft  | ware   |

This variant introduces an early termination codon in exon 18 of 21 and is predicted to result in a truncated or absent protein

41





#### A second pathogenic variant of c.3607\_3608ins26 detected in ERCC6



#### **ORIGINAL ARTICLE**

#### Functional and clinical relevance of novel mutati in a large cohort of patients with Cockayne synd

Nadege Calmels, <sup>1</sup> Elena Botta, <sup>2</sup> Nan Jia, <sup>3</sup> Heather Fawcett, <sup>4</sup> Tiziana Nardo, <sup>2</sup> Yuka Nakazawa, <sup>3,5,6</sup> Manuela Lanzafame, <sup>2</sup> Shinichi Moriwaki, <sup>7</sup> Katsuo Sugita, <sup>§</sup> Masaya Kubota, <sup>9</sup> Cathy Obringer, <sup>10</sup> Marie-Aude Spitz, <sup>11</sup> Miria Stefanini, <sup>2</sup> Vincent Laugel, <sup>10,11</sup> Donata Orioli, <sup>2</sup> Tomoo Ogi, <sup>3,5,6</sup> Alan Robert Lehmann<sup>4</sup>



#### Molecular Analysis of Mutations in the CSB (ERCC6) Gene in Patients with Cockavne Syndrome

Donna L. Mallery,<sup>1</sup> Bianca Tanganelli,<sup>2</sup> Stefano Colella,<sup>2</sup> Herdis Steingrimsdottir,<sup>1,\*</sup> Alain J. van Gool,<sup>3,†</sup> Christine Troelstra,<sup>3</sup> Miria Stefanini,<sup>2</sup> and Alan R. Lehmann<sup>1</sup>

<sup>1</sup>MRC Cell Mutation Unit, Sussex University, Falmer, Brighton; <sup>2</sup>Istituto di Genetica Biochimica ed Evoluzionistica CNR, Pavia, Italy; and <sup>3</sup>Department of Cell Biology and Genetics, Erasmus University, Rotterdam

| Summary                                              | variety of carcinogens, including UV light. Three genetic                                           |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| Cockavne svndrome is a multisvstem sun-sensitive ge- | disorders—xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD)—are as- |  |  |

#### **Citations for this variant**

| Title                                                                                       | Author                    | Journal                                  | Year | Link          |
|---------------------------------------------------------------------------------------------|---------------------------|------------------------------------------|------|---------------|
| Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome. | Mallery DL <i>et al</i> . | American journal<br>of human<br>genetics | 1998 | PMID: 9443879 |

# In ClinVar, this variant has been submitted by multiple clinical laboratories and classified as Pathogenic/Likely Pathogenic







Am. J. Hum. Genet. 62:77-85, 1998

# **Reclassify the exome report-positive**

| Gen   | Effect     | Variant                          | Info              | Inheritance | Variant<br>Classification |
|-------|------------|----------------------------------|-------------------|-------------|---------------------------|
| ERCC6 | Nonsense   | c.2569T>C, p.Arg857X             | Early termination | Paternal    | Pathogenic                |
| ERCC6 | Frameshift | c.3607_3608ins26,<br>p.Lys1203fs | Early termination | Maternal    | Pathogenic                |

# Confirmed two ERCC6 pathogenic variants detected and <u>Cockayne</u> syndrome, type B (OMIM#133540).

Prenatal diagnosis is available for current pregnancy





# **Challenges for exome reanalysis**

- Cost of reanalysis estimated at 38% relative to the initial analysis, review and reporting
- Difficult to follow-up and request exome reanalysis if patient has moved around or changed healthcare providers
- How this would affect follow-up appointments?





# Variant submissions to ClinVar

- ARUP Molecular Genetics and Genomics Laboratories
  - 10,387 sequence variants
  - Individual case
  - Variant curation following ACMG Variant Interpretation Guidelines
    - Assertion criteria: submit.ncbi.nlm.nih.gov/ft/byid/jucit10y/arup\_molecular\_germline\_variant\_investig ation\_process.pdf
  - Variants have been submitted twice a year, and re-evaluated in six months
- Research and Development (ARUP Laboratories)
  - 1676 sequence variants
  - Publication review and evidence based curation
  - Variants have been reviewed every year
  - Twelve disease specific variant databases <u>https://arup.utah.edu/database/index.php</u>





Perspectives and Experiences from the Cytogenetics Laboratory

Erica Andersen, PhD, FACMG

Section Chief, Cytogenetics and Genomic Microarray

Associate Professor, Clinical Pathology





## **ARUP's Data Sharing and Reevaluation/Reanalysis Practices**

|                                      | Databases                   | Reevaluation/Reanalysis Performed |                               |               |  |  |
|--------------------------------------|-----------------------------|-----------------------------------|-------------------------------|---------------|--|--|
| Technique                            | Shared                      | Clinician-initiated               | Public Database-<br>Initiated | Lab-Initiated |  |  |
| Targeted Variant N/A                 |                             | No                                | Yes                           | Yes           |  |  |
| Single Gene                          | ClinVar, Locus-<br>Specific | Yes                               | Yes                           | Yes           |  |  |
| Gene Panel ClinVar                   |                             | Yes                               | Yes                           | Yes           |  |  |
| Whole Exome ClinVar,<br>GeneMatcher* |                             | Yes                               | Yes                           | Yes           |  |  |
| Genomic Microarray<br>(CNVs)         | ClinVar, CAGdb*             | Yes<br>(increasingly)             | Yes                           | Yes           |  |  |

#### \*Controlled access database





# Variant submissions to ClinVar

- ARUP Genomic Microarray Laboratory
  - 1915 copy number variants submitted (postnatal constitutional)
  - Variant-level information (phenotype)
  - IRB approval (consent: opt-out mechanism)
  - Variant classification following ACMG CNV Interpretation Guidelines
    - Assertion criteria: aruplab.com/files/resources/genetics/ARUP%20Cytogenomic %20Constitutional%20CNV%20Assertion%20Criteria\_final.pdf
    - In process: Implement updated numerical-based CNV-scoring system (Riggs *et al.*, 2019 Genet. Med)





# CNV Reevaluations (Clinician-Initiated, Past 2 years)

- How frequent?
  - Requests are increasing recently (several per quarter) compared to historically (handful per year)
    - Developed a process to manage, tracking requests for resource management
- Lessons learned: good record keeping/databasing is essential
- Expect case-level requests as exome/genome CNV calling is implemented broadly









# CNV Reevaluations (Clinician-Initiated, Past 2 years)

- Who asks? Clients/clinicians vary
- How soon? Avg. time-frame = 3.4 years (range: 0.5-9 years)
- Why? Majority VUS, to manage clinical follow-up
- Utilization is broad, appropriate
- Which reports are updated?
  - Any upgrade to likely pathogenic/pathogenic
  - Any downgrade to likely benign/benign







# CNV Reevaluations (ClinVar / Internally-Initiated)

### Method: Haploinsufficient (HI) Gene Overlap



#### Riggs et al., Hum Mutat. 2018



# CNV Case 1: VUS to Pathogenic Reclassification

- 10 y/o male (age 13 at reevaluation), with indication: unspecified intellectual disability
- 2q36.3q37.1 loss involving 13 protein-coding genes including TRIP12, now a curated HI gene
  - TRIP12 HI: autosomal dominant intellectual disability, behavioral anomalies, additional clinical findings in some patients
- Inheritance unknown (not maternal; unaffected), unaffected sibling negative
- Pediatrician contacted upon reclassification, discussed updated clinical significance
- Benefits:
  - Patient now qualifies to receive services
  - Family members can be counseled about their reproductive risks





# CNV Case 2: VUS to Pathogenic Reclassification

- Newborn male (age 6 at reevaluation), presenting with minor dysmorphic features
- 1p36.11p35.3 loss involving 14 protein-coding genes, including AHDC1, now a curated HI gene
  - AHDC1 LOF: Xia-Gibbs syndrome: DD, ID, hypotonia, sleep abnormalities, seizures, other variable findings
- Contacted clinician and obtained additional clinical history
  - Patient now has features of Xia-Gibbs (usually de novo-but recommended parental testing for reproductive counseling)
- Benefits:
  - Ends diagnostic odyssey for patient/family
  - Improved medical management, genetic counseling for family





# CNV Case 3: No reclassification from VUS 10 y/o female with dysmorphic features







# CNV Reevaluations (ClinVar / Internally-Initiated)

Method: "Close-Match" and Recurrent CNVs

- Encountered multiple times
- $\geq$  99% overlap &  $\geq$  99% similarity in size
- Discordant classifications

#### Example: 2p21 duplication: LP/VUS to LB/B

Numerous dups of this region, phenotypes/indications vary widely





# Summary

- Clinical laboratories are now increasingly called upon to share genetic testing data, as well as reevaluate results from previously performed tests for hereditary conditions
- These efforts create unique opportunities and challenges during the diagnostic workup for new and previously tested patients, but ultimately help patients with rare genetic disorders end their diagnostic odyssey and improve their clinical care through personalized medicine
- Clinical laboratories should stay up-to-date on recent and emerging recommendations and policies surrounding genetic data sharing and variant reevaluation, and work to proactively implement these practices in a responsible, practical, and forward-thinking manner





# Acknowledgements

#### **ARUP Molecular Genetics**

- Pinar Bayrak-Toydemir
- Alexander Chapin
- Chris Miller
- Patti Krautscheid
- Tatiana Tvrdik
- Wei Shen

#### **ARUP Genomics Laboratory**

#### **University of Utah**

- John Carey
- Josue Flores
- Nicola Longo
- Lorenzo Botto

### ARUP Cytogenetics and Genomic Microarray

- Medical Directors
- Technologists and Supervisors
- Adam Clayton

### ARUP Genetic Data Sharing/Reanalysis Projects

- Sarah Broderick
- Zoe Lewis
- Genevieve Pont-Kingdon
- Tim Tidwell

**Funding:** NIH Grant U41 HG006834-04 Clinical Genome Resource (Subcontract Site)







Department of Pathology

© 2020 ARUP Laboratories

ARUP IS A NONPROFIT ENTERPRISE OF THE UNIVERSITY OF UTAH AND ITS DEPARTMENT OF PATHOLOGY.