

What is Patient Blood Management and where do we go from here?

Lawrence Tim Goodnough, MD

Professor Emeritus Department of Pathology Stanford University

Private Information

Call to Reduce Transfusions: National Summit on Overuse - September 2012

"Overuse/inappropriate use is defined as the use of a health service in circumstances where the

likelihood of benefit is negligible or zero, and the patient is exposed to the risk of harm."

Blood transfusion is one of five "overuse" interventions

How do we know that RBC Transfusions are over used?

Variation in Use of Blood Transfusion in Coronary Artery Bypass Graft Surgery

- STS database cohort of 82,446 patients undergoing primary isolated CABG surgery at 408 sites
- RBC (8% to 93%), plasma (0% to 98%), and platelet (0.4% to 90%) transfusions highly variable
- Three determinants: geographic location, academic status, and hospital volume

Variability in use, with no effect on patient outcomes, indicates inappropriate use of blood components in CABG.

Bennett-Guerrero E, et al. JAMA 2010;14:1568-1575.

Patient Blood Management

Period	I. Optimize Erythropoiesis	II. Minimize Blood Loss	III. Manage Anemia
Preoperative	Identify, evaluate, and treat underlying anemia Schedule preoperative autologous blood donation Consider erythropoiesis stimulating agent (ESA)	Identify and manage bleeding risk (past/family history) Review medications (antiplatelet, anticoagulation therapy) Minimize iatrogenic blood loss	Formulate patient-specific management plan using appropriate blood conservation modalities
Intraoperative	Schedule surgery after optimization of red blood cell mass is achieved	Employ meticulous hemostasis and surgical techniques Use acute normovolemic hemodilution (ANH) Utilize cell salvage/reinfusion Pharmacological/hemostatic agents	Optimize cardiac output Follow RESTRICTIVE, EVIDENCE-BASED TRANSFUSION STRATEGIES
Postoperative	IV iron, folate, ESA therapy if appropriate	Monitor and manage bleeding Use autologous blood salvage Minimize iatrogenic blood loss	Maximize oxygen delivery Follow RESTRICTIVE, EVIDENCE-BASED TRANSFUSION STRATEGIES

Modified, <u>From</u> Goodnough LT, Shander AS. Patient Blood Management. *Anesth* 2012;116: 1367-1376. Goodnough LT, Marques M. Zika virus and patient blood management. *Anesth Analg* 2017; 124:282-9.

Practice Strategies for Elective Red Blood Cell Transfusion

- A traditional concept: Blood transfusion is an effective therapeutic intervention
- A new paradigm:
- Blood transfusion is an undesirable outcome

General Therapeutic Principles

- Avoid an empiric, automatic transfusion threshold (for example, hemoglobin < 100 g/L [10g/dL]) [8.4]*
- 2. Regard elective transfusion with allogenic blood as an outcome to be avoided
- 3. Administer transfusion on a unit-by-unit basis, according to symptoms. Remember: One unit of blood may be sufficient [8.4]*

*Reference: The case for the single transfusion. J Garrott Allen NEJM 1972;19:984-85. American College of Physicians Audet AM, Goodnough LT. *Ann Int Med* 1992;116:403-406. Welch HG, Meehan KR, Goodnough LT. *Ann Int Med* 1992;116:393-402.

An initiative of the ABIM Foundation

Ten Things Physicians and Patients Should Question

Don't transfuse more than the minimum number of red blood cell (RBC) units necessary to relieve symptoms of anemia or to return a patient to a safe hemoglobin range (7 to 8 g/dL in stable, non-cardiac in-patients).

Transfusion of the smallest effective dose of RBCs is recommended because liberal transfusion strategies do not improve outcomes when compared to restrictive strategies. Unnecessary transfusion generates costs and exposes patients to potential adverse effects without any likelihood of benefit. Clinicians are urged to avoid the routine administration of 2 units of RBCs if 1 unit is sufficient and to use appropriate weight-based dosing of RBCs in children.

Medical Society Guidelines/Recommendations for RBC Transfusions

Year	Society	Recommendations	<u>Reference</u>
1988	NIH Consensus Conference	7 g/dl (acute)*	JAMA 1988;260:2700
1992	Am Coll Physicians (ACP)	No number	Ann Int Med 1992;116:393-402
1996	Amer Soc Anesth (ASA)	6 g/dl (acute)*	Anesth 1996;84:732-747
2006		No number	Anesth 2006;105:198-208
1997	Can Med Assoc (CMA)	No number	Can Med Assoc J 1997;156:S1-S24
1998		6 g/dl (acute)*	J Emerg Med 1998;16:129-31
1998	Coll Amer Path (CAP)	6 g/dl (acute)*	Arch Path Lab Med 1998;122:130-8
2001	Australasian Soc Blood Trans	7 g/dl	http://www.nhmrc.health.gov.au
2001	Br Committee for	No number	Br J Haematol 2001;113:24-3
	Standards in Haematol	7 g/dl (acute)*	,
2012		Unchanged	http://www.bcshguidelines.com/documents/Admin_blood _components_bcsh_05012010.pdf

*Patients with acute blood loss

**Patients with ACS

Goodnough LT, Levy JH, Murphy MF. Lancet 2013;381:1845-54.

Medical Society Guidelines/Recommendations (Cont.)

<u>Year</u>	<u>Society</u>	Recommendations	<u>Reference</u>
2007	Soc Thor Surg (STS)	7 g/dl or	Ann Thorac Surg 2007;83:S27-86
2011	Soc Cardvasc Anesth (CVA)	8 g/dl (acute)*	Ann Thorac Surg 2011;91:944-82
2011	SABM	8 g/dl	Trans Med Rev 2011;232-246
2012	AABB	7-8 g/dl or 8 g/dl**	Ann Int Med 2012;157:49-58
2016	AABB	7-g/dl or 8g/dl***	Transfusion 2016;56:2627-2630.
2012	KDIGO****	No number	Kid Int 2012;2:311-316
2012	National Cancer Center Network (NCCN)	7 g/dl	JNCCN 2012;10:628-53
2016	UK Clinical Guidelines	7 g/dl (target 7-9) 8 g/dl (target 8-10)**	JAMA 2016;316:2039-9
2019	Frankfurt Consensus Conference	7-8 g/dL****	JAMA 2019;321; 983-97

*For patients with acute blood loss

**For patients with symptoms of end organ ischemia

***For patients undergoing orthopaedic surgery and cardiac surgery; or cardiovascular risk factors

********Kidney Disease Improving Global Outcomes

***** Critical ill 7, cardiac surgery 7.5, hip fracture and cardiovascular disease 8, acute GI bleeding 7-8

Eight Key Trials of RBC Transfusion in Adults

Clinical Setting (Ref)	Hemoglobin Threshold (g/dL)	Age (Years)	(%) Patients Transfused	(%) Deviation from Protocol	Mean Hemoglobin (g/dL)	Participation (%)
Intensive Care ¹	7 10	57.1 58.1	67 99	1.4 4.3	8.5 10.7	41
CT Surgery ²	8 10	58.6 60.7	47 78	1.6 0.0	9.1 10.5	75
HipFx Repair ³	8 10	81.5 81.8	41 97	9.0 5.6	7.9 9.2	56
Acute Upper GI Bleeding ⁴	7 9	NA NA	49 86	9.0 3.0	7.3 8.0	93
Symptomatic CAD ⁵	8 10	74.3 67.3	28.3 NA	1.8 9.1	7.9 9.3	12.2
Sepsis ⁶	7 9	67 67	64 99	5.9 2.2.	7.7 9.3	82
TITR ⁷	7.5 9	69.9 70.8	53.4 92.2	30 45	8-9 9.2-9.8	98
CT Surg ⁸	7.5 9.5	72 72	52.3 72.6	NA NA	10 9	NA NA

1. Hebert PC. *NEJM* 1999;340:409.

2. Hajjar LA. *JAMA* 2010;304:1559.

3. Carson JL. NEJM 2011;365:2453.

Modified From Goodnough LT. Am J Hematol 2015;90:927-33.

Goodnough LT. *Med Clin N Amer* 2017;101:431-47.

4. Villanueva C. *NEJM* 2013; 368:11.

5. Carson JL. JAMA Intern Med 2013;173:139.

6. Holst LB. *NEJM* 2014;371:1381.

7. Murphy GJ. NEJM 2015;372:997.

8. Mazer CD. NEJM 2017; 377:2133-2144.

Liberal vs Restrictive Trials: 30 Day Mortality

	Restric	tive	Liber	ral		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Laine 2017	0	40	0	40		Not estimable	
Lotke 1999	0	62	0	65		Not estimable	
Blair 1986	0	26	2	24	0.2%	0.19 [0.01, 3.67]	
Foss 2009	5	60	0	60	0.3%	11.00 [0.62, 194.63]	
Carson 1998	1	42	1	42	0.3%	1.00 [0.06, 15.47]	
DeZern 2016	1	59	2	30	0.4%	0.25 [0.02, 2.69]	
Webert 2008	1	29	2	31	0.4%	0.53 [0.05, 5.58]	
Cooper 2011	2	23	1	21	0.4%	1.83 [0.18, 18.70]	
Carson 2013	7	55	1	55	0.5%	7.00 [0.89, 55.01]	
Parker 2013	5	100	3	100	1.1%	1.67 [0.41, 6.79]	
Bush 1997	4	50	4	49	1.2%	0.98 [0.26, 3.70]	
Hébert 1995	8	33	9	36	2.7%	0.97 [0.42, 2.22]	
de Almeida 2015	23	101	8	97	3.2%	2.76 [1.30, 5.87]	
Lacroix 2007	14	320	14	317	3.4%	0.99 [0.48, 2.04]	
Hajjar 2010	15	249	13	253	3.4%	1.17 [0.57, 2.41]	_ -
Palmieri 2017	16	168	15	177	3.8%	1.12 [0.57, 2.20]	+-
Gregersen 2015	21	144	12	140	3.9%	1.70 [0.87, 3.32]	
Walsh 2013	12	51	16	49	4.2%	0.72 [0.38, 1.36]	-+-
Jairath 2015	14	257	25	382	4.2%	0.83 [0.44, 1.57]	
Murphy 2015	26	1000	19	1003	4.7%	1.37 [0.76, 2.46]	-+
Villanueva 2013	19	416	34	417	5.3%	0.56 [0.32, 0.97]	
Carson 2011	43	1009	52	1007	7.9%	0.83 [0.56, 1.22]	
Mazer 2017	74	2427	87	2429	10.2%	0.85 [0.63, 1.15]	
Hébert 1999	78	418	98	420	11.4%	0.80 [0.61, 1.04]	-
Bergamin 2017	84	151	67	149	12.6%	1.24 [0.99, 1.55]	+
Holst 2014	168	502	175	496	14.4%	0.95 [0.80, 1.13]	†
Total (95% CI)		7792		7889	100.0%	1.00 [0.86, 1.16]	•
Total events	641		660				
Heterogeneity. Tau ² = 0.03; Chi ² = 34.44, df = 23 (P = 0.06); I^2 = 33%							
Test for overall effect: Z = 0.02 (P = 0.99)			Favours restrictive Favours liberal				
							ravours restrictive ravours interal

REVIEW ARTICLE

Dan L. Longo, M.D., Editor

Indications for and Adverse Effects of Red-Cell Transfusion

Jeffrey L. Carson, M.D., Darrell J. Triulzi, M.D., and Paul M. Ness, M.D.

- Overall, the clinical trial data clearly show safety of restrictive transfusion threshold of 7-8 g/dL in most patients
- However, it is important to recognize that data from clinical trials is lacking in many subgroups
 - Acute coronary syndrome
 - Long-term dependence on transfusion
 - Pediatric patients
 - Acute neurological disorders

2017;377:1261-72.

Stanford Hospital & Clinics Patient Blood Management Program EPIC Best Practice Alert (BPA): Live July 2010

🗥 Your Patient does not n	↑ Your Patient does not meet criteria for RBC transfusion based on best-practice evidence ¹					
Strong evidence suggests that in hemodynamically stable, non bleeding patients a hemoglobin threshold of 7gm/dl (or 8 gm/dl in acute coronary syndromes post cardiac surgery) can decrease transfusion requirements and avoid adverse outcomes.						
Select "Accept" to rem - OR - Select "Acknowledge I	nove transfusion or Reason" and "Accept	der. t" if transfusion is clinically indicated.				
Last HGB=12.0 g/dL C Prev HGB=14.0 g/dL C Prev HGB=15.5 g/dL C Remove the follow	Last HGB=12.0 g/dL Collected on 5/17/2016 12:09 PM Prev HGB=14.0 g/dL Collected on 4/29/2016 6:23 AM Prev HGB=15.5 g/dL Collected on 4/28/2016 6:24 PM Remove the following orders?					
Remove	Remove Keep Aransfuse RBC Routine ** Does Not Order Product **					
Acknowledge Reas	on S Post CT Surgery	Other clinical indication				
		Accent				

Updated from Goodnough et al. Transfusion 2014;54:1358-1365.

Blood Utilization

The percentage of stable patients transfused with RBC who last recorded hemoglobin was level > 8 gm/dL. From September 2008 through March 2013. Patients in procedural units (operating room, cardiac catheterization lab) were excluded, as were patients with a diagnosis of hemorrhage in the discharge problem list.

Trends in Blood Utilization at SHC, 2008-2018

From: Goodnough LT, Hollenhorst MA. Clinical Decision Support and Improved Blood Utilization in Patient Blood Management. *Hematology* 2019 Dec 06;2019(1):577-582.

Updated From: Goodnough LT, Baker S, Shah N. How do I use clinical decision support to improve red blood cell utilization. Transfusion 2016;56(10):2406-2411

Demographic Profile and Clinical Outcomes in Stable* Patients Transfused RBCs

Encounters	Pre-BPA**	Post-BPA*	p-value
n	3622	10528	
Age	59.7±17.4	59.8±17	0.76
% Female***	54.3	50.2	0.0001
Case Mix Index	2.78	2.86	0.0001
RBC Transfused	3.6±4.1	2.7±3.0	0.0001
LOS (days)	10.1±13.3	6.2±10.2	0.0001
% Mortality	5.5	3.3	0.0001
% 30 Day Readmission	13.7	8.5	0.0001
Discharge Hgb	9.9	9.0	0.0001

*Medical/surgical clinical units. Procedural areas (OR, Cath lab) excluded, also patients with discharge diagnoses/problem lists that include hemorrhage.

Pre-BPA, 21% of all patients at SHC were transfused. Post-BPA, 17% of all patients at SHC were transfused.

Reduction of Transfusion

The hospital administrator directs you to reduce red blood cell transfusions in your center. Which of the following options might you propose

- a. Implement a blood management program
- b. Do not permit orders for daily blood work
- c. Change orders for 2 units of RBC to 1 unit of RBC
- d. Require a hematology consult for every patient
- e. Tell the administrator that patients benefit from blood transfusion and it is not possible or appropriate to reduce red blood cell transfusion

Transfusion Rates in the United States in 2013 and 2015, as Compared with Rates in Other Developed Countries

Carson JL et al. N Engl J Med 2017;377:1261-1272.

Conclusion

1. A key component of Patient Blood Management is to improve blood utilization by promoting restrictive transfusion practices.

2. Clinical decision support can reduce inappropriate red blood cell transfusions .

3. Promotion of Patient Blood Management in the USA has had a profound impact on blood usage.

An initiative of the ABIM Foundation

Critical Care Societies Collaborative - Critical Care

Don't order diagnostic tests at regular intervals (such as every day), but rather in response to specific clinical questions.

Many diagnostic studies (including chest radiographs, arterial blood gases, blood chemistries and counts and electrocardiograms) are ordered at regular intervals (e.g., daily). Compared with a practice of ordering tests only to help answer clinical questions, or when doing so will affect management, the routine ordering of tests increases health care costs, does not benefit patients and may in fact harm them. Potential harms include anemia due to unnecessary phlebotomy, which may necessitate risky and costly transfusion, and the aggressive work-up of incidental and non-pathological results found on routine studies.

St. Michael's Inspired Care. Inspiring Science.

Study Objectives

- 1) Quantify average phlebotomy volume/pt-day, including blood waste, for patients in a tertiary care, academic medical/surgical ICU. Exclude patients with major bleeding.
- 2) Explore whether phlebotomy volume (ml/pt-day) is independently associated with:
 - i. Anemia
 - ii. Red blood cell transfusion
 - iii. Mortality

Prospective Audit: Waste Associated with ICU Phlebotomy

- Audit bedside phlebotomy
- Feb Mar 2018
- Quantify waste per draw

Results and Conclusions

- Average waster was 14.8 ml per day from arterial line, PICC, and central line
- 63% had 3+ blood draws per day and 36% of patients had 5+ blood draws per day
- Every 10 mL increase in avg daily phlebotomy volume = OR 1.48 (95% Cl 1.21 – 1.63) for nadir Hb < 80 g/L
- Every 10 mL increase in avg daily phlebotomy volume = OR 1.23 for RBC transfusion (95% Cl 1.12 1.68)
- Every ml increased the odds of death by 1.03 (1.01-1.04)
 - Sickest patients get most blood tests

Plasma Case

- You are consulted by the Hospitalist service for a 58 year old male scheduled for needle biopsy of 2 cm retroperitoneal mass by interventional radiology.
- The patient has history of alcohol abuse, documented cirrhosis, and ejection fraction of 30%.
- INR is 1.8, and platelet count is 105,000
- Interventional radiology is insisting on administrating 2 units of plasma before the test.
- What do you recommend?

Plasma Case

- 1. Give 2 units of FFP as required by interventional radiology; need to get the procedure done
- 2. Refer radiologist to latest guidelines
- 3. Find a different radiologist to do the procedure or transfer the patient to a different hospital
- 4. Give 10-15 cc/Kg of Plasma before procedure and administer furosemide before and after the procedure
- 5. Only give plasma if the patient bleeds during/after the procedure

Identifying Inappropriate Use of Plasma Transfusion using a Novel Multicenter Electronic Data Audit*

Leigh Minuk¹ (MD), Yang Liu² (MMath), Rebecca Barty² (MLT, MSc), Donald M. Arnold³ (MD, MSc), Nancy M. Heddle³ (MSc), Cyrus Hsia⁴ (MD), Nadine Shehata⁵ (MD, MSc), Ziad Solh⁶ (MD, MSc), Troy Thompson⁷ (MLT BAHSc Hons.), Alan Tinmouth⁸ (MD, MSc)⁷, Robert Skeate⁹ (MD, MSc), Jeannie Callum¹⁰ (MD)

¹University of Toronto, Toronto, Ontario, Canada; ²McMaster University, Hamilton, Ontario; ³McMaster Centre for Transfusion Research, Hamilton, Ontario, Canada; ⁴Division of Hematology, Western University, London, Ontario; ⁵Mount Sinai Hospital, Toronto, Ontario; ⁶Transfusion Medicine, Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada; ⁷Ontario Blood Regional Coordinating Network (ORBCON), Sunnybrook Health Sciences Centre, Toronto, Ontario; ⁸Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario; ⁹Canadian Blood Services, Toronto, Ontario, Canada; ¹⁰Department of Lab Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario;

*3 Centers over one year period.

UNIVERSITY OF TORONTO

Criteria for inappropriate transfusions

1

2

3

4

Patients with a normal INR <1.5 and who were not actively bleeding* or moderate bleeding only

Elevated INR >1.5, without active bleeding or procedures in 6 hours after plasma transfusion (1 calendar day when time of procedure was not available)

No INR drawn before or after plasma infusion

Inappropriate non-therapeutic plasma dose of plasma (≤ 2 units)

Figure 1: Definition of inappropriate plasma transfusion. Bleeding was defined as: 1 unit RBC transfused within 24 hours before or after plasma transfusion or 20 g/L drop in hemoglobin.

>80% of Plasma was transfused inappropriately*

TORONTO

*Leading to potential patient harm, unnecessary costs, and diversion of plasma away from a source for intravenous gamma globulin.

Plasma Case

- 1. Give 2 units of FFP as required by interventional radiology; need to get the procedure done
- 2. Refer radiologist to latest guidelines
- 3. Find a different radiologist to do the procedure or transfer the patient to a different hospital
- 4. Give 10-15 cc/Kg of FFP before procedure and administer furosemide before and after the procedure
- 5. Only give plasma if the patient bleeds during/after the procedure

Your patient MAY NOT meet	guidelines for plate	elet transfusion ba	sed on evidence. 1, 2
---------------------------	----------------------	---------------------	-----------------------

A platelet count of **20k** is sufficient for low risk procedures such as line placements, paracentesis, thoracentesis, and lumbar punctures.

A higher platelet count of 50k sould be trageted for higher risk procedures, surgeries, and ongoing bleeding with 100k reserved for neurosurgery.

Antifibrinolytic agents should be considred to help control bleeding along with consultation with transfusion medicine (Pager # 12027) and hematology (SHC #27436 SCH/LPCH: #24362)

A RANDOMIZED STUDY OF A BPA FOR PLATELET TRANSFUSIONS

C Murphy, E Mau, E Pang, L Shieh, J Hom, N Shah

466 patients randomized to a visible vs nonvisible PPA alert group, used 25% fewer BPA eligible platelets, with mean monthly platelets 49 vs 66 for the control group(p=0.07) and platelets per inpt day at risk per month, 2.1 vs 2.4(p=0.53)

Patient Blood Management

Period	I. Optimize Erythropoiesis	II. Minimize Blood Loss	III. Manage Anemia
Preoperative	Identify, evaluate, and treat underlying anemia Schedule preoperative autologous blood donation Consider erythropoiesis stimulating agent (ESA)	Identify and manage bleeding risk (past/family history) Review medications (antiplatelet, anticoagulation therapy) Minimize iatrogenic blood loss	Formulate patient-specific management plan using appropriate blood conservation modalities
Intraoperative	Schedule surgery after optimization of red blood cell mass is achieved	Employ meticulous hemostasis and surgical techniques Use acute normovolemic hemodilution (ANH) Utilize cell salvage/reinfusion Pharmacological/hemostatic agents	Optimize cardiac output Follow RESTRICTIVE, EVIDENCE-BASED TRANSFUSION STRATEGIES
Postoperative	IV iron, folate, ESA therapy if appropriate	Monitor and manage bleeding Use autologous blood salvage Minimize iatrogenic blood loss	Maximize oxygen delivery Follow RESTRICTIVE, EVIDENCE-BASED TRANSFUSION STRATEGIES

Modified, <u>From</u> Goodnough LT, Shander AS. Patient Blood Management. *Anesth* 2012;116: 1367-1376. Goodnough LT, Marques M. Zika virus and patient blood management. *Anesth Analg* 2017; 124:282-9.

BLOODLESS MEDICINE

CLINICAL CARE WITHOUT BLOOD TRANSFUSION

Jehovah's Witnesses Alloimmunized Patients Autoimmune Hemolytic Anemias Supply Constraints Pandemics War Demographic Imbalances

CONCLUSIONS

- Patient Blood Management was initially promoted as Best Practices
- Clinical Decision Support is an effective tool for improving blood product utilization
- Outcome metrics from Institutional Quality Departments such as LOS, readmission rates, and mortality can be linked to blood product utilization
- Patient Blood Management has demonstrated that quality improvement(patient safety) reduces health care costs
- Patient Blood Management has now become a Standard of Care