The Good and The Bad of Human Leukocyte Antigen (HLA)

Dharmendra Jain, Ph.D., S(ACHI)

Associate Director, Histocompatibility & Immunogenetics Laboratory

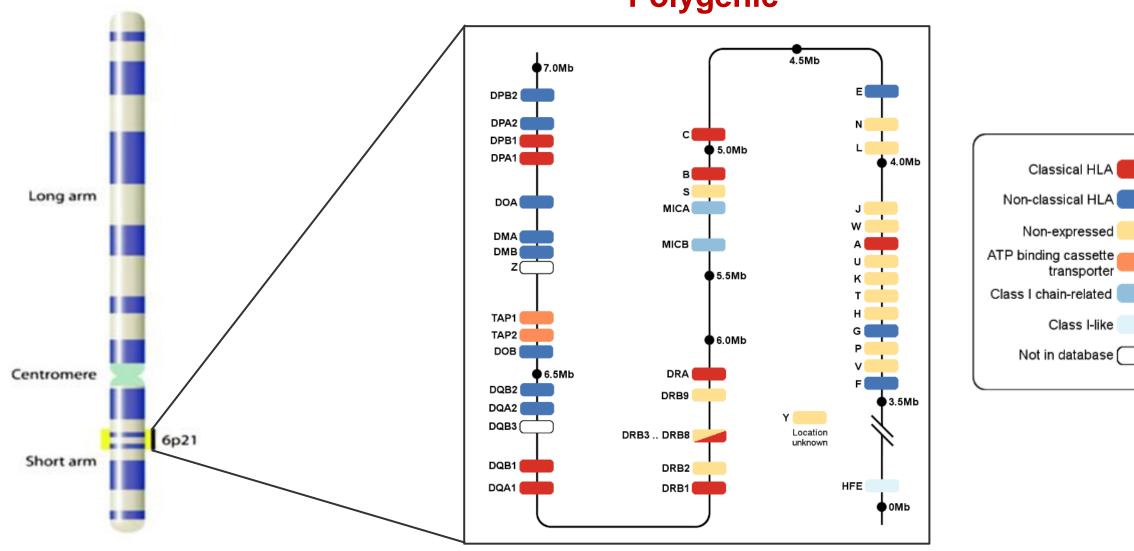
Medical Director, Immunology Division, ARUP Laboratories

Assistant Professor, Department of Pathology, University of Utah

Disclosures

- I have no financial relationships with commercial interests to disclose.
- My presentation does not include discussion of off-label or investigational use.

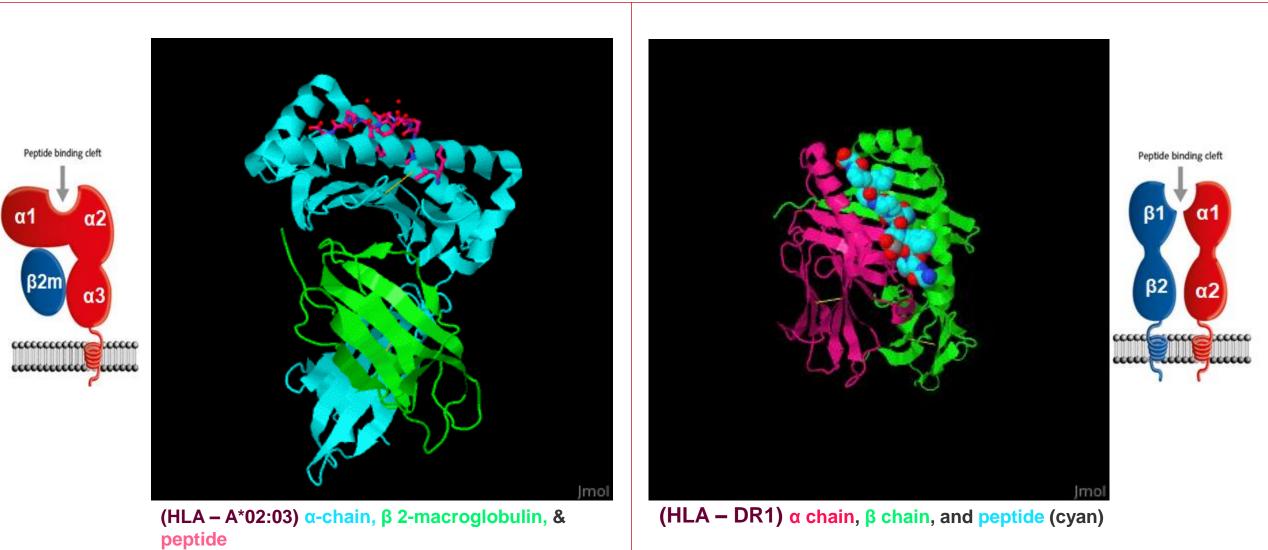
The Good and The Bad of Human Leukocyte Antigen (HLA)


Learning Objectives:

- > Define the characteristics of Human leukocyte antigen (HLA).
- > Describe the association of HLA alleles with adverse drug reactions (ADR).
- > Discuss HLA testing as a companion diagnostic tool in immunotherapy.

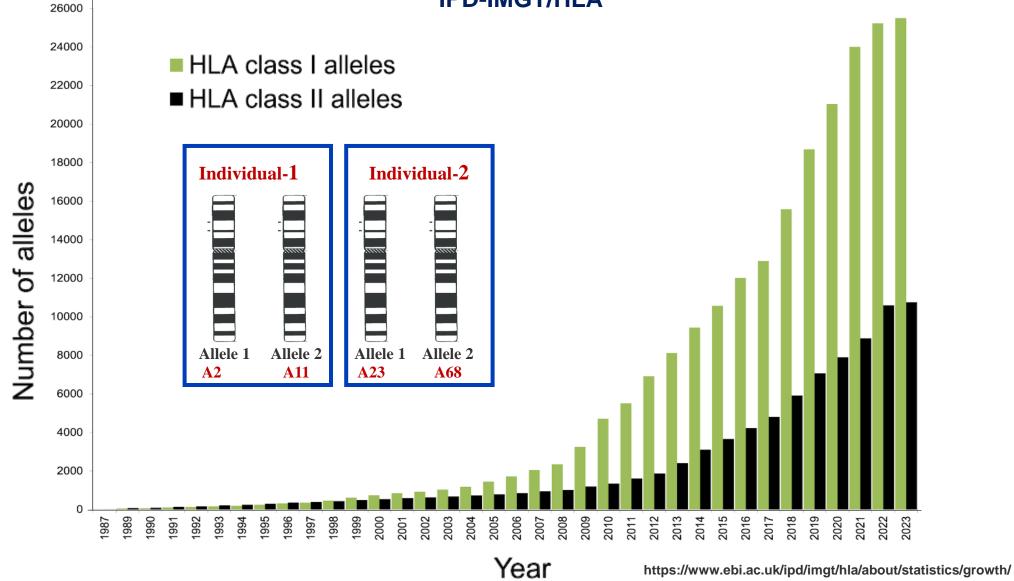
Human Leukocyte Antigen (HLA)

Polygenic


http://hla.alleles.org/

Structure of HLA Proteins

Class I


Class II

https://proteopedia.org/cgi-bin/pubready

HLA Polymorphism IPD-IMGT/HLA

6

HLA genes are highly polymorphic

25509 Class I and 10754 Class II alleles

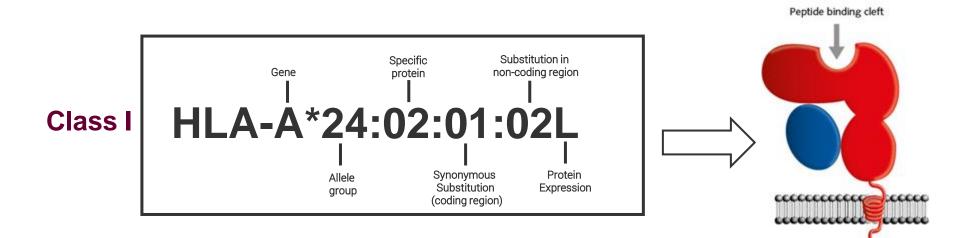
HLA Class I

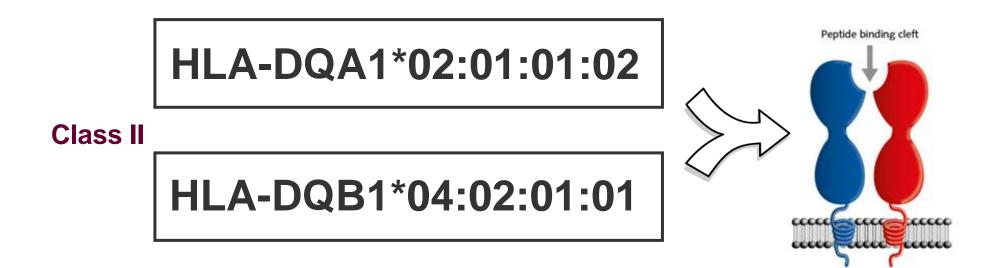
Gene	Α	В	С	E	F	G
Alleles	7,793	9,274	7,761	347	59	117
Proteins	4,548	5,580	4,311	140	11	38
Nulls	404	325	244	10	0	6

HLA Class II

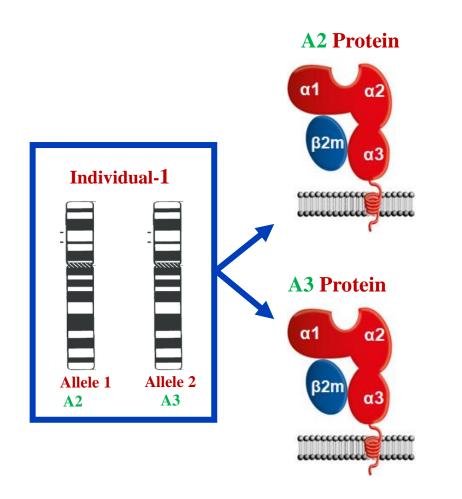
Gene	DRA	DRB	DQA1	DQA2	DQB1	DPA1	DPA2	DPB1	DPB2	DMA	DMB	DOA	DOB
Alleles	46	4,419	585	42	2,439	42	558	5	2,332	6	58	71	92
Proteins	5	2,903	281	11	1,501	9	261	0	1,367	0	9	9	14
Nulls	0	192	14	0	109	1	25	0	121	0	0	0	1

HLA Class II-DRB Alleles


Gene	DRB1	DRB2	DRB3	DRB4	DRB5	DRB6	DRB7	DRB8	DRB9
Gene	3,516	1	462	236	192	3	2	1	6
Alleles	2,262	0	345	151	145	0	0	0	0
Proteins	119	0	23	26	24	0	0	0	0

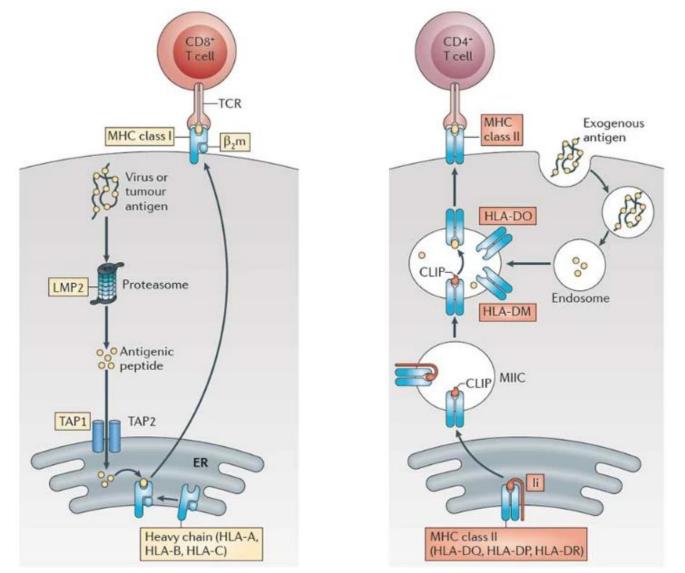

Modified from http://hla.alleles.org/ (Data accessed on 06/12/2023)

HLA Nomenclature



Additional Characteristics

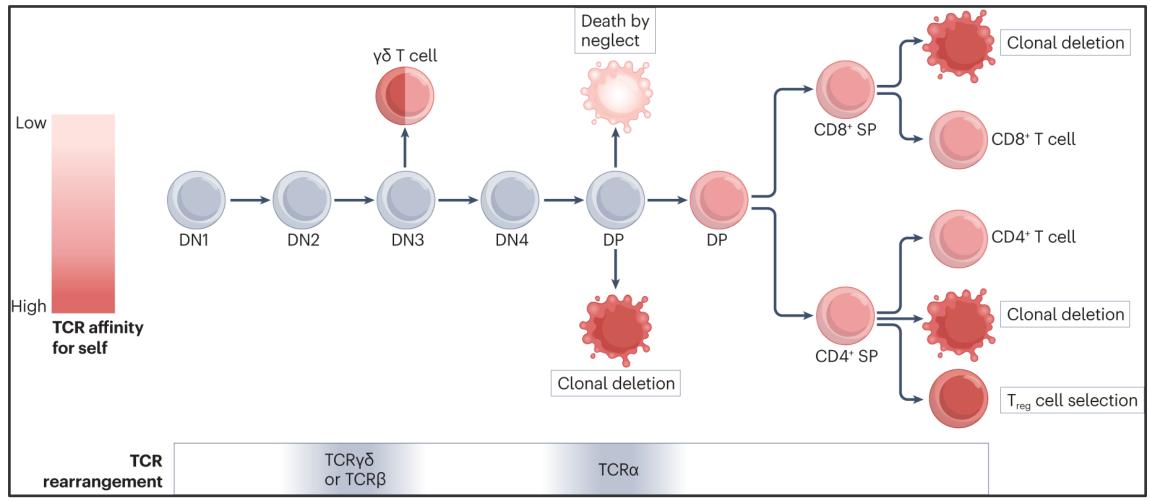
Linkage Disequilibrium


Co-dominance

A	С	В	DRB3-4-5	DRB1	DQB1
A*01:01g	C*07:01g	B*08:01g	DRB3*01:01	DRB1*03:01	DQB1*02:01g
A*03:01g	C*07:02g	B*07:02g	DRB5*01:01	DRB1*15:01	DQB1*06:02
A*02:01g	C*07:02g	B*07:02g	DRB5*01:01	DRB1*15:01	DQB1*06:02
A*02:01g	C*05:01g	B*44:02g	DRB4*01:01g	DRB1*04:01	DQB1*03:01g
A*29:02g	C*16:01	B*44:03	DRB4*01:01g	DRB1*07:01	DQB1*02:01g

Function of HLA

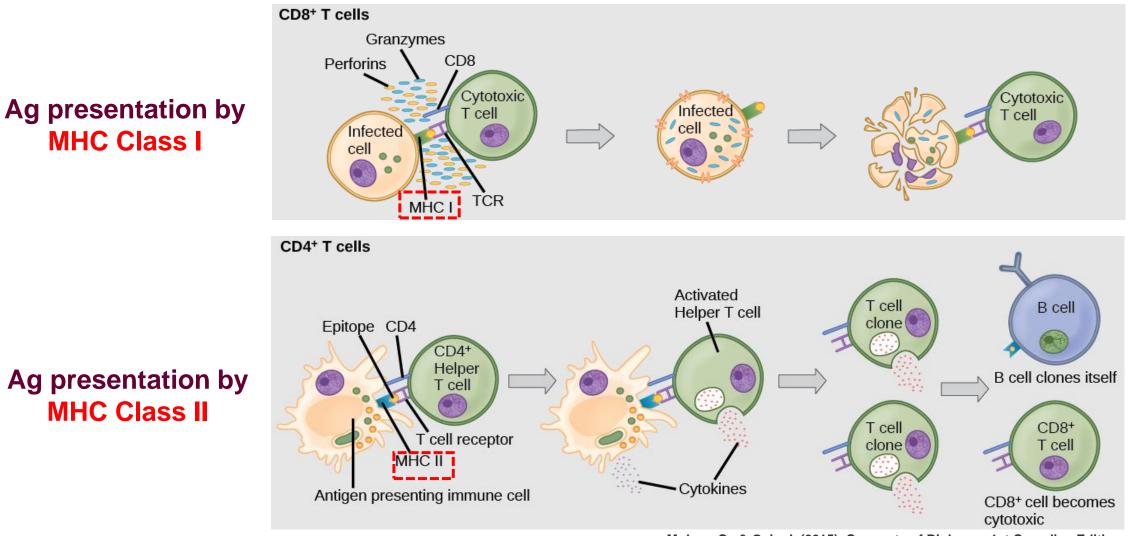
Regulation of Immune response via antigen presentations


Kobayashi, K. et al. Nat Rev Immunol 12, 813-820 (2012).

10

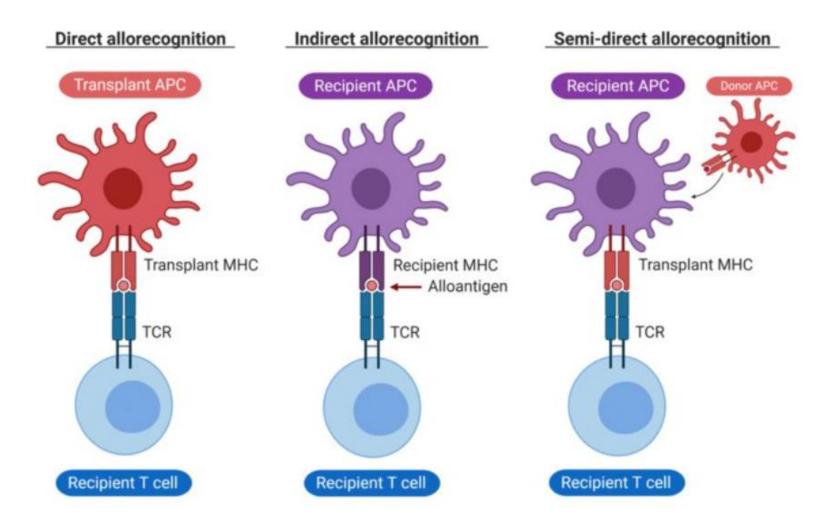
The Good of HLA

•Thymic selection of T cells • Discrimination of self and non-self; •Central tolerance


11

Ashby, K.M., ET. AL. A guide to thymic selection of T cells. Nat Rev Immunol (2023).

The Good of HLA Activation of Adaptive Immune Response


Molnar, C., & Gair, J. (2015). Concepts of Biology – 1st Canadian Edition.

The Bad of HLA

Mechanism of allo-response to HLA in transplant

Demkes EJ, et al. J Cardiovasc Transl Res. 2021;14(1):88-99.

Testing for HLA Antigens/Alleles

HLA Genotyping for Transplantation

HLA Matched Recipient/Donor Pair								
		Recipient	*Donor					
HLA-A	Allele-1	02:01	02:01					
	Allele-2	23:01	23:01					
HLA-B	Allele-1	39:01	39:01					
nlA-D	Allele-2	44:03	44:03					

HLA N	HLA Mismatched Recipient/Donor Pair								
		Recipient	*Donor						
HLA-A	Allele-1	02:01	03:01						
nla-A	Allele-2	23:01	68:01						
HLA-B	Allele-1	39:01	51:01						
nlA-D	Allele-2	44:03	15:02						

*Donor HLA type used for example only

The Bad of HLA

HLA & Disease Association

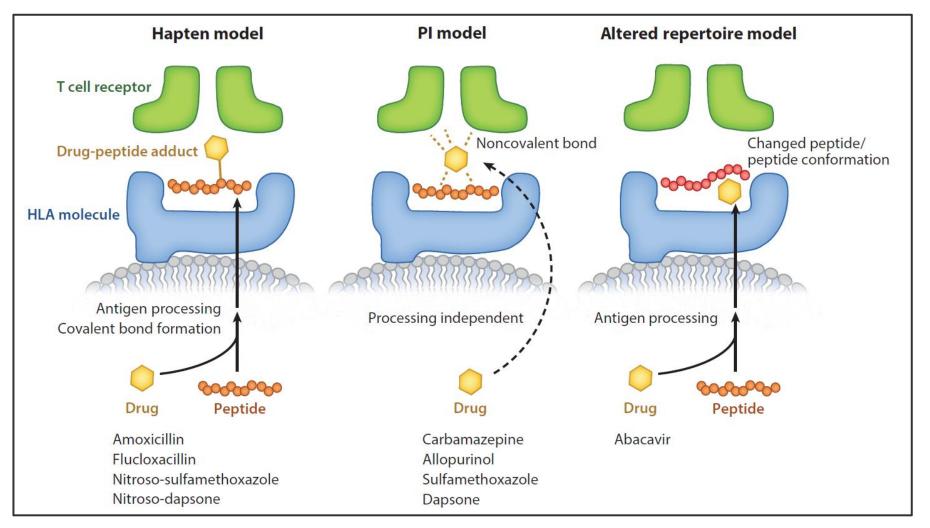
HLA Antigen	Disease
HLA A3	Hematochromatosis
HLA A29	Birdshot chorioretinopathy
HLA B27	Ankylosing Spondylitis
HLA B51	Behcet's Disease
HLA DQ6	Narcolepsy
HLA DQ2 & DQ8	Celiac Disease

Fiorillo MT, et. al. Front Immunol. 2017 Nov 7;8:1475.

Liu B, et. al. Immun Inflamm Dis. 2021;9(2):340-350.

The Bad of HLA

HLA & Drug Hypersensitivity


HLA	Drug
B*58:01	Allopurinol
B*57:01	Abacavir
B*13:01	Dapsone
B*15:02	Carbamazapine
A*68:01	Lamotrizine
DRB1*13:02	Aspirin

Kloypan C, et. al. Pharmaceuticals (Basel). 2021;14(11):1077.

Proposed Mechanism of HLA Medicated Drug Hypersensitivity

Jaruthamsophon K, et al. Annu Rev Pharmacol Toxicol. 2022;62:509-529.

Companion Diagnostic

A companion diagnostic is:

a medical device, often an in vitro device, which provides information that is essential for the <u>safe and effective use</u> of a corresponding drug or biological product. The test helps a health care professional determine whether a particular therapeutic product's <u>benefits to patients</u> will outweigh any potential serious side effects or risks.

Companion diagnostics can:

- identify patients who are most likely to benefit from a particular therapeutic product;
- identify patients likely to be at increased risk for serious side effects as a result of treatment with a particular therapeutic product; or
- monitor response to treatment with a particular therapeutic product for the purpose of adjusting treatment to achieve improved safety or effectiveness.

18

https://www.fda.gov/medical-devices/in-vitro-diagnostics/companion-diagnostics

HLA as a Companion Diagnostic Tool

Drug Hypersensitivity

• HLA B*57:01- Abacavir

Recommended by FDA, EMA and CPIC

• HLA B*58:01- Allopurinol

FDA- in genetically at-risk populations

EMA and CPIC- Testing not recommended

• HLA B*15:02- Carbamazepine

(Recommended by FDA, EMA and CPIC in specific population

(Han Chinese, Thai and Asian population at genetic risk)

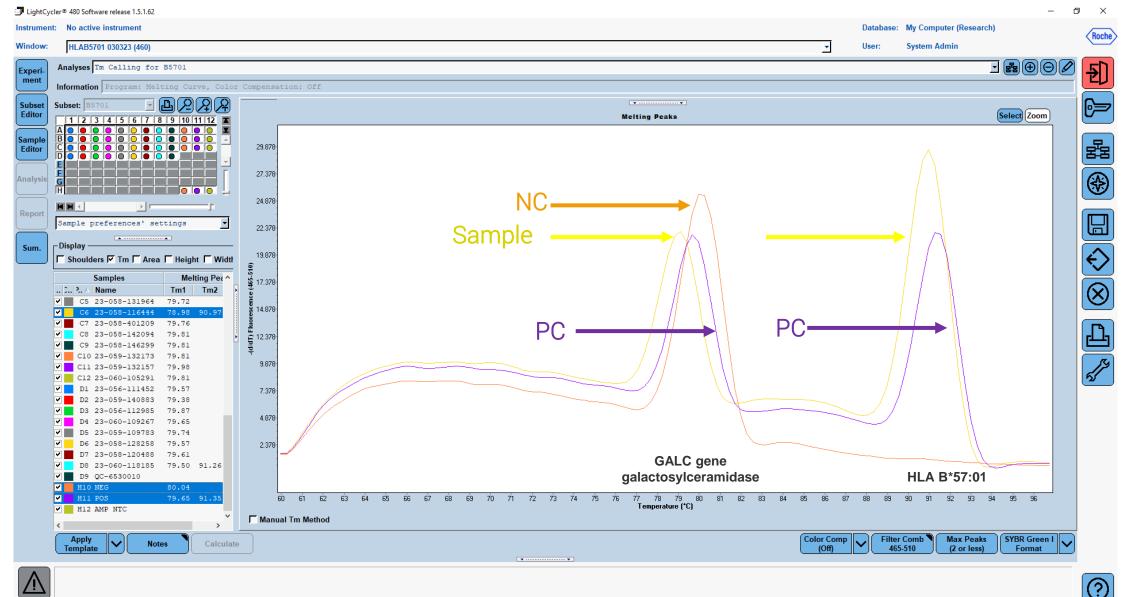
Decision to use targeted drug

• A*02:01- tebantafusp in metastatic uveal myeloma

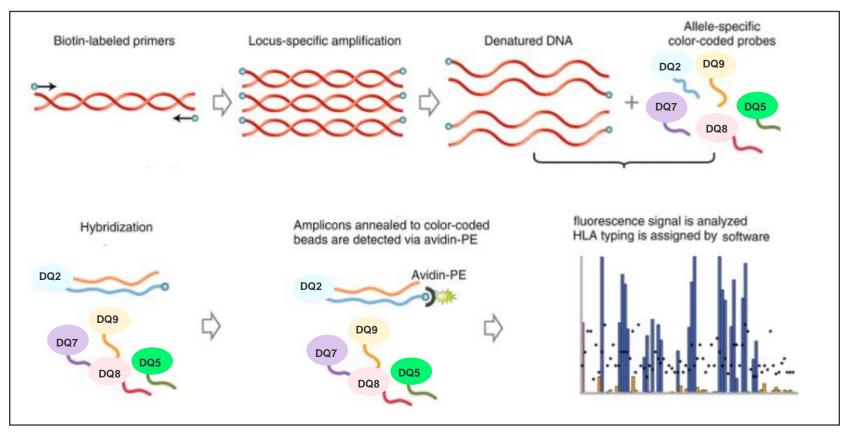
19

*FDA- U.S. Food and Drug Administration ; CPIC- Clinical Pharmacogenetics Implementation Consortium ; European Medicines Agency

Methods of HLA Typing


Melting Curve Analysis by Real time PCR

- > Melting temperature (Tm): at which 50% of the amplicon is single-stranded and 50% double-stranded.
- > Intercalating fluorescent dye is used to non-specifically bind to double-stranded DNA only.
- > Primers specific to targeted alleles and a reference gene, (GALC), are used.
- > At the end of the PCR cycles, a melting curve is performed.
- > Targeted approach; provides only qualitative results; gene dose can not be determined.



Representative image for a sample positive for HLA B*57:01

HLA Testing by Sequence Specific Oligonucleotide (SSO)

Adapted and modified from -https://basicmedicalkey.com/

Limitation:

- Due to the probe design for Exon 2 (PBD) domain only,
- Sometimes ambiguous results.
- Results reported out as allele code and string of alleles.

HLA Testing by Massive Parallel Sequencing

Image Adapted from Omixon Biocomputing Ltd.

- High throughput method.
- High resolution allele result without ambiguity.
- Higher cost of instrumentation, skilled staff.

Challenges

Interpretation of test result

- Low positive predictive value
- High negative predictive value
- Importance of the clinical context
- HLA typing methods with different resolution (B*57:01 Vs B57*02)

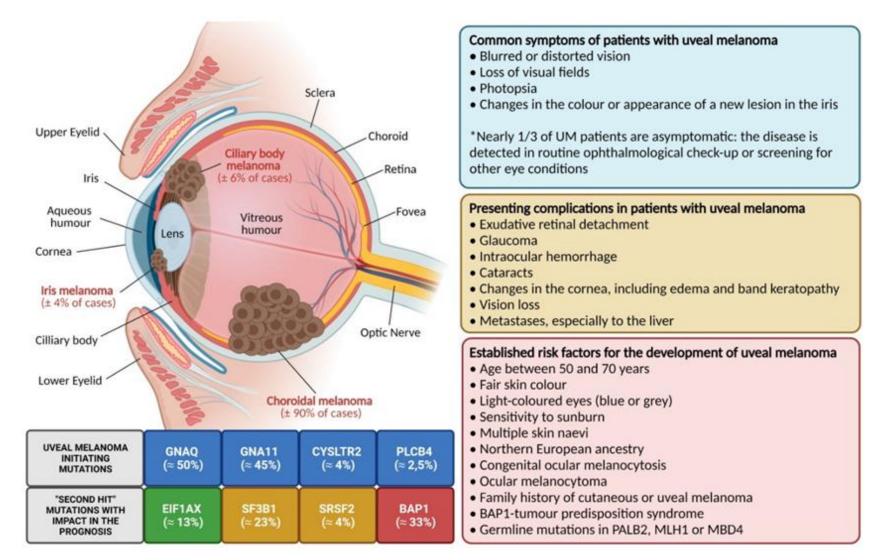
Cost effectiveness

• Cost effectiveness in population with low frequency of allele

e.g. HLA B*15:02 testing for Carbamazepine

Global and population frequencies of rs144012689, <i>HLA-B*15:02</i> , and <i>HLA-B*15:13</i> .									
Allele	Global Populations	African	Asian	Caucasian	Hispanic				
HLA-B*15:02	0.91% (n = 2,453,203)	0.21% (n = 41,314)	3.92% (n = 560,842)	0.001% (n = 1,325,156)	0.03% (n = 417,406)				

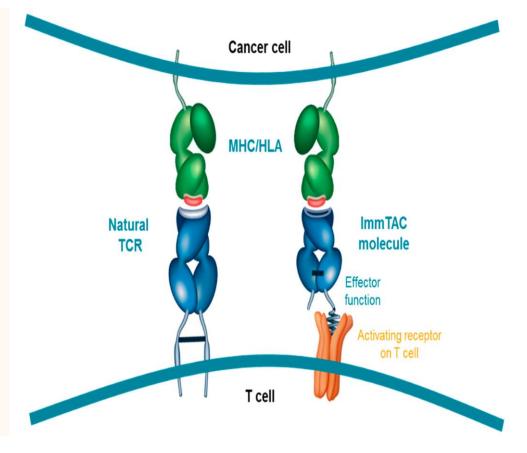
Clinical Pharmacogenetics Implementation Consortium (CPIC); Fang H et al. Front Pharmacol. 2019



HLA as a Companion Diagnostic Tool
Novel Therapies in Cancer

Uveal Melanoma

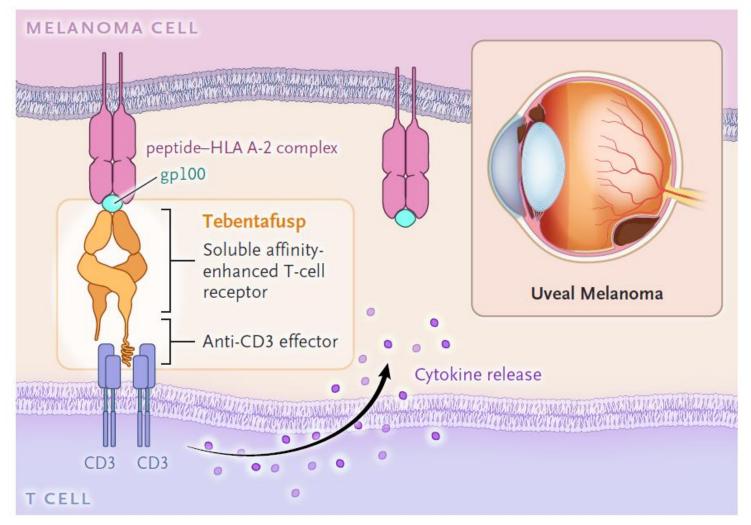
27


Lamas NJ, et al. Cancers (Basel). 2021;14(1):96.

Tebentafusp - tebn

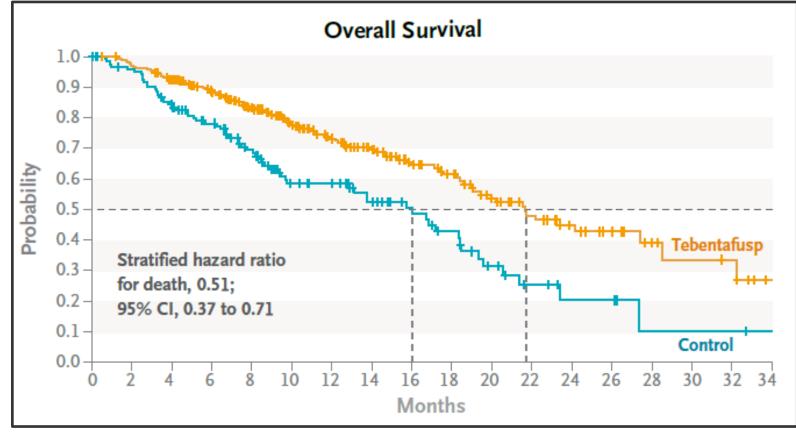
- ~50% of patients with uveal melanoma develop metastatic disease.
- In patient with metastatic disease overall survival is 1 year.
- Tebentafusp tebn, is a T cell receptor (TCR) immunotherapy.
- Bispecific gp100 peptide-HLA-directed CD3 T cell engager.
- US- FDA approved Tebentafusp tebn on January, 2022.
- Unresectable or metastatic uveal melanoma
- HLA-A*02:01-positive adult patients.

Damato BE, et al. Cancers 2019, 11(7), 971



AR P[®]LABORATORIES

Mechanism of action of tebentafusp-tebn


Nathan P et al. DOI: 10.1056/NEJMoa2103485

29

Survival Benefit With Tebentafusp - tebn

- 378 patients with metastatic Uveal melanoma.
- N=252 previously untreated HLA-A*02:01–positive patients.
- Controls received either pembrolizumab, ipilimumab, or dacarbazine
- The primary end point was overall survival.

Nathan P et al. N Engl J Med. 2021;385(13):1196-1206.

Mature Protein Sequences of HLA A2 Alleles

AA Pos.	10	20	30	40	50	60	70	80	90	100
A*02:01:01:01	GSHSMRYFFT	SVSRPGRGEP	RFIAVGYVDD	TOFVRFDSDA	ASQRMEPRAP	WIEQEGPEYW	DGETRKVKAH	SQTHRVDLGT	LRGYYNQSEA	GSH: VQRMYG
A*02:02:01:01					R					L
A+02:03:01:01										
A*02:04:01										м
A*02:05:01:01	ұ-				R					L
AA Pos.	110	120	130	140	150	160	170	180	190	200
A*02:01:01:01	CDVGSDWRFL	RGYHQYAYDG	KDYIALKEDL	RSWTAADMAA	QTTKHK	HVAEQLRAYL	EGTCVEWLRR	YLENGKETLQ	RTDAPKTHMT	HHAVSDHEAT
A*02:02:01:01						w				
A*02:03:01:01					т-	-EM				
A*02:04:01										
A*02:05:01:01						w				
AA Pos.	210	220	230	240	250	260	270	280	290	300
AA Pos. A*02:01:01:01							270 VQHEGLPKPL			
A+02:01:01:01										
A+02:01:01:01 A+02:02:01:01										
A+02:01:01:01 A+02:02:01:01 A+02:03:01:01										
A+02:01:01:01 A+02:02:01:01 A+02:03:01:01 A+02:04:01										
A+02:01:01:01 A+02:02:01:01 A+02:03:01:01 A+02:04:01		AEITLTWQRD		VETRPAGDGT						
A+02:01:01:01 A+02:02:01:01 A+02:03:01:01 A+02:04:01 A+02:05:01:01	LRCWALSFYP	AEITLTWQRD	GEDQTQDTEL	VETRPAGDGT	FQRWAAUUUP					
A+02:01:01:01 A+02:02:01:01 A+02:03:01:01 A+02:04:01 A+02:05:01:01 AA Pos.	LRCWALSFYP	AEITLTWQRD	GEDQTQDTEL	VETRPAGDGT	FQRWAAUUUP					
A+02:01:01:01 A+02:02:01:01 A+02:03:01:01 A+02:04:01 A+02:05:01:01 AA Pos. A+02:01:01:01	LRCWALSFYP	AEITLTWQRD	GEDQTQDTEL	VETRPAGDGT	FQRWAAUUUP					
A+02:01:01:01 A+02:02:01:01 A+02:03:01:01 A+02:04:01 A+02:05:01:01 A+02:05:01:01 AA Pos. A+02:01:01:01 A+02:02:01:01	LRCWALSFYP	AEITLTWQRD	GEDQTQDTEL	VETRPAGDGT	FQRWAAUUUP					

31

https://www.ebi.ac.uk/cgi-bin/ipd/pl/hla/align.cgi

Why HLA - A2?

					100	
Phenotypic freque	ency of HLA-A2 within t	ne study po	opulation	1	80	Allelic frequency
Population	Population size	#HL	A-A2 positive	ال ک	80	
Caucasian	61,655	30,596	(49.6%)	FREQUENCY	60	
African-American	8,288	2,864	(34.6%)	REQ		
Asian/Pacific Islander	2,275	819	(36.0%)		40	
Hispanic	4,879	2,286	(46.9%)	ALLELE		
Native American	5,882	2,922	(49.7%)		20	
Total	82,979	39,487	(47.6%)			
				1	0	A*02011A*0202 A*0203 A*0204 A*0205 A*0206 A*0207 A*0211 A*0212 A*0217 A*0222 A*0224 A*0231

Ellis JM, et al. Hum Immunol. 2000;61(3):334-340.

NAT

HIS

CAU AFA API

The First HLA typing companion diagnostic test

granted de novo classification by FDA

SeCore CDx HLA A Locus Sequencing Kit

One Test That Can Expedite Treatment Selection Decisions

Uveal melanoma is rare but often has a high tendency to metastasize, which results in high mortality. SeCore[™] CDx HLA A Locus Sequencing System is the first high-resolution HLA Typing companion diagnostic granted *de novo* classification by the FDA to aid in the selection of HLA A*02:01-positive patients with uveal melanoma that cannot be removed by surgery or has spread and who may benefit from treatment with KIMMTRAK® (tebentafusp-tebn) when used in accordance with approved therapeutic labeling.

The device is intended to be used as a companion diagnostic (CDx) to aid in the selection of HLA A*02:01 patients with unresectable or metastatic uveal melanoma who may benefit from treatment with tebantafusp-tebn.

Summary and Future Perspectives

• HLA plays a significant role in Immune regulation.

-balance of protective Immunity and tolerance.

- Some HLA alleles may pose a risk of autoimmune disease or ADR.
- HLA may be utilized in development of the safer Immunotherapies.
- Therapies that can be universally applied to all populations.

-Via targeting common HLA antigens HLA A2; HLA B7 etc.

ARUP is a nonprofit enterprise of the University of Utah and its Department of Pathology.

© 2021 ARUP LABORATORIES

