Laboratory testing for biomarkers of alcohol exposure

Kamisha L. Johnson-Davis, PhD, DABCC (CC,TC), FAACC

Associate Professor, Dept. of Pathology University of Utah Medical Director, Clinical Toxicology, ARUP Laboratories

October 2020

Learning Objectives

- Describe the effects of ethanol on the human body
- Highlight the clinical need to test for alcohol exposure
- Review biomarkers commonly used to detect and monitor alcohol exposure
- Describe analytical methods to analyze alcohol biomarkers in biological matrices by LC-MS/MS
 - Urine
 - Whole blood
 - Serum
 - Meconium
 - Umbilical cord tissue

2017 – Alcohol Use Disorder - Worldwide

1.4% (~107 million) of the global population (~7.53 billion) 70% male (75 million) to 32 million females

2018 Alcohol (Ethanol) Facts and Statistics

- Alcohol use disorder (AUD)
 - 14.4 million adults ages 18 and older
 - 401,000 adolescents ages 12–17
- Leading cause of morbidity and mortality
 - 3rd Leading cause of preventable death
 - Ages: 15 45 yr

lagunashoresrecovery.com/drugs/alcohol

- 2018 Centers for Disease Control and Prevention
 - Ethanol-induced deaths
 - > 88,000 deaths/ year
 - Ethanol and drug interactions (cocaine, opiates, benzodiazepines, acetaminophen)
 - < 10,000 ethanol related traffic fatalities (all ages)
 - 39,921 deaths from alcohol liver disease (12 yr and older)

2018 National Survey on Drug Use and Health (NSDUH) Past Month Alcohol Use, Binge Alcohol Use and Heavy Alcohol Use among participants Aged 12 or older

- Moderate drinker 1-2 drinks/ day
- Binge drinker Males: <a>> 5 drinks
 Females: <a>> 4 drinks
- Heavy alcohol use Binge drinking \geq 5 days

Alcohol Use

PAST MONTH, 2015-2018 NSDUH, 12+

 Difference between this estimate and the 2018 estimate is statistically significant at the .05 level.

What is a Standard Drink?

Standard Drink – 10-14 g of ethanol

The percent of "pure" alcohol, expressed here as alcohol by volume (alc/vol), varies by beverage.

www.niaaa.nih.gov

http://1.bp.blogspot.com/-2gTViGCbkOI/UQvxi7Qcv9I/AAAAAAAAAAAC8/hG-c2pHVKWY/s640/long+term+effects+alcohol.jpg

Mechanism of Action

- CNS Depressant
 - Mechanism is not completely elucidated
 - Involves GABA-mediated inhibitory response
 - Inhibits neuronal NMDA and kainate receptors (Excitatory)
- Heavy ethanol use
 - Cause up-regulation of NMDA receptors
 - Desensitization through phosphorylation of GABA and glutamate receptors
 - Physical abstinence syndrome from abrupt withdrawal

Ethanol Pharmacokinetics

• Ethanol is transported to liver

- First-pass metabolism ~85% of alcohol
 - rate of ~10 g/hour (70 kg adult)

• Ethanol Elimination in Blood

- 0.015 g/dL/hr or ~0.01%/hr
- Alcoholics have increased elimination rates due to enzyme induction
- 10% Excreted in the urine, breath and sweat

http://4.bp.blogspot.com/-x6j5SLAkam8/UkrXy2ow5VI/AAAAAAAAAAAY/k65S0vfyqQQ/s1600/Alcohol+curve.png

Ethanol Metabolism

Disulfiram - Symptoms of Elevated acetaldehyde

- increased flushing
- tachycardia (elevated heart rate)
- nausea, vomiting & hyperventilation

Goodman & Gilman's The Pharmacological Basis of Therapeutics, 11th edition

Physiological Effects of Alcohol

• Ethanol affects men and women differently

- Women have more body fat and less water than men
- Women have 50% less gastric alcohol dehydrogenase (ADH)
- Contribute to higher blood alcohol concentrations
- More vulnerable to impairment due to alcohol consumption

(Marshall et al. 1983, Van Thiel et al. 1988).

Approximate Blood Alcohol Content (BAC) In One Hour

Source: National Highway Traffic Safety Administration

Drinks	Body Weight In Pounds							Influenced		
	100	120	140	160	180	200	220	240		
1	.04	.03	.03	.02	.02	.02	.02	.02	Possibly	
2	.08	.06	.05	.05	.04	.04	.03	.03		
3	.11	.09	.08	.07	.06	.06	.05	.05	Impaired	
4	.15	.12	.11	.09	.08	.08	.07	.06	Impaired	
5	.19	.16	.13	.12	.11	.09	.09	.08		
6	.23	.19	.16	.14	.13	.11	.10	.09	Legally Intoxicated	
7	.26	.22	.19	.16	.15	.13	.12	.11		
8	.30	.25	.21	.19	.17	.15	.14	.13		
9	.34	.28	.24	.21	.19	.17	.15	.14		
10	.38	.31	.27	.23	.21	.19	.17	.16		

Subtract .015 for each hour after drinking.

WOMEN KNOW YOUR LIMIT

Approximate Blood Alcohol Content (BAC) In One Hour

Source: National Highway Traffic Safety Administration

Drinks	Body Weight In Pounds							Influenced		
	100	120	140	160	180	200	220	240		
1	.05	<mark>.04</mark>	.03	.03	.03	.02	.02	.02	Possibly	
2	.09	.08	.07	.06	.05	.05	.04	.04		
3	.14	.11	.11	.09	.08	.07	.06	.06	Impaired	
4	.18	.15	.13	.11	.10	.09	.08	.08		
5	.23	.19	.16	.14	.13	.11	.10	.09		
6	.27	.23	.19	.17	.15	.14	.12	.11	Legally Intoxicated	
7	.32	.27	.23	.20	.18	.16	.14	.13		
8	.36	.30	.26	.23	.20	.18	.17	.15		
9	.41	.34	.29	.26	.23	.20	.19	.17		
10	.45	.38	.32	.28	.25	.23	.21	.19		

Subtract .015 for each hour after drinking.

Intoxication Effects correlated to Blood Alcohol concentrations

Blood Alcohol Concentration	Acute Intoxication Effects			
100 mg/dL = 0.10% W/V = 0.1 g/dL				
0.02–0.05 g/dL 20–50 mg/dL	Most individuals experience mild euphoria but may have no obvious signs. Diminished fine motor function occurs.			
0.05–0.15 g/dL 50–150 mg/dL	Euphoria with reduction in judgment, motor function and reaction time.			
0.15–0.30 g/dL 150–300 mg/dL	Obvious signs of intoxication including impaired balance, speech, reaction time, emotional stability, vision and comprehension.			
>0.25 g/dL >250 mg/dL	Marked loss in motor function, impaired consciousness may be associated with death in uncomplicated adult cases.			
>0.40 g/dL >400 mg/dL	Respiratory depression. Blood concentration at which most fatalities occur.			

Why Should we Test for Ethanol Exposure?

- Trauma Centers/Emergency
 Department
- Department of Transportation/Highway Patrol
 - DUI and related-fatalities
- Child/Family Services
 - > 10% of children live with parent with AUD
 - Underage drinking
 - 7.1 million people ages 12–20

- Adherence Testing
 - Pain management
 - Addiction recovery
 - Alcohol abstinence
- Transplant Clinics
 - Surgery Prequalification testing
- Prenatal Care /Neonate Management
 - Neonatal abstinence syndrome

Alcohol Use in Pregnancy

- About 1 in 9 pregnant women
- About 1/3 of pregnant women who consumed alcohol engaged in binge drinking
- Pregnant women who reported binge drinking in the past 30 days reported an average of 4.5 binge-drinking episodes during that same time period

2015 National Survey on Drug Use and Health

Statistics on Neonatal Drug Exposure

Past Month Substance Use among Pregnant Women

PAST MONTH, 2015-2018 NSDUH, 15-44

Substance Abuse and Mental Heal Services Administration

FETAL DEVELOPMENT CHART

This chart shows vulnerability of the fetus to defects throughout 38 weeks of pregnancy.*

= Most common site of birth defects

https://www.cdc.gov/media/dpk/alcohol/alcohol-pregnancy/dpk-vs-alcohol-pregnancy.html

Fetal Alcohol Spectrum Disorders

- Alcohol-related birth defects
 - Facial abnormalities
- Growth retardation
 - Low birth weight
- CNS impairment
 - Learning disabilities
 - Behavioral abnormalities

Small head Small eye openings Short nose

Fetal Alcohol Syndrome

Prevalence – 1-2 cases per 1000 live births

https://www.medlife.com/blog/fetal-alcohol-syndrome-symptoms-causes-prevention/

Biomarkers to Assess Alcohol Exposure

Specimens to test biomarkers for Alcohol Exposure

Urine Breath Saliva Hair ORAL FLUID

Whole blood/Serum/Plasma/DBS

Meconium

Umbilical Cord

Alcohol Concentrations in Different Specimen Types

- Alcohol is distributed throughout the body in proportion to the water content of the body fluid
 - Plasma and serum -concentrations 12-18% higher than whole blood
 - Saliva alcohol concentrations 7% higher than whole blood
 - Urine alcohol concentration may be 30% higher than whole blood

• The laboratory report must indicate the specimen type

Detection Window – Alcohol Biomarkers

The Role of Biomarkers in the Treatment of Alcohol Use Disorders. *Substance Abuse Treatment Advisory*. Volume 5, Issue 4, September 2006.

Limitations for Ethanol Detection

- Half-life (blood): 2-14 h
- Half-life (urine): <24h
- Unintentional exposure
 - Mouthwash, hand sanitizer
- Evaporation from specimen

- False Positives
 - Bacterial/Yeast fermentation of glucose in sample
 - Postmortem ethanol formation
- False Negatives
 - Dilute urine
 - Diuretics
 - Microbial consumption

Specificity of Indirect Ethanol Biomarkers

Marker	Sensitivity/ Specificity (%)	Clinical Use	Potential for False Positives	General Comments
Gamma-glutamyl transferase (GGT)	64% / 72% Cutoff: 30 U/L	Heavy Alcohol Use	Not specific – liver, diabetes, biliary disease, obesity, and medications can increase enzymes	Elevations caused by excessive drinking (100g/day) for up to 14 – 26 days
Alanine Aminotransferase (ALT) Aspartate Aminotransferase (AST)	32% / 90% Cutoff: 35 U/L 68% / 80% Cutoff: 35 U/L	Chronic Alcohol Abuse	Not specific – liver, biliary disease, obesity and medications can induce increase in enzymes	AST/ALT > 2.0 suggests ethanol-related liver disease
Mean corpuscular volume (MCV)	44% / 98% Cutoff: 96 fL	Heavy alcohol use	Not specific – hemolysis, anemia, liver disease, Vitamin B12 and folate deficiency, medications, leukemia, monoclonal gammopathies	MCV increases with excessive ethanol intake Caused by drinking 60g/day for > 2 wk
Carbohydrate-deficient transferrin (CDT)	84% / 92% Cutoff: 2.4%	Heavy alcohol use Indicator of relapse	Not specific – iron deficiency, fulminant HCV, Inborn Errors of Glycogen metabolism, pregnancy, oral contraceptives, immunocompromised patients	Altered form of iron transport protein when drinking is continued for >2 weeks. Caused by drinking 60g/day for > 2 wk

Carbohydrate Deficient Transferrin

- Serum marker of long-term, heavy alcohol use (≥40 g/day for up to 2 weeks) or relapse.
- Concentrations correlate with an individual's drinking pattern, especially during the preceding 30 days
- Useful indirect marker for long-term abstinence monitoring.
- Factors that affect CDT levels include body mass index (BMI), female sex, and smoking.
- CDT testing cannot be used in individuals suspected of having congenital glycosylation disorders.

Ethyl Glucuronide / Ethyl Sulfate

- Non-volatile, water-soluble, direct minor metabolite of ethanol
- Excreted in the urine
- Appears 1 h after ethanol ingestion
 - Window of detection up to 120 hr
- Detects recent ethanol ingestion
 - EtG Concentration range: up to 300 mg/mL
 - EtS concentration range: up to 61.0 mg/mL
- Stable marker of recent ethanol ingestion
 - Not produced from bacterial formation
 - Not sensitive to bacterial hydrolysis

Helander A et al 2009 Alcohol & Alcoholism 44(1):55-61.

Detection of EtG and EtS for Recent Exposure

EtG and EtS – present after recent use

	EtS Positive	EtS Negative
EtG Positive	86 92.5% (both)	3 3.2% (only EtG)
EtG Negative	4 4.3% (only EtS)	261

Single Detected Metabolites

- Genetic polymorphisms
 - UDP-glucuronosyltransferases (UGT1A)
 - Gilbert's Disease
 - Criglar-Najar Syndrome
 - Sulfotransferases (SULT)

Reisfield et. Al, 2011

- False Negatives (EtG)
 - Bacterial hydrolysis
 - β-glucuronidase (*E. coli*)
- False Positives (EtG)
 - Bacterial production (E. coli)

Confirmation testing by LC-MS/MS

- Presence of both EtG and EtS
 - Accurate indicators of recent ingestion
- Quantitative
 - Distinguish between high and low ethanol exposure

• AMR range:

- 100 10,000 ng/mL
- Consumption of >24 g ethanol
 - > 10,000 ng/mL EtG (w/i 24h)

Urine Concentrations

Fig. 3. Box-and-whisker plot showing the distribution of positive urinary EtG (reporting limit ≥ 0.5 mg/l) and EtS (≥0.1 mg/l) concentrations in cases where patients had admitted alcohol consumption in the past 1–3 days prior to urine sampling. The EtS concentrations in the 1–3-days back and 3-days back groups were significantly different (P = 0.0455).

Hand Sanitizer Exposure

Reference	Agent (ethanol)	Max EIG (ng/mL) (per g creatinine)	Max EIS (ng/mL) (per g creatinine)	Max Ethanol
Rosano and Lin (8)	Avagard D (61%)	114	NM*	NM
Rohrig et al. (5)	Germ-X (62%)	62	NM	ND*
Helliker (7)	Purell (62%)	770	NM	NM
ones et al. (9)	Purell (62%)	713 (799)	51 (29)	ND
This report	Purell (62%)	2001 (1998)	83 (94)	ND

LC-MS/MS Detection

EtG – cutoff 500 ng/mL

EtS – cutoff 100 ng/mL

Hydrolysis of EtG by E. coli in urine specimens

Helander and Dahl, 2005

Phosphatidylethanol

- Long-term direct biomarker of alcohol use
- Formed in the presence of ethanol
- PEths are incorporated into the membrane of erythrocytes

• PEth half-life of 4±0.7 days

- Ethanol PEthon Red Blood Cell Membrane (Phospholipids)
- 1-palmitoyl-2-oleoyl-sn-glycero-1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanol (POPEth)3-phosphoethanol (PLPEth)

• Specificity: ~100%

Detection Window for PEth Homologs

Alcohol Biomarkers in Neonatal Specimens

- Ethyl glucuronide (EtG) and ethyl sulfate (EtS)
 - Umbilical cord tissue

- Phosphatidylethanol (PEth)
 - 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanol (POPEth)
 - Whole blood
 - Dried blood spots

Alcohol Biomarkers in Neonatal Specimens

- Fatty Acid Ethyl Esters (FAEE)
 - Direct marker of heavy alcohol use
 - Chemical reaction of fatty acids and alcohol by FAEE synthase
 - Formed in Liver and Pancreas and released into circulation
- Specimens for testing
 - Hair Cutoff: 0.5 ng/mg
 - Meconium Cutoff: 500 ng/g
 - Blood up to 24 hr after last drink
- Sensitivity: >90% / Specificity: >90%

Analytical methods – Breathalyzer

- Based on Alcohol Blood:Breath partition ratio
 - 2100 mL breath : 1 mL of blood
- Platinum electrode in Fuel Cell oxidizes alcohol → acetic acid, H⁺, e⁻
- Electrons flow through wire from electrode to current meter
- The more alcohol present → the greater the electrical current

Analytical methods – Enzymatic Assay

Advantages

- Rapid, easy to use kits
- Quantitative
- Stat testing within 1 hr
- Specimens -serum/plasma, urine

Disadvantages

 Not able to detect methanol and isopropanol overdoses

Enzymatic Oxidation Assay

Advantages

- Rapid, easy to use kits
- Quantitative
- Stat testing within 1 hr
- Widely used (95% of labs from CAP survey)
 - Kits can be adapted to various chemistry analyzers
- Testing for serum/plasma and urine

Disadvantages

- Not specific for ethanol
 - Cross-reactivity with n-Propanol
- Not able to detect methanol and isopropanol overdoses

Analytical Methods – Gas Chromatography -Flame Ionization Detector (GC-FID)

Gas Chromatographic Techniques

Advantages

- Specificity for ethanol
- Quantitative assay
- Testing for serum, plasma, blood and urine
- Ability to quantify
 - Methanol
 - Isopropanol
 - Ethylene glycol

Disadvantages

- Equilibration time
 - (15–30 min) delays turnaround time
- Requires specialized instrumentation (GC)
- Requires highly trained technical staff
- Analysis slower than enzymatic assay

Commercial EtG Screening Assay

• Cutoff – 500 ng/mL No Cross-reactivity to EtS

Etg EIA vs LC-MS/MS

Y = 0.96 (LC/MS/MS) - 0.104

EIA cutoff: 500 ng/mL

Liquid Chromatography Tandem Mass Spectrometry

Whole blood Testing for Phosphatidylethanol

What do these results mean?

Ethyl glucuronide and Ethyl sulfate

- EtG > 10,000 ng/mL EtS > 10,000 ng/mL
 - Recent exposure (w/l 24h)
- EtG: 1359 ng/mL EtS: < 100 ng/mL
 - Not considered to be recent exposure (>24h)
 - Possible hand sanitizer exposure
- EtG: < 100 ng/mL EtS: 187 ng/mL
 - Possible bacterial degradation of EtG

Phosphatidylethanol

- <20 ng/mL Abstinence or light drinking (< 2 drinks per day for several days a week)
- 20–200 ng/mL Moderate drinking (to 4 drinks per day for several days a week)
- >200 ng/mL Heavy drinking (at least 4 drinks per day several days a week)

J Forensic Sci, November 2018, Vol. 63, No. 6

Summary

- Testing for alcohol exposure is important to manage the health of patients with alcohol use disorders
- Testing for alcohol biomarkers provides opportunities to identify and evaluate alcohol use and exposure
 - Direct markers are preferred over indirect markers
 - Phosphatidylethanol has high specificity for acute and chronic alcohol exposure
- Testing for alcohol biomarkers should be aligned with clinical needs/expectations