Molecular Tools in the Diagnosis of Lymphoma

Kristin Karner, MD Park City, Utah February 2022

Learning Objectives

- To be familiar with appropriate work-up for anaplastic large cell lymphoma
- To understand when it is appropriate to use molecular clonality testing in the work up and diagnosis of lymphoma
- To be familiar with the limitations and "pitfalls" of clonality testing
- To know how and when to use the NGS CLL panel in your work-up, diagnosis and prognostication
- To know when to use MYD88 molecular testing in the work-up of suspected lymphoma, and to understand its limitations

Case-Based Approach

Case #1

- A 73-year-old male initially presented with mild lymphocytosis and lymphadenopathy in the abdomen and pelvis.
- A left axillary lymph node biopsy was reviewed... (phenotype similar to this peripheral blood flow cytometry:)

Gate	# of Events	% of all cells	% of gated cells	X Geometric Mean	Y Geometric Mean
UL	185042	63.10	89.33	3.90	79.87
UR	4998	1.70	2.41	82.90	58.25
LL	15702	5.35	7.58	3.39	3.94
LR	1395	0.48	0.67	56.28	16.90

-

Gate	# of Events	% of all cells	-	X Geometric Mean	Y Geometric Mean
UL	11867	4.05	84.66	9.97	203.59
UR	2092	0.71	14.92	92.63	88.41
LL	55	0.02	0.39	7.22	5.89
LR	4	0.00	0.03	58.56	11.22

).00 0.03 58.56

-

Diagnosis:

 Chronic lymphocytic leukemia/ small lymphocytic lymphoma

- Ancillary studies:
 - Unmutated IGHV
 - Complex cytogenetics with +12

CLL/SLL Prognostication from NCCN Guidelines

Karyotype/FISH	Del (17p)	Unfavorable
	Del (11q)	Unfavorable
	Complex (>3 abn)	Unfavorable
	Trisomy 12	Intermediate
	Normal	Intermediate
	Del(13q) sole abnl.	Favorable
Molecular	TP53 mutation	Unfavorable
	IGHV unmutated (<2% mutated)	Unfavorable*

*Rearrangements involving VH3-21 have poor prognosis even if mutated.

- Patient was started on ibrutinib with excellent response for three years.
- WBC showed the following:

- Findings suggest progression of disease
- Bone marrow biopsy showed the following:

NGS testing showed the following...

CLL NGS panel results

- Tier 1 variants
 - 1. BTK c.1441T>A, p.Cys481Ser VAF 52.8%
 - 2. BTK c.1442_1443delinsCT, p.Cys481Ser VAF 5.4%
 - 3. BTK c.1442G>A, p.Cys481Tyr VAF 5.2%
 - 4. BTK c.1442G>C, p.CYs481Ser VAF 3.7%
 - 5. RPS15 c.413C>T, p.Ser138Phe VAF 32.4%
 - 6. MED12 c.130G>A, p.Gly44Ser VAF 66.9%

 chrX:100,610,915- 	100 611 415 Go 🚔 🔺 🕨 (🧇 🖪 x 🖵 I							E
p22.31 p22.2 p22.1	3 p22.11 p21.3 p21.2 p21.1	p11.4 p11.3 p11	.23 p11.22 p11.21 p11.1 q11.2			q21.32 q21.33 q22.1 q22.	2 q22.3 q23	q24 q25 q26.1	q26.3 q27.1
I	100,611,000 bp	I	100,611,100 bp	500 bp	100,611,200 b	P	1	100,611,300 bp	1
	-								
				NM_000061.2					
		1. J.				1			
1					and the second second				
•					-		1		
	1 I.	}							
							- I - I		
								I	
					I		1		
							1		
							1		
								1.11	1 1
		LDRHLFQKSE	L Y E M A E C V D K C M E L L Q Q T Q F I	R H R M E R L Y N L L C G I BTK	NAMYETIIFIPRO	2 K T C V G Y L Q V L K E H S			• • • • •

BTK resistance after ibrutinib

- Acquired resistance usually involves *BTK or PLCG2*
- Mutations can be detected at median of 9 mos up to 15 mos before clinical progression

Woyach et al. 2017. J Clin Oncol 35: 1437-1443.

- Due to ibrutinib and acalabrutinib resistance, the patient will enroll in a clinical trial
 - Selective PKC-B inhibitor
 - Rituximab/venetoclax is another alternative for those with BTKi resistance mutations

NGS CLL Panel

- When should you use it?
 - May be more useful when relapsing rather than at diagnosis
- What kind of information can it give you?
 - Mutations that indicate drug resistance
 - Some prognostic indicators
 - A few genes are included for other lymphomas
- Genes tested: ATM, BCL2, BIRC3*, BRAF, BTG1, BTK, CARD11, CD79B, CXCR4, DDX3X, FBXW7, IKZF3, KRAS, MAP2K1, MED12, MGA, MYD88, NOTCH1, NRAS, PLCG2, POT1, RPS15*, SAMHD1, SF3B1, TP53, XPO1, ZMYM3

CLL Prognostication/ Response to Therapy

Gene	Mutation	Incidence (CLL)	Effect
ВТК	C481S	Up to 80% of relapsed; rare in tx-naive	Resistance to BTKi
	Germline		X-linked agammaglobulinemia (XLA)
BIRC3	various	2-8% at dx; 4-25% of relapsed	Higher incidence in relapsed/refractory CLL
NOTCH1	P2514fs	5-22%	Poor prognosis, progression, tx resistance
PLCG2	Various	80-85% of progressive/ relapsed	Often with BTK mutation; Unclear whether independently confers resistance to BTKi
POT1	Germline		Familial CLL
ТР53	Missense mutations in DNA binding domain	5-14%	Poor response to tx, progression, shorter OS
BCL2	G101V	rare	Resistance to venetoclax

Genes Useful in Dx other than CLL

- MYD88 and CXCR4
 - MYD88 L265P very common in Lymphoplasmacytic Lymphoma (also some DLBCL – not entirely specific)
 - Helpful when DDx with other small B-cell lymphomas
 - CXCR4 seen in 30-40% of LPL cases
 - Germline -> WHIM syndrome
 - Somatic nonsense/frameshift mutations eliminate Ser339 ->
 - Resistance to BTK inhibitor therapy

- BRAF V600E
 - For heme malignancies, specific for Hairy Cell Leukemia and Langerhans Cell Histiocytosis
 - (Non-V600E mutations seen in CLL)

Case #2

- 65-year-old male presents with abdominal pain that has been worsening over the past six months, and unintentional 15 lb. weight loss
- PET CT:
 - Multiple hypermetabolic lymph nodes throughout the neck, chest, abdomen and pelvis
 - Needle core biopsies are performed: (not shown)
 - Diagnosis: CD5 negative, CD10 negative low grade B-cell lymphoma with plasmacytic differentiation

Other studies

- CBC
 - Mild N/N anemia (Hgb 11.0 g/dl)
 - Normal WBC with normal diff and platelet counts
- SPE/IFE:
 - M-spike in the gamma region. 1.64 g/dl IgM kappa

• MYD88 L265P: Detected

• Diagnosis?

MYD88 L265P specificity

Table 1. Selected Prior Studies of MYD88 Mutation Prevalence in Key Subtypes of Low-Grade B-Cell Lymphoma						
Source, y	Assay Methodology	LPL, WM, or Both, %	MZL,ª %	CLL/SLL, %		
Puente et al,13 2011	NGS			3		
Wang et al, ¹⁴ 2011	NGS			10		
Li et al,15 2012	Sanger		6			
Treon et al, ⁶ 2012	Sanger	91	7			
Gachard et al, ¹⁶ 2013	RE digestion	67	4			
Xu et al,28 2013	AS-PČR	93	10	4		
Varettoni et al,29 2013	AS-PCR	100	6			
Ondrejka et al, ²³ 2013	AS-PCR	100	8	0		
Mori et al, ⁷ 2013	Sanger	30				
	RE digestion	74				
	AS-PČR	70				
Jiménez et al, ⁸ 2013	AS-PCR	80	21	0		
Traverse-Glehen et al,18 2013	Sanger		5			
Tren et al,17 2013	SNaPshot/Sanger		4			
Poulain et al, ⁹ 2013	Sanger ^b	79	6	0		
Ogura et al, ¹⁹ 2013	Sanger	78	0	0		
Current study, 2015	Pyrosequencing	94	4	3		

Abbreviations: AS-PCR, allele-specific polymerase chain reaction; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; LPL, lymphoplasmacytic lymphoma; MZL, marginal zone lymphoma; NGS, next-generation sequencing; RE, restriction enzyme; WM, Waldenström macroglobulinemia.

^a Various combinations of MZL subtypes were assessed in the different studies.

^b Performed on purified B-cell population after immunomagnetic sorting.

Yu et al. Cancer Res 2018

Diagnosis

- Lymphoplasmacytic lymphoma
- (Waldenstrom macroglobulinemia)

- Patient is currently being followed with observation
- Indications for treatment:
 - B symptoms
 - Threatened end organ function
 - Progressive bulky disease
 - Progressive anemia (Hgb <10 g/dl)
 - Progressive thrombocytopenia (plt <100K/ul)

- Hyperviscosity
- Peripheral neuropathy
- Symptomatic cryoglobulinemia
- Symptomatic cold agglutinin anemia
- Autoimmune hemolytic anemia
- Nephropathy or amyloidosis related to WM

Case #3

 59-year-old female presented with bilateral neck and axillary lymphadenopathy, fever, night sweats and weight loss

• A mesenteric lymph node biopsy is performed:

IHC Markers of TFH phenotype

CD10

BCL6

PD1

CXCL13

ICOS

T-cell receptor gene rearrangement

Diagnosis

- Lymph node, mesenteric:
 - Angioimmunoblastic
 T-cell lymphoma

2 months later PET CT showed progression with suspicious muscle findings

Clonality Testing

When to use T-cell clonality testing?

- There are MANY examples of clonal T-cell proliferations that are NOT neoplastic
- Still can be very helpful in tissues (lymph node, etc.) that look like a T-cell lymphoma, but more evidence/support is needed.

Imgt.org

www.sbs.utexas.edu

T-cell receptor rearrangement

- TRD -> TRG -> TRB -> TRA
- This happens in all T-cells, regardless of $\alpha\beta$ or $\gamma\delta$ expression
- Thus, all αβ T-cells (the most common subset) will have identifiable (but not expressed) TRG rearrangements

Figure 6. The T cell receptor γ chain locus on chromosome region 7p15 contains a limited number of variable and joining region genes that make it ideal for PCR amplification of the rearrangements.

B-cell clonality testing operates under the same principles

BJH 2018; 181: 11-26.

14q32

Figure 1. Immunoglobulin heavy chain gene rearrangement. Most PCR tests for this rearrangement use consensus primers directed against the framework three (FRIII) region and the heavy chain joining (J_H or FRIV) region of the rearranged product.

Arber, JMD 2000

Physiologic ("normal") B- or T-cell populations

Assumption of Clonality in Cancer is Critical to Diagnostic Tools (Flow, Molecular)

A **Clonal Evolution Model**

https://doi.org/10.3389/fsurg.2016.00021

Lymphoma Diagnosis

Morphology

Immunohistochemistry

Flow cytometry

• This is enough! (Most of the time...)

CD20

Pitfalls of Clonality Testing

- Failed amplification
 - Low quantity
 - Poor quality (FFPE)
- Sampling
 - Pseudoclones
 - Wrong area
- False negatives
 - Somatic hypermutation (Follicular lymphoma)
 - Sampling wrong area
 - Clone too small; high reactive background
- "False positives"
 - Clonal proliferation in non-neoplastic processes

Clonal expansion as part of normal immune response

Nat Rev Immunol. 2015 Mar;15(3):149-59.

Non-Neoplastic Clonal T-cells

- There are MANY examples of clonal T-cell proliferations that are NOT neoplastic
 - Commonly skin, peripheral blood
 - Post transplant
 - Various immune responses
 - Inflammatory (Crohn's etc.)
 - Malignancy (CLL/SLL, etc.)

Example from ESRD patients – Peripheral blood T-cells

Huang et al. Immunity & Ageing 2015;12:28.

T-cell repertoire decreases with age

Diversity

CD8

40 50 Age at blood collection

60

70

K. Yoshida et al. / Experimental Gerontology 96 (2017) 29-37

Diversity CD4 ~ -0 O. 8 00 ₽. 2 9 9 5 40. 4 4 3 e. N N $Y = \beta_0 + \gamma_0$ $Y = \beta_0 + \gamma_0 + \beta_1 * sex + \beta_2 * age + \beta_3 * sex * age^2$ Υ. ς. 0 0 20 30 40 50 Age at blood collection 60 70 20 30

Fig. 1. CD4 and CD8 TCR diversity and clonality. Points are observed, repeated values: solid circles represent males (color coded in blue, green, and black); open circles represent females (color coded in brown, red, and tan). Solid lines connect the fitted values of the best-fitting models at the observed age points. The single gray line is the population-average trajectory, deviations from which reflect differences in overall level, slope, or both.

32

Pitfalls of Clonality Testing

- Failed amplification
 - Low quantity
 - Poor quality (FFPE)
- Sampling
 - Pseudoclones
 - Wrong area
- False negatives
 - Somatic hypermutation (Follicular lymphoma)
 - Sampling wrong area
 - Clone too small; high reactive background
- "False positives"
 - Clonal selection in non-neoplastic processes

Clonality testing: The future...

- Using NGS data for T-cell clonality
 - More powerful
 - Not just used for clonality, but can examine different types of T-cell immune responses in other nonhematologic malignancies
 - May alter therapy choices; immune checkpoint inhibitors

- The downside
 - Longer TAT
 - Higher cost
 - Clones may be readily identified and still does not solve the problem that clonality ≠ lymphoma!

NGS in recurrence

Identification of Clonal TCR Sequence in Initial Time Point

ACTGACCTATCACCAGACCA (90%) CTGGCTAGGCATTAGGACTA (1%) GCCTCAGGACTTAACTTACT (0.5%) CTAGGCTACGGCTACATTAC (0.5%)

Subsequent Biopsy Time Points

Determine if initially identified clonal sequence is still present

ACTGACCTATCACCAGACCA

CGTACCAGCTTACATCGACA CTCGACCTAGATTACTACTA CGGACTACGGCTAGTTACAT

Determine if peaks look similar

J Am Acad Dermatol 2015;73:228-36.

Fig 4. Mycosis fungoides. **A**, Representative skin biopsy specimen characterized by a lymphocytic infiltrate composed of small to medium atypical cerebriform cells demonstrating epidermotropism. Haloed cells are notable within the epidermis. (Hematoxylin-eosin stain; original magnification: $\times 20.$) **B**, Lymphocytes were immunoreactive for CD2, CD3, and CD5, with reduced CD7 positivity. As CD4 also stains Langerhans cells in the epidermis, there are more CD4⁺ cells than CD3⁺ cells in the epidermis. Because of this, it is important to compare CD3 and CD8 when examining the epidermal compartment. The CD3⁺CD8⁻ cells likely correspond to CD4⁺ T cells. CD4 expression was greater than that of CD8. (Immunohistochemistry, original magnification: $\times 20.$)

J Am Acad Dermatol 2015;73:228-36.

Case 1

Case #4

A 73-year-old male presents with multiple skin lesions.

- Positive:
- CD30, CD3, CD4
- Negative:
- ALK, P63, CD8

Diagnosis

• Skin, biopsy:

- Anaplastic large cell lymphoma, ALK-negative

- ?Systemic or primary cutaneous?
- Prognosis?

Specificity of IRF4/DUSP22 rearrangement

From Leica Biosystems

FISH for IRF4/DUSP22

Positive (1F, 1G, 1O)

Our Patient (Atypical: 1F, 1G)

Algorithm for ALCL work-up and Prognosis

Marker	Frequency	Prognosis (5yr OS)
ALK1 (IHC)	~50%*	85%
DUSP22 (FISH)	30% of ALK neg	90%
TP63 (p63 IHC to screen, then FISH)	8% of ALK neg	17%
None of these	~30%*	42%

Castellar et al. Blood. 2014 Aug 28; 124(9): 1473–1480.

Conclusions

- CLL NGS panel can be very useful in CLL patients with relapsed or refractory disease
 - Treatment management
- MYD88 mutation testing can be helpful in confirming the diagnosis of lymphoplasmacytic lymphoma in the appropriate clinical and histomorphologic context.
- Molecular clonality assays can be very helpful in lymphoma diagnosis, if used in the right context, with an awareness of possible "pitfalls".
 - Most importantly they should be combined with impression from all other studies and history
 - Can investigate "relatedness" of tumors
- DUSP22 FISH should be used routinely in the work-up of anaplastic large cell lymphoma, especially if there is skin involvement

