Emerging Dermatophytes

Sarah Kidd PhD FASM FECMM

National Mycology Reference Centre SA Pathology, Adelaide

sarah.kidd@sa.gov.au

www.mycology.adelaide.edu.au

Disclosures

Conference & travel	Pfizer, AusDiagnostics		
Advisory boards/consulting	Pfizer, Gilead Sciences, Mayne Pharma, Merck Sharp & Dohme		
Honorariums/speaker fees	Pfizer, Gilead Sciences		
Royalties	Kidd et al., Descriptions of Medical Fungi 4 th Ed 2023		
Relevant committees	CLSI M38, WHO FPPL, WHO fungal diagnostics landscape		

Images are from Mycology Online or my own, except where otherwise credited

Dermatophyte infections

- A group of fungi that colonise and invade keratinised tissue
 - Unique ability among fungi to produce keratinases
 - Infections of skin, nails and hair
- Infections typically superficial but can be debilitating. Rarely invasive.
- Global prevalence of infection ~20%
- Common presentations: tinea pedis, tinea capitis, tinea corporis, onychomycosis
- Most commonly caused by *Trichophyton rubrum* and *T. interdigitale* (*T. mentagrophytes* complex).
 - Regional variability in presentation, and prevalent species
 - Typically treated with topical and/or oral terbinafine, or itraconazole.
 Historically, resistance is rare.

Traditional diagnostics

- Gold standard: microscopy and culture of skin scrapings, nail scrapings, hair plucks, etc.
- Direct microscopy of KOH digested tissue stained with optical brightener (e.g. calcofluor white)
 - Sensitivity 82–91%, specificity poor
- Culture requires specialised media, e.g. Lactritmel agar, containing antibiotics and cycloheximide
 - Limit overgrowth of bacteria and saprophytic fungi
 - Up to 4 weeks incubation time.
 - Sensitivity 40–60%, specificity excellent
 - Identification of fungi requires sig. expertise

PCR detection of dermatophytes

- Sensitivity of PCR 20–30% higher than culture
 - Dermatophytes often overgrown with saprophytes in culture
 - Detects non-viable fungal elements, e.g. post treatment
- TAT significantly reduced compared to culture
- Range of species detected varies between commercial assays
 - Some assays have pan-dermatophyte detection ±
 - Detection of common species e.g. T. rubrum, T. interdigitale (T. mentagrophytes complex)
 - Often identify only to genus or species complex level
 - May not differentiate emerging species of interest

Case: 27F

- Recently emigrated from Ireland (Nov 23). Now living in Western Australia.
- Presented with 12 mo. widespread plaque lesions to face, chest, groin and thighs
- Previous skin scraping grew *Trichophyton mentagrophytes*
 - 6 weeks oral terbinafine 250 mg/day, rash got worse
 - Switched to itraconazole but was taking "on and off" due to photosensitivity. Little improvement of lesions
 - Still taking itraconazole when she presented to Australian GP

Images courtesy Dr. Catriona Hayes

Lab investigations

- Skin scraping collected by GP and submitted to a laboratory for fungal MC&S:
 - Microscopy: "++ fungal hyphae typical of a dermatophyte"
 - Culture: "Trichophyton interdigitale isolated"
- Referred to Adelaide for susceptibility testing

KOH-blankophor direct microscopy (not this patient's specimen)

Colony surface

Colony reverse

Microscopic morphology

Urease test – 7 days, 26°C

- Morphologically resembling *T. interdigitale* and
 T. mentagrophytes
- Nil urea hydrolysis at 7 days, unlike *T. interdigitale/* mentagrophytes
- Molecular identification/confirmation required

ITS sequence comparison

Comparison of ITS1-5.8S-ITS2 sequence with those of *Trichophyton* reference sequences revealed clustering with *Trichophyton indotineae* (previously *T.men* genotype VIII).

Note: use of reference sequences for identification is critical due to errors and misidentifications in Genbank

24-032-14520

T. indotineae VIII LC508728.

Reference sequences: Uhrlaß et al J Fungi 2022

Trichophyton mentagrophytes complex

5.0E-4

Trichophyton indotineae

- Commonly presents as extensive pruritic annular lesions on the trunk, face, groin, buttocks.
 - Hallmark is greater severity and frequent relapse, compared to other dermatophyte infections
- Transmission via skin-to-skin contact and fomites
- Associated with terbinafine-resistance (but not intrinsic resistance)
 - ~72% Terb-R.
 - Regional variability in India (North 76%-R vs. South 16%-R)
- Azole resistance observed in ~10% of isolates.

Ebert et al, *Mycoses* 2020; Brasch et al, *J Dtsch Dermatol Ges.* 2021; Kong et al, *AAC* 2021; Yamada et al, *AAC* 2022; 2023; Spivack et al, *Emerg Infect Dis.* 2024; Kumar et al., *J Mycol Med.* 2022; Khurana et al, *JAAD* 2024

Image: Uhrlaß et al, J Fungi 2022

Image: Khurana et al, JAAD 2024

Uhrlaß et al *J Fungi* 2022

Why has resistance exploded?

- Over >1 year, this patient reported:
 - erratic use of topical and oral antifungal drugs
 - using >100 tubes OTC fixed-dose combination steroid/antifungal/antibacterial creams
- Sub-optimal dosing & low efficacy brands
- Steroids suppress local cellular immunity

"Tinea has become an Indian Frankenstein's monster, nurtured by the same pharmaceutical industry that continues to manufacture existing [fixed drug combinations], i.e. topical antifungals with steroid."

Shyam Verma, Lancet Infect Dis 2018

Global expansion of Trichophyton indotineae

- Proliferation across Indian subcontinent over past decade
- Epidemic-levels reported from India, Iran
- Now the most common cause of dermatophytosis in India (78%)
- Expanding throughout rest of the world

Lab identification

- Morphologically similar to *T. interdigitale* and
 T. mentagrophytes
- MALDI-ToF can differentiate *T. indotineae*, but not yet represented in commercial databases
- Currently detected but not differentiated in dermatophyte PCR assays (e.g. AusDiagnostics)
- Definitive identification is by ITS1-5.8S-ITS2 sequencing with comparison to reference sequences
- High index of suspicion required, clinical notes important
 - Travel? Recalcitrant infection?
- Most T. indotineae isolates nil urea hydrolysis at 7 days

Colony surface

Colony reverse

Microscopic morphology

Urease test – 7 days, 26°C

T. indotineae resistance mechanisms

Antifungal susceptibility testing

- CLSI and EUCAST BMD methods endorsed for dermatophyte AFST
 - Very labour intensive
 - No lab in Australia has resources for this not even the reference labs!
- Limited commercial assays for terbinafine
- Terbinafine Neosensitab discs available (Rosco Diagnostica) but there are no interpretive criteria for dermatophytes.
- Terbinafine Ezy MIC gradient strips now available in Australia (HiMedia/WishMed).
- No validated/endorsed MIC breakpoints for dermatophytes, but some studies have suggested:
 - Terb ≥0.5 µg/mL associated with resistance

Not to be used for interpreting MICs on lab reports, but could be used to discuss appropriate treatment with GPs

Case: terbinafine susceptibility

Neosensitabs terbinafine (30 μg) (Rosco Diagnostica)

HiMedia Terbinafine Ezy MIC strip (WishMed, Sydney, Aust.)

Terbinafine zones/MICs vs. mutations

Species ID Accession number	Accession number	Terb disk	Terb gradient	SQLE Mutations						
	zone	strip MIC	E174D	L393S	L393F	F397L	Q408L	A448T	1483V	
T. interdigitale	ATCC MYA-4439	not done	0.04-0.06	_	_	_	_	_	_	_
T. indotineae	2403214520	48 mm	0.064	_	-	-	-	_	_	_
T. indotineae	2402214787	50 mm	0.006	_	-	-	_	_	_	_
T. indotineae	2335408581	50 mm	0.023	_	_	_	_	_	_	_
T. indotineae	2220622462	50 mm	0.016	_	-	_	_	_	_	_
T. indotineae	2405814832	9 mm	4	_	_	_	+	_	_	_
T. indotineae	2402214796	9 mm	>32	_	_	_	+	_	_	_
T. indotineae	2403006224	9 mm	8	_	_	_	+	_	_	_
T. indotineae	2402214791	11 mm	8	_	_	_	+	_	_	_

Case: other antifungals

- Sensititre YeastOne panel (AUSNMRC1)
 - Inoculation, incubation and interpretation according to CLSI M38 standard

- No azole breakpoints, but the following MICs proposed as non-wild type:
 - Itraconazole MICs ≥0.5 µg/mL
 - Voriconazole MICS ≥ 0.25 µg/mL
- Other azole MICs also appear to be high

Antifungal	MIC (μg/mL)				
Itraconazole	1				
Isavuconazole	2				
Posaconazole	1				
Voriconazole	1				
Fluconazole	>256				
Amphotericin B	2				

^{**}Liang et al. Chinese expert consensus on management of antifungal-resistant dermatophytosis. *Mycoses* 2024 Singh et al *Indian J Dermatol* 2020; Lockhart et al *Nature Rev Microbiol* 2023

Case follow-up

• Confirmed *T. indotineae*, appearing to be susceptible to terbinafine, resistant to azoles.

- Switched back to terbinafine, but with increased dose, at 250 mg twice daily
 - Duration not clear, but was >8 weeks

Lesions had significantly improved as at Oct 2024

Trichophyton mentagrophytes complex

5.0E-4

T. mentagrophytes genotype VII (TMVII)

- Associated with painful, pruritic, annular lesions on buttocks, groin, genitals or face
- Often leading to scarring and secondary bacterial infection
- Predominantly transmitted through sexual contact

Kupsch 2019

Luchsinger 2015

Jabet 2023

Reported TMVII cases

- 2016-2017 Berlin: 37 TMVII cases, 60% male, 40% female
- 2021-2022 Paris: 13 TMVII cases in men (12 MSM), 2/13 co-infected with Mpox
- 2022-2023 Paris: A further 32 cases, all in men (30 MSM)
 - 15 cases sporadic, including four among sex workers
 - 17 cases belonged to a cluster, traced to a "tantric masseur" who infected 16 people
 - Incubation period 16 days (2-52 days)
- 2024 USA: 1 male case with travel to Europe, sexual contact with several other men while travelling.
- 2024 USA: A further 4 cases in NYC, all MSM
- TMVII theorised to have emerged from Southeast Asia via travel for sex tourism, now expanding globally, largely via sexual transmission

Is TMVII the first fungal STI?

 Despite strong evidence for sexual transmission, TMVII doesn't fit the classical definition of STI, infections transmitted through exchange of body fluids during sexual activity

When is it a sexually transmitted infection? Intimate contact transmission of pathogens not traditionally defined as STIs

Angelo Roberto Raccagnia, Antonella Castagnaa, and Silvia Nozzaa, b

Curr Opin Infect Dis 2025, 38:65–70

"Clinicians should broaden their diagnostic considerations to include emerging STIs"

"Recognition that non-traditional pathogens can be spread through sexual contact allows for screening protocols and specific management strategies that go beyond the traditional focus on bacterial and viral STIs."

Lab identification of TMVII

- Cannot be differentiated by morphology or phenotypes
- Cannot be differentiated by MALDI-ToF
- Currently only differentiated from other T. *mentagrophytes* complex species/genotypes by ITS sequence typing using reference strains
 - Beyond capabilities of most labs
- High index of suspicion needed
- Consider referring any isolate from tinea genitalis cases for sequence-based identification

Treatment of TMVII infections

- Generally susceptible to antifungals
- Oral terbinafine (250 mg/daily) an effective first line option.
- Some patients successful with itraconazole with topical adjuvant therapy
- Topical antifungals alone are not recommended
- Topical steroids should be avoided
- Take treatment until all lesions fully resolved, may take up to 3 months
- Education of patients on treatment compliance, and avoiding skin to skin contact and possible fomites until all lesions resolved

Final comments

- *T. indotineae* isolates are likely to exhibit antifungal resistance, but other dermatophyte species are sporadically resistant.
- Labs and clinicians need to have high index of suspicion for *T. indotineae*, and of dermatophytes as agent of STI.
- Global expansion of resistant pathogenic fungi and new transmission risks will continue in response to selective pressure from clinical antifungals, fungicide use, and climate change (see also *Candida auris*, azole-resistant *Aspergillus*)

Think Fungus

With thanks

Dr. Lucy Crawford

A/Prof. David Ellis

Sonia Kralj

Dr. Ian Ross

Dr. Lex Leong

Dr. Jacob May

A/Prof. Morgyn Warner

SA PATHOLOGY

Dr. Gerhard Weldhagen

Dr. Catriona Hayes

Dr. Jonathon Chan

Prof. Sharon Chen

Dr. Catriona Halliday

NSW Health Pathology

Dr. Shawn Lockhart

A/Prof. Lars Westblade (B)

