New Classifications for Cytology: The Milan System for Salivary Gland (One Year In)

Jeffrey F. Krane, MD PhD Professor of Pathology, David Geffen School of Medicine at UCLA

Objectives

- Review the bases for the Milan classification system
- Identify the morphological criteria and pitfalls for various benign and neoplastic entities
- Demonstrate the role of ancillary immunocytochemical and molecular tests in lesions of these sites
- Recognize the management options of lesions in these sites

The Benefits of a Uniform Reporting System for Salivary Gland Cytopathology

Improve communication

- Between pathologists, clinicians and patients

Improve patient care

- Help standardize ROM and clinical management

Facilitate cytologic-histologic correlation

Facilitate research and sharing of data from different laboratories for collaborative studies

The Milan System for Reporting Salivary Gland Cytopathology

Assembled in 2015

Sponsored by the ASC and the IAC

Goal to produce a practical, user-friendly and internationally accepted classification system

Evidence-based

Anticipated that the classification system and ROM for the diagnostic categories will be further refined as more data is available in the literature

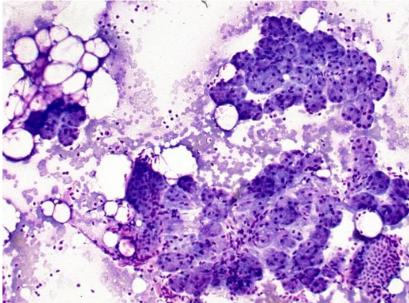
The Milan System for Reporting Salivary Gland Cytopathology

Milan Atlas

45 Members from 15 countries Cytopathologists, Surgical Pathologists, Molecular Pathologists, ENT Surgeons Published 2/2018 The Milan System for Reporting Salivary Gland Cytopathology

> William C. Faquin Esther Diana Rossi Editors

Zubair Baloch Güliz A. Barkan Maria P. Foschini Daniel F.I. Kurtycz Marc Pusztaszeri Philippe Vielh Associate Editors

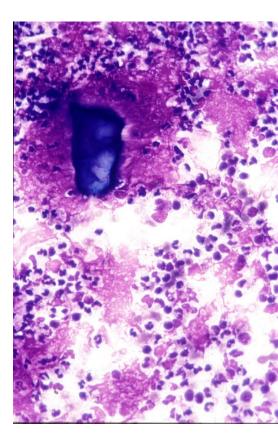

The Milan System for Reporting Salivary Gland Cytopathology

Classification Scheme

- 1) Non-Diagnostic
- 2) Non-Neoplastic
- 3) Atypia of Undetermined Significance (AUS)
- 4) Neoplasm:
 - a) Benign
 - b) Salivary Gland Neoplasm of Uncertain Malignant Potential (SUMP)
- 5) Suspicious for Malignancy
- 6) Malignant

Non-Diagnostic

- "...for qualitative and/or quantitative reasons provides insufficient diagnostic material to provide an informative interpretation"
- Poorly preserved slides with artifacts that preclude evaluation
- Includes aspirates with benign elements only, in the setting of a defined mass
- Includes non-mucinous cyst contents without epithelial elements


Non-Diagnostic

- Adequacy criteria not clearly established
 - "recommended that until more data is available a minimum of 60 lesional cells, could be used as a reasonable and objective measure of adequacy"
- Excludes cases with significant cytologic atypia
 - AUS
- Excludes mucinous cysts without epithelium
 - AUS
- Excludes abundant inflammatory cells
 - Non-neoplastic
- Excludes aspirates with matrix elements
 - ?Neoplasm:Benign or AUS

Non-Neoplastic

Specimens lacking evidence of a neoplastic process:

- Inflammatory
- Metaplastic
- Reactive
- Examples:
 - Acute, chronic, and granulomatous sialadenitisSialadenosis
 - •Reactive lymph nodes (flow cytometry desirable)
- Clinico-radiological correlation is essential to ensure that the specimen is representative of the lesion

Atypia of Undetermined Significance

Cannot entirely exclude a neoplasm

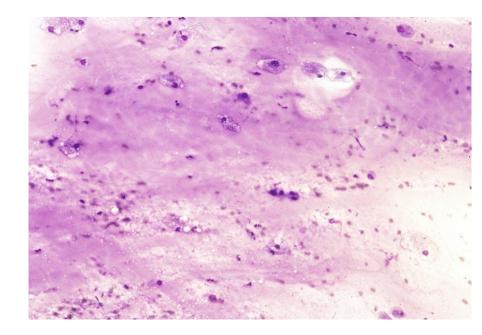
Heterogeneous category

A majority will be reactive atypia or poorly sampled neoplasms

Specimens are often compromised

- (eg, air-drying, blood clot)

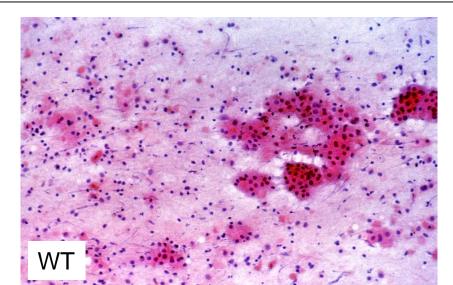
Should be used rarely

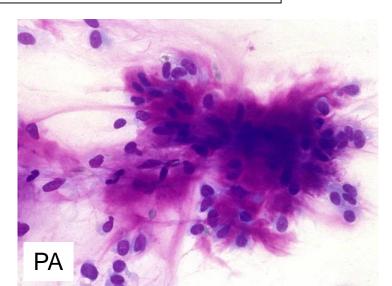

- (<10% of all salivary gland FNAs)

Atypia of Undetermined Significance (AUS)

Cannot entirely exclude a neoplasm

- Reactive/reparative atypia
- Metaplastic changes
- Low cellularity
- Preparation artifact
- Lymphoid lesion

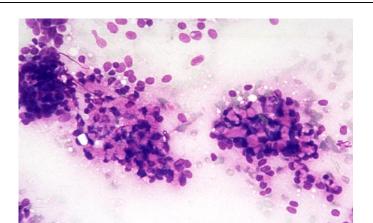

Mucinous cysts with no or limited cellularity

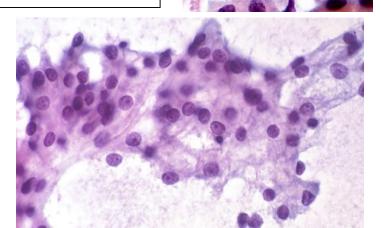


Neoplasm

A) Neoplasm: Benign

- Reserved for clear-cut benign neoplasms
- Includes classic cases of PA, WT, lipoma, etc...





Neoplasm

<u>B) Neoplasm: Salivary Gland Neoplasm of Uncertain</u> <u>Malignant Potential</u>

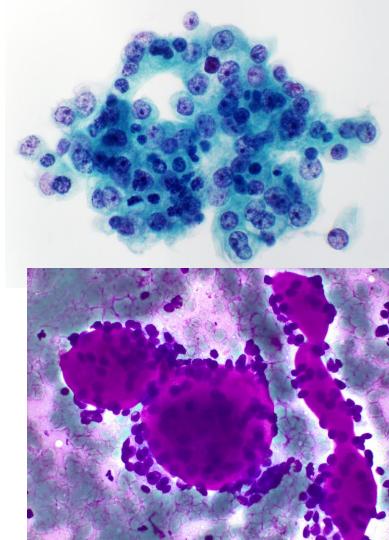
- Diagnostic of a neoplasm; however, a diagnosis of a specific entity cannot be made
- A malignant neoplasm cannot be excluded
- Three major differentials:
 - -Basaloid -Oncocytic -Clear cell

Suspicious for Malignancy

Aspirates which are highly suggestive of malignancy but not definitive

Often high-grade carcinomas with limited sampling or other limitation

Or neoplastic with limited cytologic features suspicious for a specific malignancy, but not diagnostic (e.g., adenoid cystic, mucoepidermoid, acinic)


Malignant

Aspirates which are diagnostic of malignancy

Sub-classify into specific types and grades of carcinoma: e.g. low grade vs high grade

"Other" malignancies

- Lymphomas
- Sarcomas
- Metastases

The Milan System for Reporting Salivary Gland Cytopathology Overview of Terminology and Reporting

Diagnostic Category	ROM	Management
I. Non-Diagnostic	25%	Clinical and
		radiologic
		correlation/
		repeat FNA
II. Non-Neoplastic	10%	Clinical follow-
		up and
		radiologic
		correlation
III. Atypia of Undetermined Significance (AUS)	20%	Repeat FNA
		or surgery
IV. Neoplasm		
A. Benign	<5%	Surgery or
		Clinical F/U
B. Salivary Gland Neoplasm of Uncertain Malignant Potential	35%	Surgery
(SUMP)		
V. Suspicious for Malignancy	60%	Surgery
VI. Malignant	90%	Surgery

Ancillary testing

What are the tests? Which entities are they helpful in diagnosing?

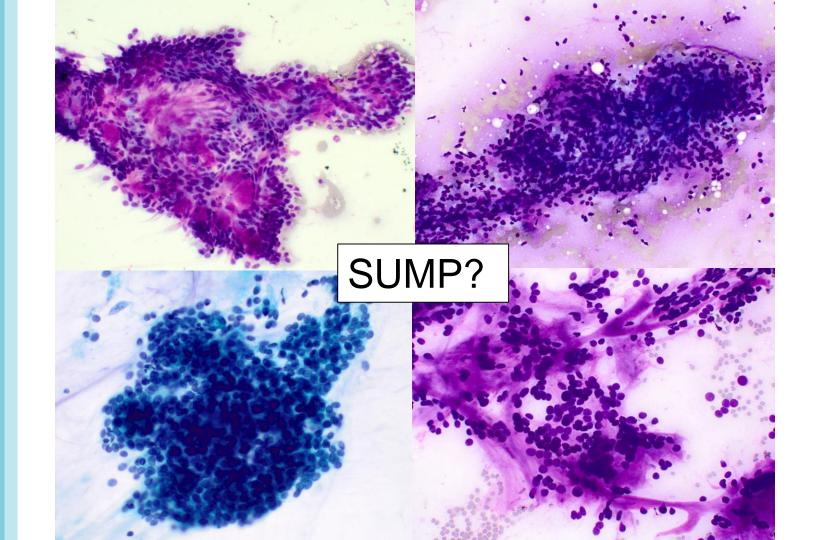
When should we use them?

Surgical Management of Parotid Tumors

Facial nerve is key

Benign tumors and low-grade carcinomas

- "Lumpectomy"/Superficial parotidectomy
- Observation an option in subset (e.g., WT in elderly patient)

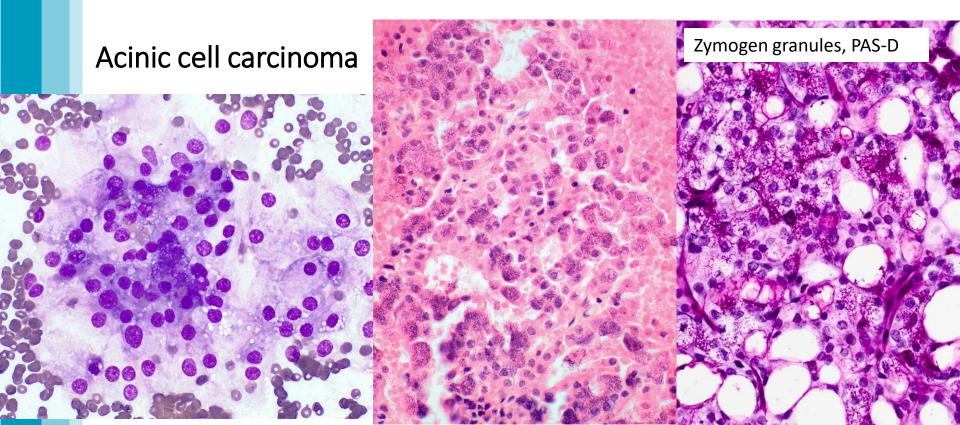

High-grade carcinomas

- Total parotidectomy
- Often accompanied by neck dissection
- Typically with radiation therapy

The Milan System for Reporting Salivary Gland Cytopathology

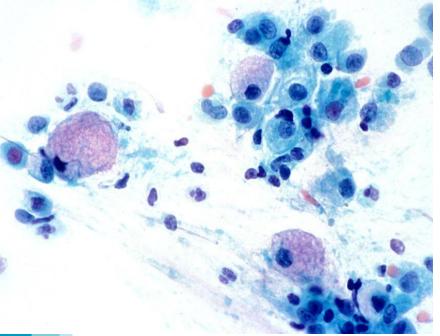
Overview of Terminology and Reporting

	Diagnostic Category	ROM	Management
	I. Non-Diagnostic	25%	Clinical and
			radiologic
			correlation/
			repeat FNA
	II. Non-Neoplastic	10%	Clinical follow-
			up and
			radiologic
			correlation
	III. Atypia of Undetermined Significance (AUS)	20%	Repeat FNA
			or surgery
	IV. Neoplasm		
	A. Benign	<5%	Surgery or
			Clinical F/U
	B. Salivary Gland Neoplasm of Uncertain Malignant Potential	35%	Surgery
	(SUMP)		
	V. Suspicious for Malignancy	60%	Surgery
	VI. Malignant	90%	Surgery


Ancillary tests

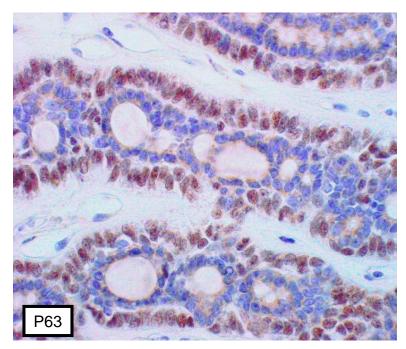
Histochemical stains Immunochemical stains

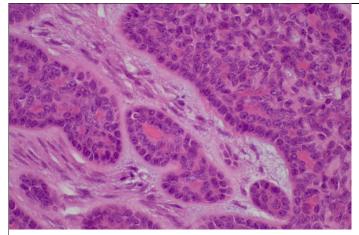
FISH, Cytogenetics, NGS


(Flow cytometry)

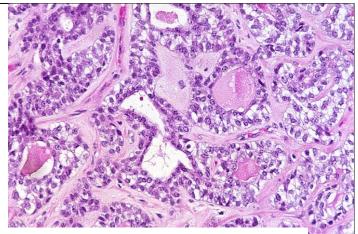
Histochemical stains

Histochemical stains

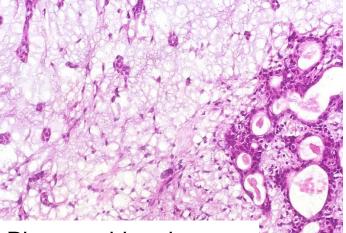

Mucoepidermoid carcinoma - MucicarmineLow-gradeHigh-grade

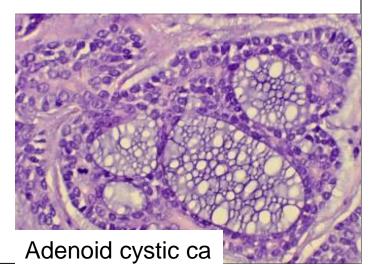


Immunochemistry: Myoepithelial cells


Variable staining with one or more of the following:

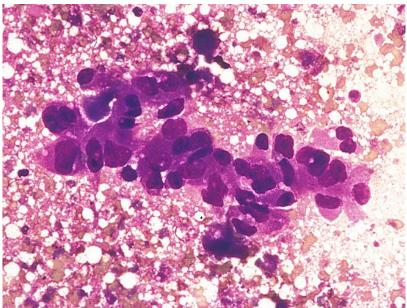
- P63/P40
- S100
- Keratin
- Calponin
- Smooth muscle actin
- SOX10

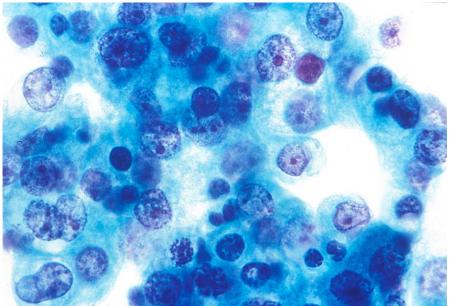


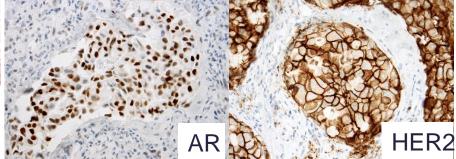

Basal cell adenoma/adenocarcinoma

Epithelial-myoepithelial ca

Pleomorphic adenoma



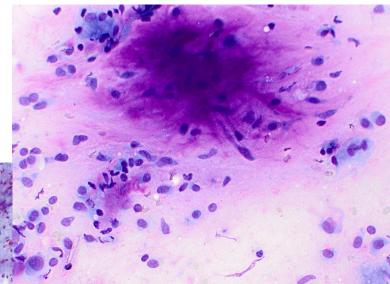

Characteristic immunoprofiles


Diagnostic markers not specifically related to defining genetic alterations

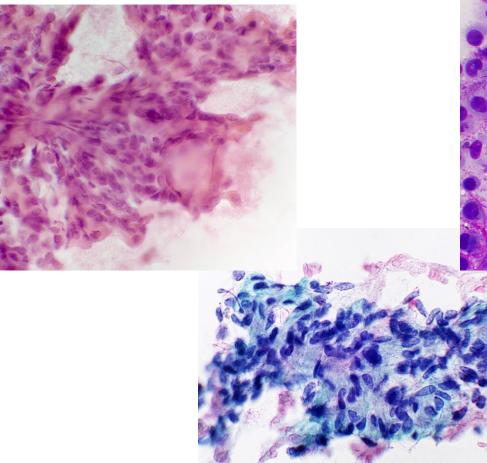
Tumor	IHC Markers	
Salivary Duct Carcinoma	AR+, HER2+(subset)	
Mucoepidermoid Carcinoma	p63+/p40+	
Secretory Carcinoma	S100+, mammaglobin+	
Polymorphous Adenocarcinoma	p63+/p40-	

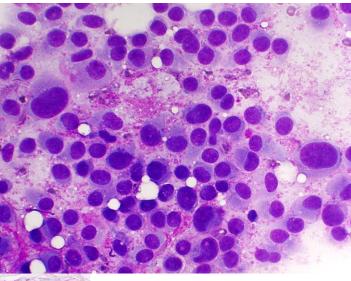
Salivary duct carcinoma

Surrogate genetic markers

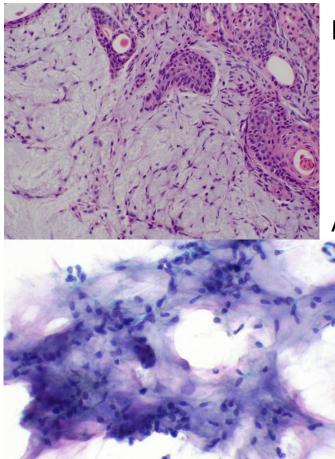

Tumor	Genetic Alteration	Genes Involved	IHC Surrogate Markers
Pleomorphic Adenoma (and Carcinoma ex PA)	Translocation 8q12 Translocation 12q13- 15	PLAG1 HMGA2	PLAG1+ HMGA2+
Basal Cell Adenoma	3p22.1 mutation	CTNNB1 CYLD	β-catenin+
Adenoid Cystic Carcinoma	t(6;9)(q22-23;p23-24)	MYB-NFIB	MYB+
Mucoepidermoid Carcinoma	t(11;19)(q21;p13) t(11;15)(q21;q26)	CRCT1-MAML2 CRCT3-MAML2	
Secretory Carcinoma	t(12;15)(p13;q25)	ETV6-NTRK3	Pan-TRK+
Acinic Cell Carcinoma	t(4;9)(q13;q31)	NR4A3	NR4A3+
Clear Cell Carcinoma	t(12;22)(q13;q12)	EWSR1-ATF1	
Polymorphous Adenocarcinoma	14q12 mutation	PRKD family	

Pleomorphic adenoma


Epithelial cells

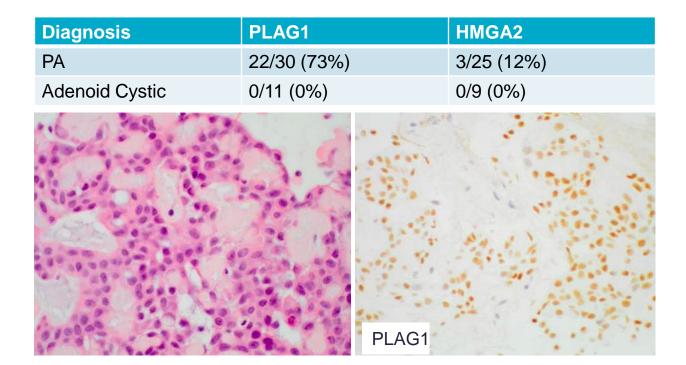

Myoepithelial cells

Fibrillary chondromyxoid matrix



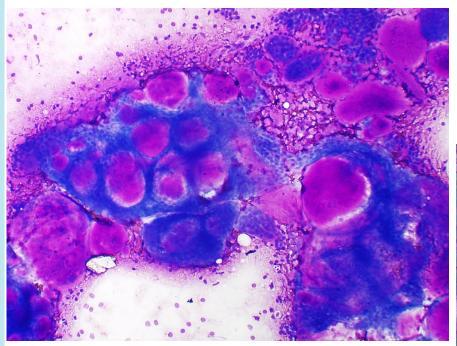
Pleomorphic adenoma

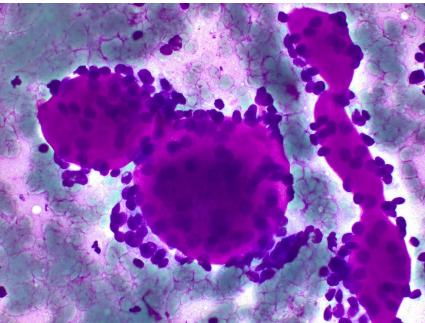
Pleomorphic adenoma

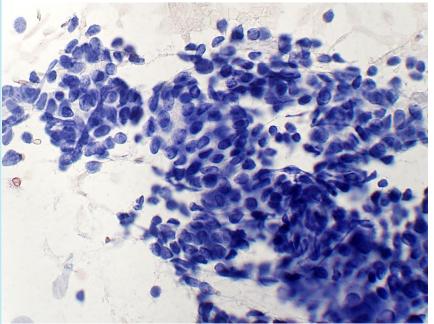

Recurrent translocations:

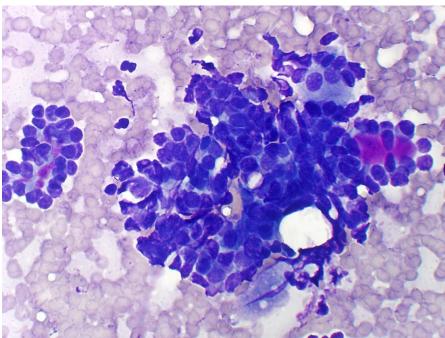
- 8q12 (*PLAG1* locus) (50-60%)
- 12q13-15 (*HMGA2* locus) (10-15%)
- Can FISH for PLAG1, HMGA2

Alterations persist in carcinoma ex PA

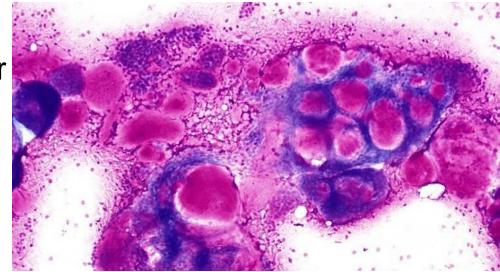

- Bahrami et al Head Neck Pathol (2012)
- Katabi et al Hum Pathol (2015)


PA vs adenoid cystic carcinoma IHC for translocation associated proteins


Foo, Jo and Krane Cancer Cytopathol (2016)


Adenoid cystic carcinoma

Adenoid cystic carcinoma

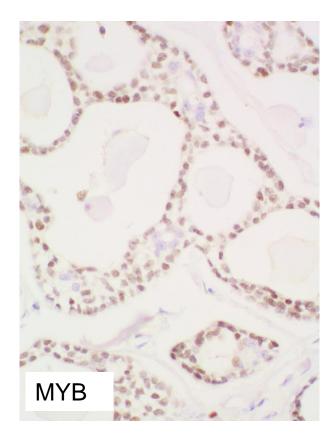


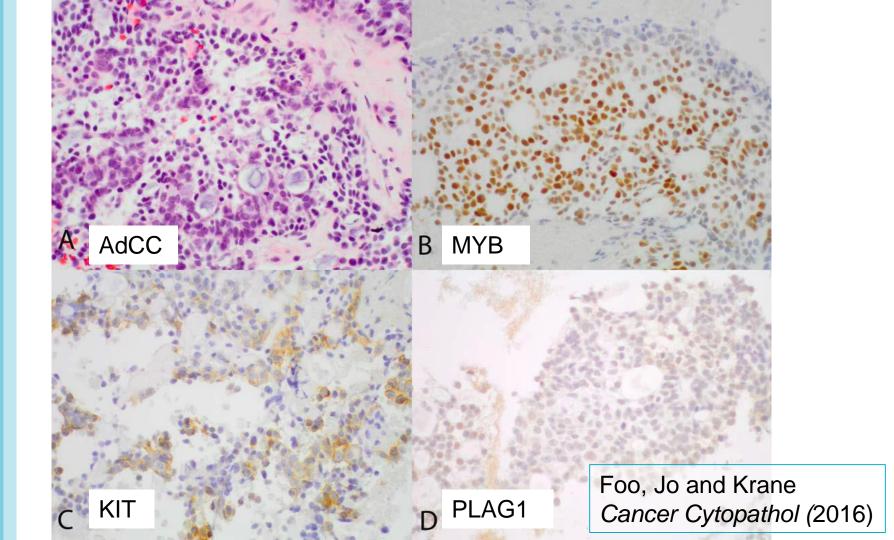
Adenoid cystic carcinoma Cytogenetics

t(6:9) *MYB* oncogene-*NFIB* transcription factor

Rarely t(8:9)MYBL1/NFIB

>80% of AdCC




Persson et al PNAS (2009) Persson et al Genes, Chromosomes, and Cancer (2012)

MYB immunohistochemistry

82% AdCC (+) 14% non-AdCC tumors tested (+) - 4 of 5 basaloid SCCs All non-AdCC tumors were translocation (-)

Brill et al Modern Pathol (2011)

PA vs adenoid cystic carcinoma IHC for translocation associated proteins

PLAG1 or HMGA2+; MYB-, KIT-

- Specific and reasonably sensitive (0.75) for PA

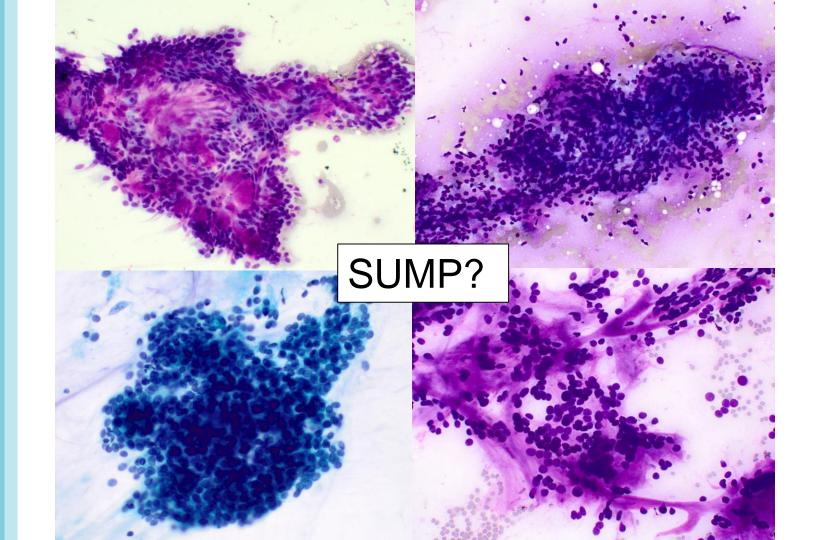
MYB+ and KIT+, PLAG1- and HMGA2-

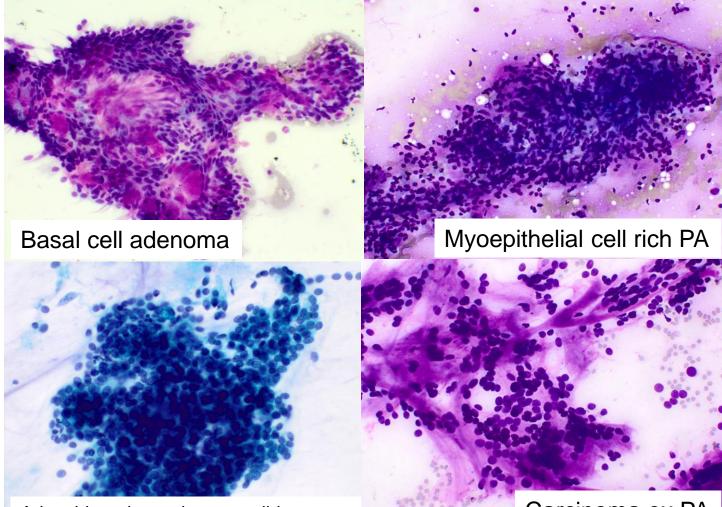
– Specific for AdCC

- Low sensitivity (0.18)

Foo, Jo and Krane Cancer Cytopathol (2016)

FISH/Cytogenetics/NGS


Tumor	Genetic Alteration	Genes Involved	FISH Probe	IHC Markers
Pleomorphic Adenoma (and Carcinoma ex PA)	Translocation 8q12 Translocation 12q13-15	PLAG1 HMGA2	PLAG1 HMGA2	PLAG1 + HMGA2 +
Adenoid Cystic Carcinoma	t(6;9)(q22-23;p23-24)	MYB-NFIB	МҮВ	MYB +
Mucoepidermoid Carcinoma	t(11;19)(q21;p13) t(11;15)(q21;q26)	CRCT1-MAML2 CRCT3-MAML2	MAML2	p63/p40+
Secretory Carcinoma	t(12;15)(p13;q25)	ETV6-NTRK3	ETV6	S100+, mammaglobin+ Pan-TRK+
Acinic Cell Carcinoma	t(4;9)(q13;q31)	NR4A3	NR4A3	NR4A3+
Clear Cell Carcinoma	t(12;22)(q13;q12)	EWSR1-ATF1	EWSR1	
Polymorphous Adenocarcinoma	14q12 mutation	PRKD family		

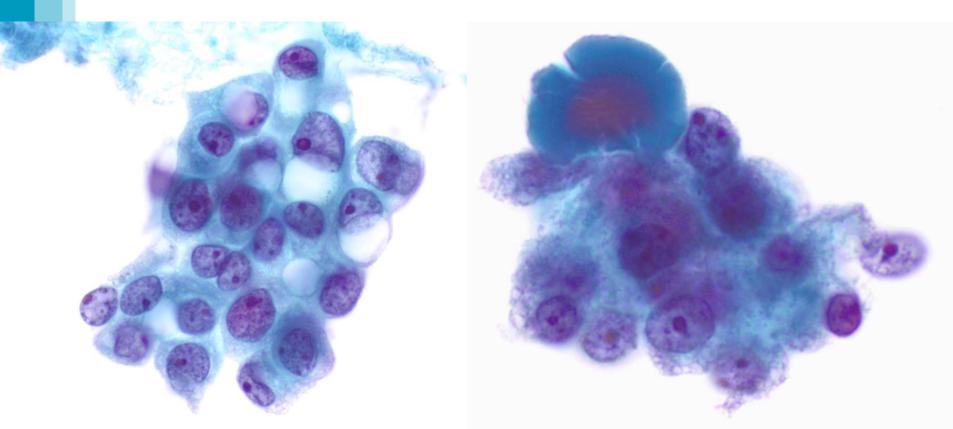

NGS on FNA

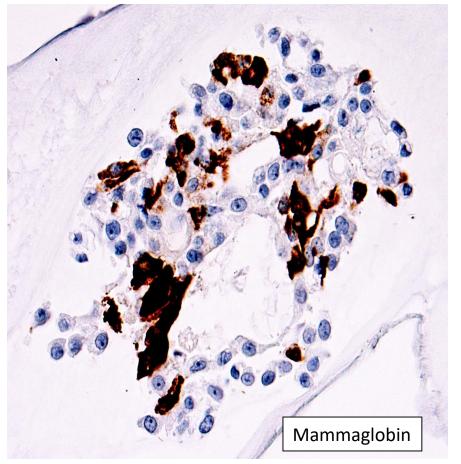
The PRKD1 E710D Hotspot Mutation Is Highly Specific in Separating Polymorphous Adenocarcinoma of the Palate From Adenoid Cystic Carcinoma and Pleomorphic Adenoma on FNA

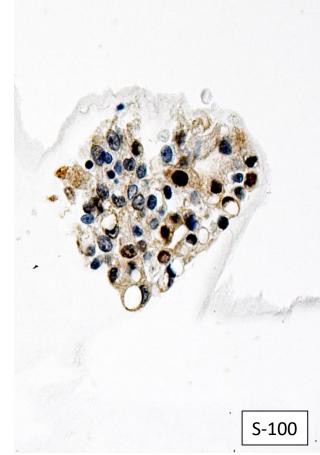
Simon Andreasen, MD ⁽¹²⁾; Linea Cecilie Melchior, PhD³; Katalin Kiss, MD³; Justin Avery Bishop, MD⁴; Estrid Høgdall, PhD, DMSc ⁽⁰⁵⁾; Morten Grauslund, PhD³; Irene Wessel, MD, PhD²; Preben Homøe, MD, PhD, DMSc¹; and Tina Klitmøller Agander, MD, PhD³

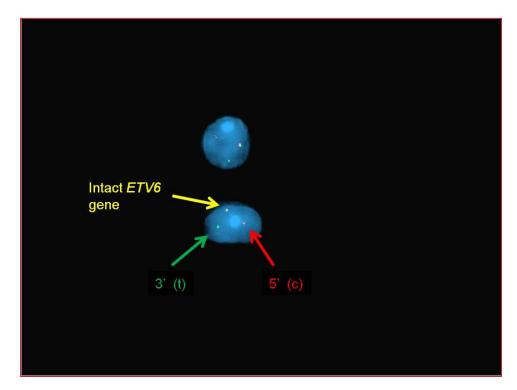
BACKGROUND: Polymorphous adenocarcinoma (PAC) of the palatal minor salivary glands, previously known as polymorphous low-grade adenocarcinoma, is the second most common intraoral malignant salivary gland carcinoma after adenoid cystic carcinoma (ACC) and carries an excellent prognosis. Unfortunately, PAC demonstrates cytological overlap with 2 other salivary gland tumors frequently encountered in the same location, namely ACC and pleomorphic adenoma (PA). Recently, the protein kinase D1 (PRKDI) hotspot mutation E710D was demonstrated to be specific for PAC and to be present in the majority of cases. The objective of the current study was to investigate the value of PRKD1 hotspot sequencing in identifying PAC in paired fine-needle aspiration (FNA) and surgical specimens from cases of PAC, ACC, and PA, METHODS: Paired May-Grunwald-Giemsa-stained FNA and corresponding surgical specimens were collected from 18 PAC cases, 25 ACC cases, and 21 PA cases. Both sets of specimens were subjected to dideoxynucleotide sequencing of PRKD1 exon 15, including the PRKD1 E710D hotspot, RESULTS: Of the PAC cases, approximately 50% demonstrated identical PRKD1 E710D hotspot mutations on the FNA specimen and corresponding surgical specimen. Two ACC specimens had point mutations within the sequenced region in the FNA specimen as well as the surgical specimen, but none were located in the hotspot region. None of the PA cases demonstrated PRKD1 mutations. The specificity of the PRKD1 hotspot mutation for identifying PAC among ACC and PA cases was 100% whereas the sensitivity was 50%. CONCLUSIONS: The PRKDI E710D hotspot mutation is highly specific for identifying PAC on FNA among cases of ACC and PA, whereas the sensitivity is only modest. Alternative PRKD1 mutations exclude PAC, and are more suggestive of ACC. Cancer Cytopathol 2018;126:275-81. © 2017 American Cancer Society.

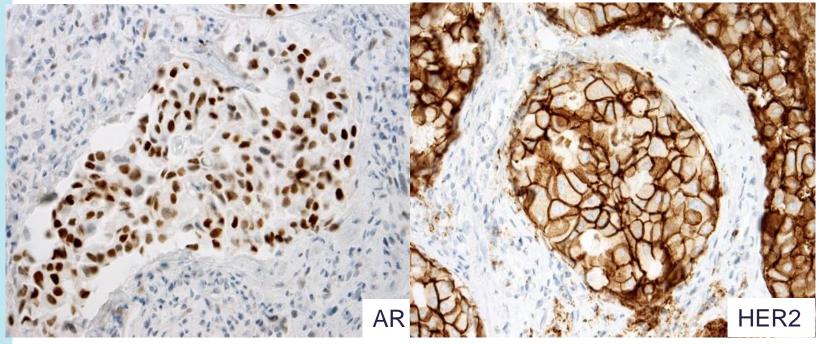
Adenoid cystic carcinoma, solid type


Carcinoma ex PA


The Milan System for Reporting Salivary Gland Cytopathology Overview of Terminology and Reporting


Diagnostic Category	ROM	Management
I. Non-Diagnostic	25%	Clinical and
		radiologic
		correlation/
		repeat FNA
II. Non-Neoplastic	10%	Clinical follow-
		up and
		radiologic
		correlation
III. Atypia of Undetermined Significance (AUS)	20%	Repeat FNA
		or surgery
IV. Neoplasm		
A. Benign	<5%	Surgery or
		Clinical F/U
B. Salivary Gland Neoplasm of Uncertain Malignant Potential	35%	Surgery
(SUMP)		
V. Suspicious for Malignancy	60%	Surgery
VI. Malignant	90%	Surgery


Case: ?High-grade mucoepidermoid carcinoma


(Mammary analogue) Secretory carcinoma

Salivary duct carcinoma Therapeutic as well as diagnostic utility

Anti-androgenic agents

Herceptin

Salivary Duct Carcinoma

- Subset are SDC ex PA
 - Distinct molecular profile
 - More likely HER2+
 - PLAG1 or HMGA2 expression if rearrangement present
 - Precursor PA may not be sampled and/or focal

What should our expectations be for ancillary testing of salivary gland FNA?

Minimizes diagnostic uncertainty Refines risk stratification Optimizes patient management Promotes clinician confidence

ROSE availability

Technical expertise

Time

Financial costs

Final thoughts on ancillary testing

Milan system recognizes the value of ancillary techniques, but is not proscriptive

Provides a framework for deciding what makes sense in your lab while balancing

- Optimal performance of salivary gland FNA
- Clinical expectations and needs
- Available resources

One year in, where does Milan system stand?

Category use

11 retrospective studies since 2018

Diagnostic Category	Median	Range
I. Non-Diagnostic	13.5%	2.8-23%
II. Non-Neoplastic	23%	7-42%
III. Atypia of Undetermined Significance (AUS)	3.2%	2-10.8%
IV. Neoplasm		
A. Benign	36.9%	27.9-51.4%
B. Salivary Gland Neoplasm of Uncertain Malignant Potential (SUMP)	5.4%	1.3-14.2%
V. Suspicious for Malignancy	2.4%	1.2-14%
VI. Malignant	9.4%	2.5-17%

Kala et al Chen et al Sadullahoglu et al Wu et al Karuna et al Pujani et al Song et al Vallonthaiel et al Viswanathan et al Montezuma et al Thiryayi et al

Interobserver reproducibility

TABLE 2Summary of agreement by category for the Milansystem

MilanCategory	Description	kappa
1	Non-diagnostic	0.45
2	Non-neoplastic	0.29
3	Atypia of undetermined significance	0.17
4A	Neoplasm, Benign	0.71
4B	Neoplasm of uncertain malignant potential	0.15
5	Suspicious for malignancy	0.15
6A	Malignant, low grade	0.20
6B	Malignant, high grade	0.72
Average		0.42

3 observers, reviewing 408 cases Layfield et al *Diagn Cytopathol* (2019)

ROM in the real world

- All retrospective to date
- Meta-analysis of 92 studies pre-Milan (Farahani and Baloch)
- 4453 FNAs in 17 studies post-Milan (since 2018)

Diagnostic Category	Anticipated <u>ROM</u>	<u>Meta-</u> <u>analysis</u> ROM	<u>Post-Milan</u> <u>ROM</u>
I. Non-Diagnostic*	25%	20.6%	16.4%
II. Non-Neoplastic*	10%	8.9%	7.6%
III. Atypia of Undetermined Significance (AUS)*	20%	37.3%	33.5%
IV. Neoplasm			
A. Benign	<5%	5.4%	3.2%
B. Salivary Gland Neoplasm of Uncertain Malignant Potential (SUMP)	35%	31.5%	36.4%
V. Suspicious for Malignancy	60%	61.5%	84%
VI. Malignant	90%	89.1%	96.8%

Mishra et al Kala et al Chen et al Choy et al Sadullahoglu et al Wu et al Mazzola et al Karuna et al Jaiswal et al Park et al Savant et al Pujani et al Song et al Vallonthaiel et al Viswanathan et al Layfield et al Thiryayi et al

Summary

The Milan System for Reporting Salivary Gland Cytopathology:

- 1. Standardizes reporting terminology
- 2. Provides risk stratification
- 3. Guides clinical management

Ancillary testing can improve performance of, and increase confidence in, The Milan System

Early data are largely encouraging regarding its use

Pearls of Pathology

Use Milan System terminology

Consider ancillary testing to:

- Resolve diagnostic uncertainty
 Change the Milan System category
- 3. Improve risk stratification
- 4. Guide clinical management

References

Faquin WC and Rossi ED (Eds.). The Milan System for Reporting Salivary Gland Cytopathology. Cham, Switzerland: Springer International Publishing AG; 2018.

Jo VY and Krane JF. Ancillary Testing in Salivary Gland Cytology: A Practical Guide. Cancer Cytopathol 2018;126:602-17.