What Helps You Helps Your Patients - Familial Myeloid Neoplasms In the Era of NGS Testing

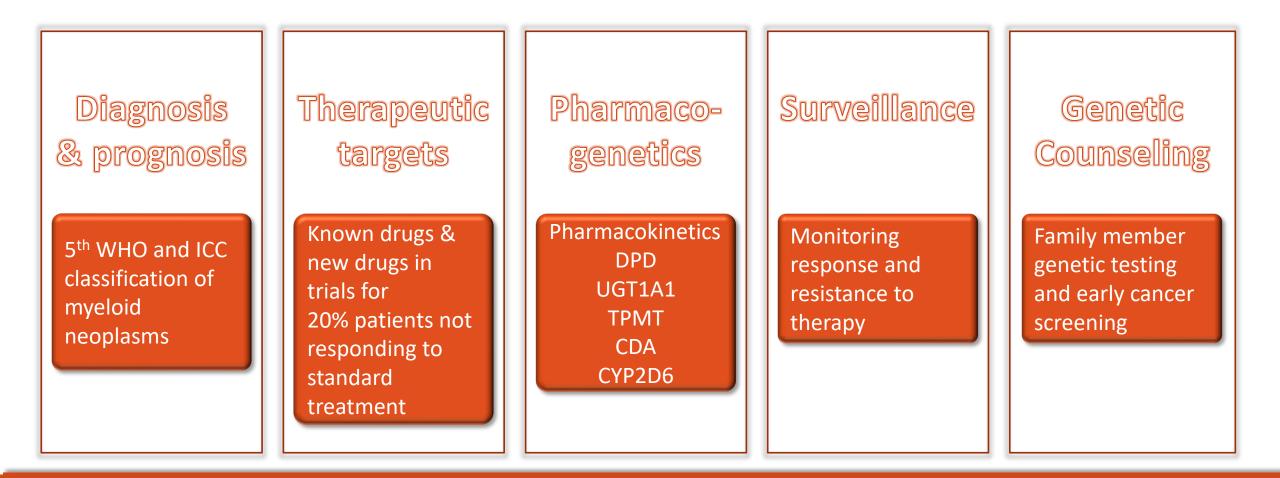
PENG LI, M.D., PH.D.

UNIVERSITY OF UTAH

Learning Objectives

- Updates on myeloid neoplasms with germline predisposition in 5th WHO and ICC
- Updates on AML and MDS in 5th WHO and ICC
- Characteristic clinical and pathologic features of "rare" types of familial myeloid neoplasms in pediatric and adult patients
- Clinical utility of NGS based testing for myeloid neoplasms
- Current recommendations on clinical management

Presentation Outline


- Clinical utilities of NGS testing
- Different types of NGS based testing for tumors
- Updates in common myeloid neoplasms with germline predisposition
- Challenges and future directions
- Take home message

Presentation Outline

Clinical utilities of NGS testing

- Different types of NGS based testing for tumors
- Updates in common myeloid neoplasms with germline predisposition
- Challenges and future directions
- Take home message

Precision Medicine in Oncology

Presentation Outline

Clinical utilities of NGS testing

- Different types of NGS based testing for tumors
- Updates in common myeloid neoplasms with germline predisposition
- Challenges and future directions
- Take home message

What Is Next Generation Sequencing and Why

Next generation sequencing (NGS), or massively parallel or deep sequencing

Why molecular testing is moving toward to NGS

- Massive output
- Faster and sensitive
- Sequencing with quantification
- Relatively inexpensive
- □ NGS testing has been clinically used for genomic and genetic studies

NGS Based Testing For Tumors

- Whole genome sequencing
- Whole exome sequencing
- Targeted gene panels for somatic mutations in cancers
- Targeted gene panels for hereditary cancers
- Targeted RNA-sequencing
- Cell free DNA/RNA testing

NGS Based Testing For Tumors

- Whole genome sequencing
- Whole exome sequencing
- Targeted gene panels for somatic mutations in cancers
- Targeted gene panels for hereditary cancers
- Targeted RNA-sequencing
- Cell free DNA/RNA testing

Presentation Outline

- Clinical utilities of NGS testing
- Different types of NGS based testing for tumors
- Updates in common myeloid neoplasms with germline predisposition, AML and MDS in 5th WHO and ICC
- Challenges and future directions
- Take home message

Acute Myeloid Leukemia Updates in 5th WHO

- AML with defining genetic abnormalities
 - RUNX1-RUNX1T1 fusion
 - CBFB-MYH11 fusion
 - □ KMT2A rearrangement
 - DEK-NUP214 fusion
 - RBM15-MKL1 fusion
 - BCR-ABL1 fusion
 - NUP98 rearrangement
 - Other defined driver gene alterations
 - AML MRC
- AML, defined by differentiation
- Myeloid sarcoma and others

Acute Myeloid Leukemia Updates in WHO

WHO Revised 4 th Ed.	WHO 5 th Ed.	ICC	
AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1	AML with RUNX1::RUNX1T1 fusion	AML with t(8;21)(q22;q22.1)/RUNX1::RUNX1T1 ≥10%	
AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB- MYH11	AML with CBFB::MYH11 fusion AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11 ≥10%		
APL with PML-RARA	Acute promyelocytic leukemia (APL) with PML::RARA fusion APL with t(15;17)(q24.1;q21.2)/PML::RARA ≥10%		
Not included	Currently mentioned in text	APL with other RARA rearrangements ¹ ≥10%	
AML with t(9;11)(p21.3;q23.3); KMT2A-MLLT3	Included in AML with KMT2A rearrangement	AML with t(9;11)(p21.3;q23.3)/MLLT3::KMT2A ≥10%	
Not included	AML with KMT2A rearrangement	AML with other KMT2A rearrangements ² ≥10%	
AML with t(6;9)(p23;q34.1); DEK-NUP214	AML with DEK::NUP214 fusion	AML with t(6;9)(p22.3;q34.1)/DEK::NUP214 ≥10%	
AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM	Included in AML with MECOM rearrangement	AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2; MECOM(EVI1) ≥10%	
Mentioned in text	AML with MECOM rearrangement	AML with other MECOM rearrangements ³ ≥10%	
AML with t(1;22)(p13.3;q13.1); RBM15-MKL1	AML with RBM15::MRTFA fusion	Included in AML with other rare recurring translocations ≥10%	
AML with BCR-ABL 1	AML with BCR::ABL1 fusion*	AML with t(9;22)(q34.1;q11.2)/BCR::ABL1 ≥20% blasts*	
Not included	AML with NUP98 rearrangement	Included in AML with other rare recurring translocations ≥10%	
Not included	AML with other defined genetic alterations	AML with other rare recurring translocations	
AML with mutated NPM1	AML with NPM1 mutation	AML with mutated NPM1 ≥10%	
AML with biallelic mutation of CEBPA	AML with CEBPA mutation*	AML with in-frame bZIP CEBPA mutations ≥10%	
AML with mutated RUNX1	Not included	Not included	
Not included	Not included	AML and MDS/AML with mutated TP53 10-19% (MDS/AML) and ≥ 20% (AML): at least one TP53 mutation with VAF >10%	

Acute Myeloid Leukemia Updates in WHO

WHO Revised 4 th Ed.	WHO 5 th Ed.	ICC
 AML with MRC Morphologic multilineage dysplasia (at least in 50% of cells in at least two cell lines) Defining cytogenetic abnormalities History of MDS or MDS/MPN 	 AML, myelodysplasia-related (AML-MR) ✓ Removal of morphology alone as a diagnostic criterium ✓ defining mutations (new, 8 genes): SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, STAG2 ✓ defining cytogenetic criteria with updates ✓ History of MDS or MDS/MPN 	 AML (≥ 20%) and MDS/AML (10-19%) with ✓ Removal of morphology alone as a diagnostic criterium ✓ myelodysplasia-related gene mutations (new, 9 genes): RUNX1, SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, STAG2 ✓ myelodysplasia-related cytogenetic abnormalities with updates
 Absence of specific cytogenetic abnormalities in AML with recurrent cytogenetic abnormalities Absence of prior cytotoxic therapy 	 ✓ Absence of specific cytogenetic abnormalities of AML with recurrent cytogenetic abnormalities ✓ Absence of prior cytotoxic therapy 	 AML (≥ 20%) and MDS/AML (10-19%) with qualifiers Therapy related Chemotherapy Radiation Immune interventions Progressing from MDS or MDS/MPN Germline predisposition
 Therapy-related myeloid neoplasms (AML, MDS, MDS/MPN) Cytotoxic chemotherapy Radiation therapy 	Myeloid neoplasms (MDS, MDS/MPN, and AML) post cytotoxic therapy (MN-pCT) • PARP1 inhibitors (new) in addition	Included in AML/MDS with myelodysplasia-related changes

Private Information

AML defined by differentiation

WHO Revised 4 th Ed.	WHO 5 th Ed.	ICC	
AML, NOS	AML defined by differentiation	AML (≥ 20), NOS	
Acute myeloid leukemia with minimal differentiation	AML with minimal differentiation	Acute myeloid leukemia with minimal differentiation	
Acute myeloid leukemia without maturation	AML without maturation	Acute myeloid leukemia without maturation	
Acute myeloid leukemia with maturation	AML with maturation	Acute myeloid leukemia with maturation	
Acute myelomonocytic leukemia	Acute myelomonocytic leukemia	Acute myelomonocytic leukemia	
Acute monoblastic and monocytic leukemia	Acute monocytic leukemia	Acute monoblastic and monocytic leukemia	
Pure erythroid leukemia	Pure erythroid leukemia	Removed to AML with mutated TP53	
Acute megakaryoblastic leukemia	Acute megakaryoblastic leukemia (AMKL)	Acute megakaryoblastic leukemia	
Acute basophilic leukemia	Acute basophilic leukemia	Acute basophilic leukemia	
Acute panmyelosis with myelofibrosis	Acute panmyelosis with myelofibrosis	Acute panmyelosis with myelofibrosis	
Myeloid sarcoma	Myeloid sarcoma	Myeloid sarcoma	

Updates in 5th WHO and ICC Classification

Myeloid neoplasms, secondary

OMyeloid neoplasms and proliferations associated with antecedent or predisposing conditions

Myelodysplastic neoplasm associated with germline predisposition

Myeloid neoplasm post cytotoxic therapy

Acute myeloid leukemia following other hematolymphoid malignancy

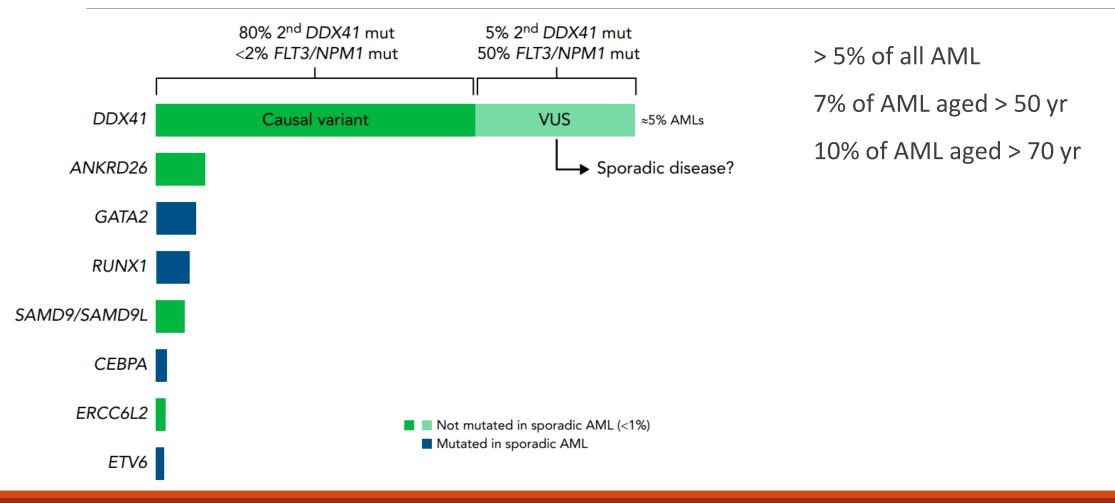
Myeloid proliferation associated with Down syndrome

□ Myeloid neoplasms associated with malignant germ cell tumor

Genetic tumor syndromes

- Fanconi anemia
- Bloom syndrome
- Ataxia-telangiectasia syndrome
- RASopathies

Hematologic Neoplasms with Germline Predisposition


Diseases	Patterns	Genes	Penetrance
No pre-existing disorders or organ dysfunction			
Myeloid neoplasm with germline DDX41 mutation	AD	DDX41	Unknown
Myeloid/lymphoid neoplasm with germline CEBPA mutation	AD	CEBPA	90%, AML only
Myeloid/lymphoid neoplasm with germline TP53 mutation	AD	TP53	50-70%
With pre-existing platelet disorders			
Myeloid neoplasm with germline RUNX1 mutation	AD	RUNX1	20-60%
Myeloid neoplasm with germline ANKRD26 mutation	AD	ANKRD26	Unknown
Myeloid neoplasm with germline ETV6 mutation	AD	ETV6	Unknown
With other organ dysfunction			
Myeloid neoplasm with germline GATA2 mutation	AD	GATA2	70%
Myeloid neoplasm with germline SAMD9/SAMD9L mutation	AD	SAMD9/L	Unknown
With inherited bone marrow failure syndrome and telomere biology disorders	Most AD	Multiple	Unknown
Acute lymphoblastic leukemia with germline predisposition	Most AD	PAX5 and IKZF1	Unknown

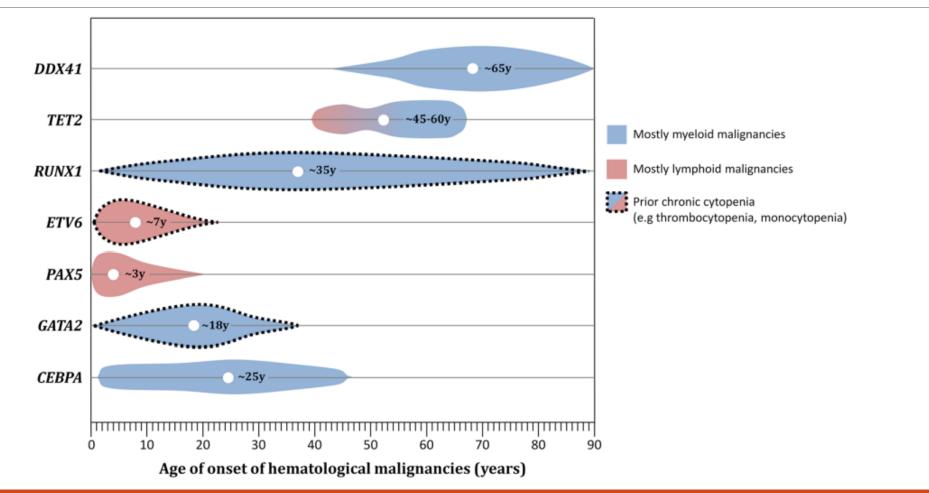
WHO 2016 and Fisher and Gramatges. Precision Molecular Pathology of Myeloid Neoplasm, 2017

Common Features of Inherited Myeloid Neoplasms

- Manifest at earlier ages
- Substantial familial clustering
- With or without syndromatic manifestation
- Rare disease

The most common familial aml

Rio-Machin et al, Blood, 2022


Common Features of Inherited Myeloid Neoplasms

- Manifest at earlier ages
- Substantial familial clustering
- With or without syndromatic manifestation

Age at Onset of Familial Hematologic Malignancy

Fenwarth, Hema Sphere, 2021

Common Features of Inherited Myeloid Neoplasms

- Manifest at earlier ages X Substantial familial clustering
- X With or without syndromatic manifestation (<50%)
- Rare disease

Common Features of Inherited Myeloid Neoplasms

- Manifest at earlier ages Substantial familial clustering With or without syndromatic manifestation (<50%)
- Rare disease

Hereditary Predispositions of Myeloid Neoplasms

Patients with newly diagnosed MDS/AML

MDS dx at age < 40 yr (with exceptions) Any potential germline variant with a persistent VAF >30% (with exceptions) Or

Family History of MDS/AML Early onset of cancers of any type Multiple close relatives with cancers Syndromatic manifestations Personal or family history of

- o Thrombocytopenia, pancytopenia
- o Bleeding tendency
- o Skin or nail abnormalities
- o Unexplained liver disease
- o Pulmonary fibrosis or alveolar proteinosis
- o Limb anomalies
- o Immune deficiency or atypical infections

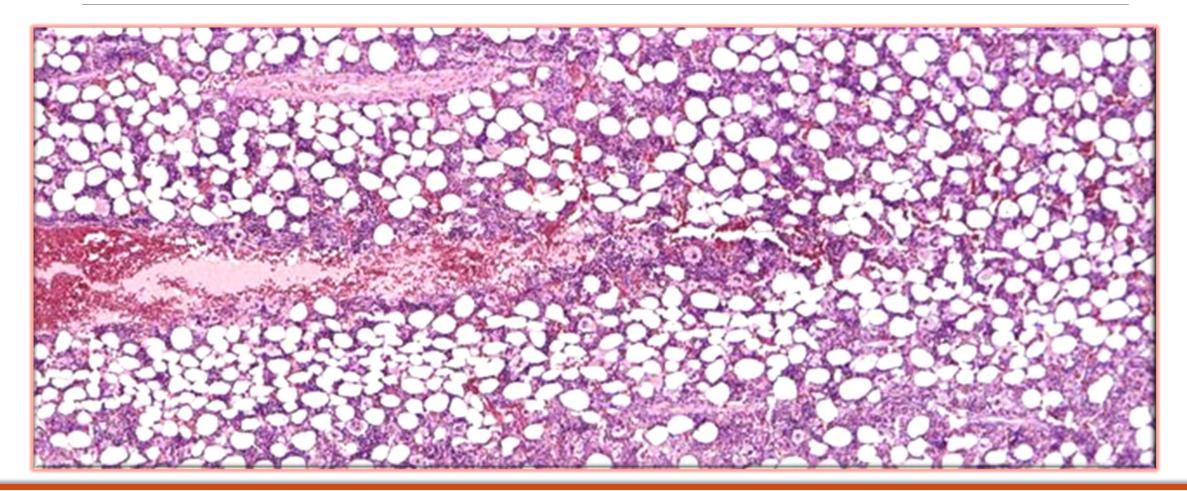
Genetic counseling and testing

Bannon, Int J Mol Sci. 2016; Fenwarth, Hema Sphere, 2021

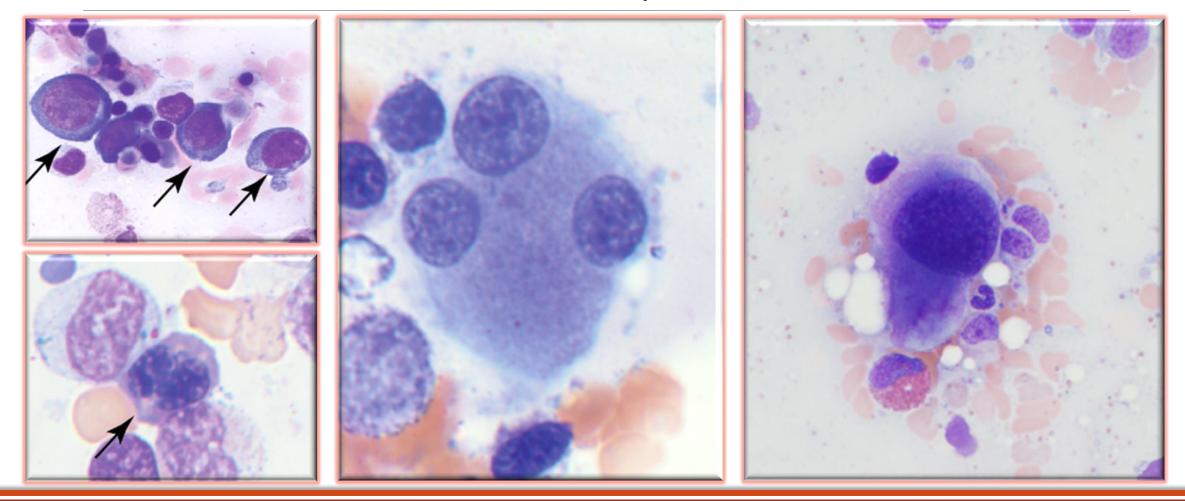

Presentation Outline

- Clinical utilities of NGS testing
- Different types of NGS based testing for tumors
- Updates in common myeloid neoplasms with germline predisposition
- Challenges and future directions
- Take home message

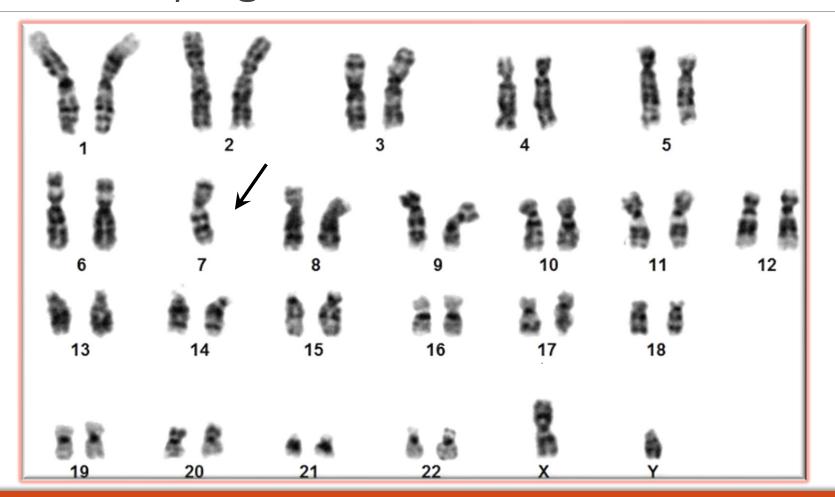
Case #1


- □ 10 year old Caucasian male with URIs
- Persistent pancytopenia, macrocytic anemia
- A history of extensive warts
- **Family history**:
 - Maternal family history: significant for warts
 - Two healthy siblings

Case #1 – CBC and Peripheral Blood



WBC: $1.7 \times 10^{9}/L$ (3.9–10.2 × 10⁹/L) ANC: 0.14×10^9 /L ($1.8-6.8 \times 10^9$ /L) \checkmark Lymphocytes 1.19×10^9 /L (1.0–3.6 × 10⁹/L) Monocytes 0.17×10^9 /L ($0.1-0.7 \times 10^9$ /L) Other (blasts) 0.09×10^9 /L \uparrow Hemoglobin: 98 g/L (131–169 g/L) MCV: 101.5 fl (80–95 fl) Platelets: 116 × 10⁹/L (165–397 × 10⁹/L)


Case #1 – Bone Marrow Biopsy

Case #1 – Bone Marrow Aspirate

Case #1 – Cytogenetics

Case #1 – Diagnostic Impression

- Pediatric high-grade MDS (15% blasts by morphology)
- 🗅 AML
- Other concerns:
 - Concern for familial MDS/AML:
 - A history of extensive warts
 - Maternal family history: significant for warts
 - Prognosis: worse prognosis with monosomy 7, any additional prognostic markers?

Hematologic Neoplasms with Germline Predisposition

Diseases	Patterns	Genes	Penetrance
No pre-existing disorders or organ dysfunction			
Myeloid neoplasm with germline DDX41 mutation	AD	DDX41	Unknown
Myeloid/lymphoid neoplasm with germline CEBPA mutation	AD	CEBPA	90%, AML only
Myeloid/lymphoid neoplasm with germline TP53 mutation	AD	TP53	50-70%
With pre-existing platelet disorders			
Myeloid neoplasm with germline RUNX1 mutation	AD	RUNX1	20-60%
Myeloid neoplasm with germline ANKRD26 mutation	AD	ANKRD26	Unknown
Myeloid neoplasm with germline ETV6 mutation	AD	ETV6	Unknown
With other organ dysfunction			
Myeloid neoplasm with germline GATA2 mutation	AD	GATA2	70%
Myeloid neoplasm with germline SAMD9/SAMD9L mutation	AD	SAMD9/L	Unknown
With inherited bone marrow failure syndrome and telomere biology disorders	Most AD	Multiple	Unknown
Acute lymphoblastic leukemia with germline predisoposition	Most AD	PAX5 and IKZF1	Unknown

WHO 2016 and Fisher and Gramatges. Precision Molecular Pathology of Myeloid Neoplasm, 2017

Case #1 – Bone Marrow NGS Testing

- **GATA2** c.1009C>T, p.Arg337X (VAF: 53%), confirmed by Sanger sequencing
- Germ line heterozygosity of GATA2 c.1009C>T, p.Arg337X , confirmed by skin biopsy
- **G** Family member screening:
 - Mother: GATA2, c.1009C>T, p.Arg337X mutation
 - Siblings: no GATA2 mutation detected
- Additional variants indicating a poor prognosis
 - **TP53** c.743G>A, p.R248Q (VAF: 12%), somatic mutation
 - **ASXL1** c.2077C>T, p.R693X (VAF: 15%), somatic mutation

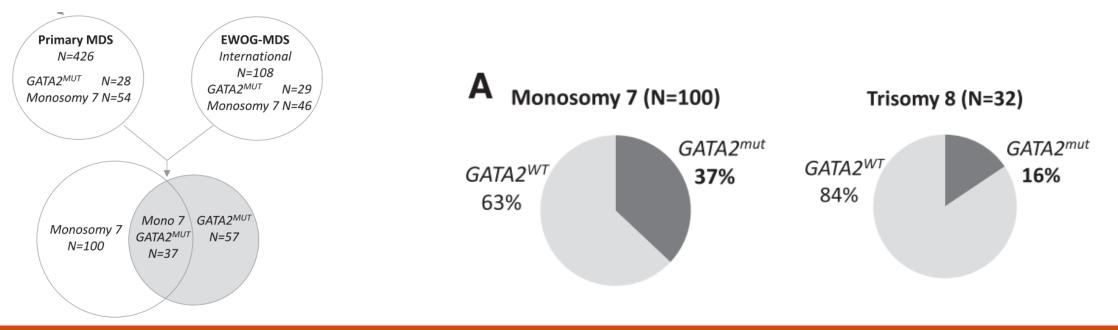
Case #1 – Final Diagnosis

Myeloid neoplasms with germ line predisposition

Germline GATA2 c.1009C>T, p.Arg337X (VAF: 53%) mutation detected

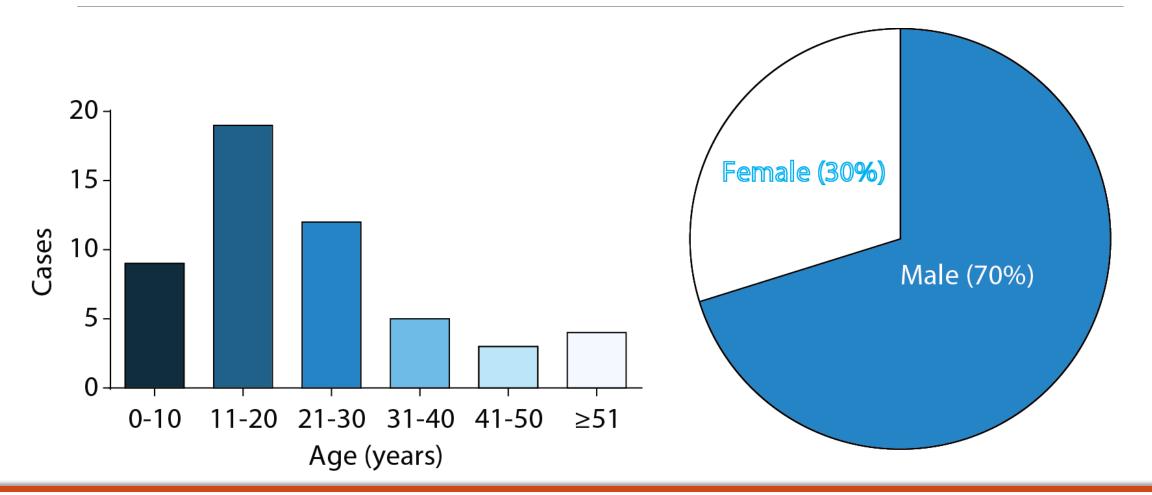
GATA2-Related MN in Children and Adolescents

MYELOID NEOPLASIA

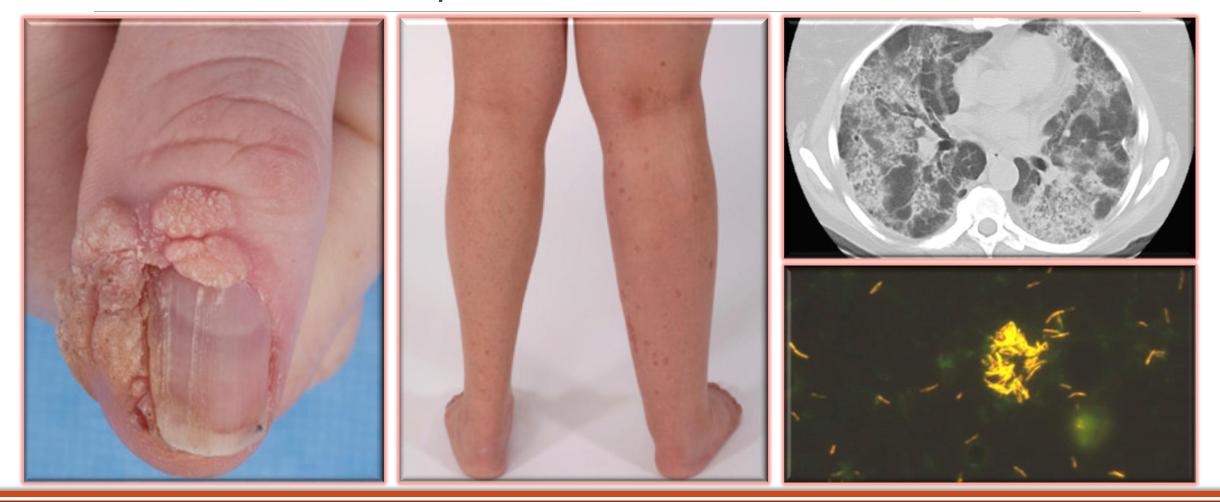

CME Article

Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents

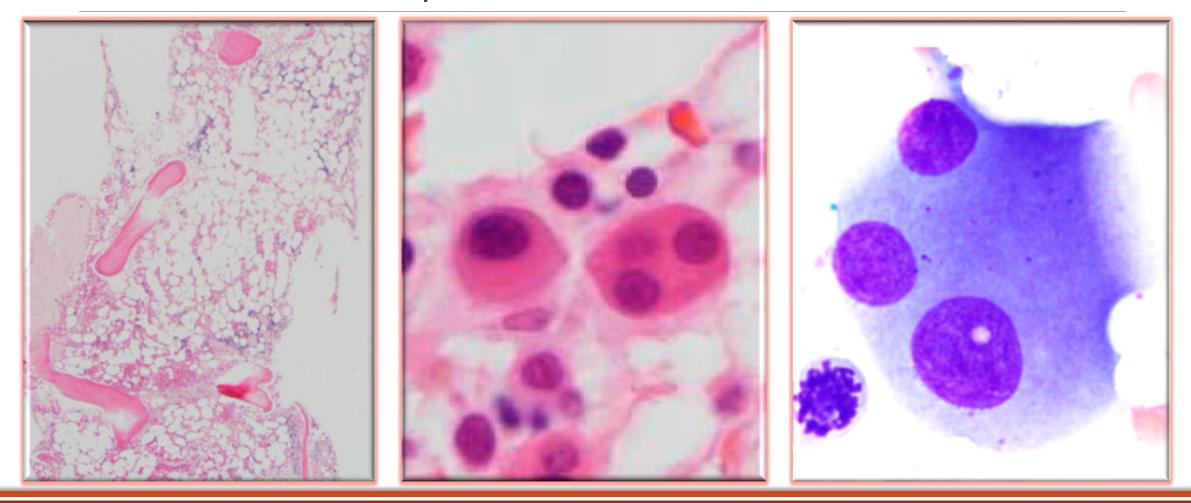
Marcin W. Wlodarski,^{1,2} Shinsuke Hirabayashi,¹ Victor Pastor,¹ Jan Starý,³ Henrik Hasle,⁴ Riccardo Masetti,⁵ Michael Dworzak,⁶ Markus Schmugge,⁷ Marry van den Heuvel-Eibrink,⁸ Marek Ussowicz,⁹ Barbara De Moerloose,¹⁰ Albert Catala,¹¹ Owen P. Smith,¹² Petr Sedlacek,³ Arjan C. Lankester,¹³ Marco Zecca,¹⁴ Victoria Bordon,¹⁰ Susanne Matthes-Martin,⁶ Jonas Abrahamsson,¹⁵ Jörn Sven Kühl,¹⁶ Karl-Walter Sykora,¹⁷ Michael H. Albert,¹⁸ Bartlomiej Przychodzien,¹⁹ Jaroslaw P. Maciejewski,¹⁹ Stephan Schwarz,²⁰ Gudrun Göhring,²¹ Brigitte Schlegelberger,²¹ Annámaria Cseh,¹ Peter Noellke,¹ Ayami Yoshimi,¹ Franco Locatelli,²² Irith Baumann,²³ Brigitte Strahm,¹ and Charlotte M. Niemeyer,^{1,2} for the EWOG-MDS


GATA2-Related MN in Children and Adolescents

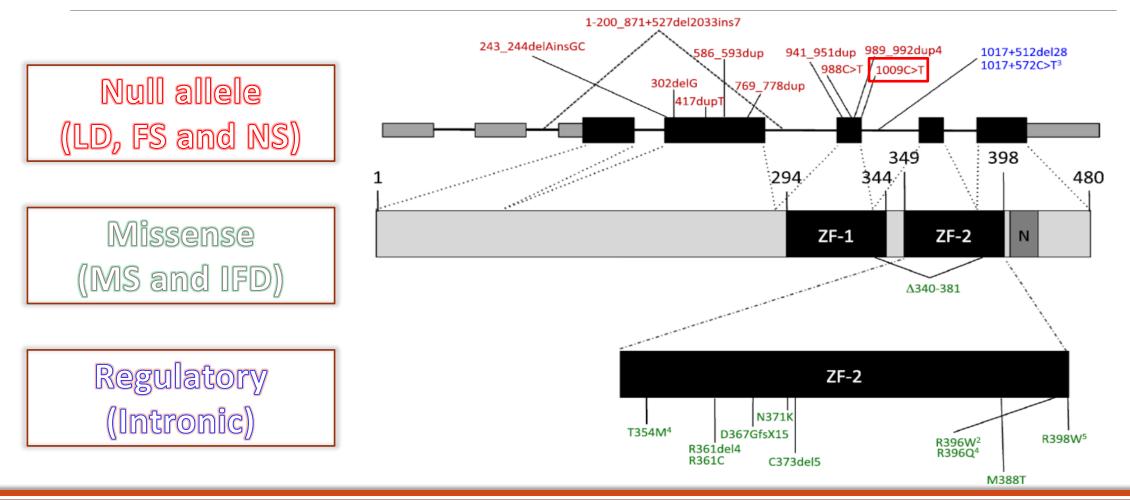
- Germline GATA2 mutations account for 15% of advanced and 7% of all primary pediatric MDS
- **72%** of adolescents with MDS and monosomy 7 carry an underlying GATA2 deficiency
- Germline GATA2 mutations do not influence overall survival


Wlodarski, Blood, 2016

GATA2 Deficiency – Epidemiology


Spinner, Blood, 2014

GATA2 Deficiency – Clinical Hallmarks


Spinner, Blood, 2014

GATA2 Deficiency – Marrow Hallmarks

Spinner, Blood, 2014

GATA2 Mutations

Spinner, Blood, 2014

Other Prognostic Factors

Articles and Brief Reports

Myelodysplastic Syndromes

Germ-line GATA2 p.THR354MET mutation in familial myelodysplastic syndrome with acquired monosomy 7 and ASXL1 mutation demonstrating rapid onset and poor survival

Csaba Bödör,^{1,2} Aline Renneville,³ Matthew Smith,¹ Aurélie Charazac,¹ Sameena Iqbal,¹ Pascaline Étancelin,³ Jamie Cavenagh,¹ Michael J Barnett,⁴ Karolina Kramarzová,⁵ Biju Krishnan,⁶ András Matolcsy,² Claude Preudhomme,³ Jude Fitzgibbon,¹ and Carolyn Owen⁷

¹Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, UK; ²1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; ³Centre de Biologie-Pathologie, Laboratoire d'Hématologie, CHRU de Lille, France; ⁴Leukemia/BMT Program of British Columbia, British Columbia Cancer Agency and Vancouver General Hospital, and University of British Columbia, Vancouver, Canada; ⁵Department of Pediatric Hematology and Oncology, 2nd School of Medicine, Charles University, Prague, Czech Republic; ⁶Department of Haematology, Queens Hospital, Essex, UK; and ⁷Division of Hematology & Hematological Malignancies, University of Calgary, Calgary, Canada

Bödör, haematologica, 2012

Case #1 – Follow Up

- High risk: Null allele, Monosomy 7, ASXL1 and TP53 mutations
- Original management plan: Bone marrow transplant
- Outcome: Rapidly progressed to AML and the patient deceased

Take Home Message – Case #1

GATA2 mutations predispose to MDS and AML

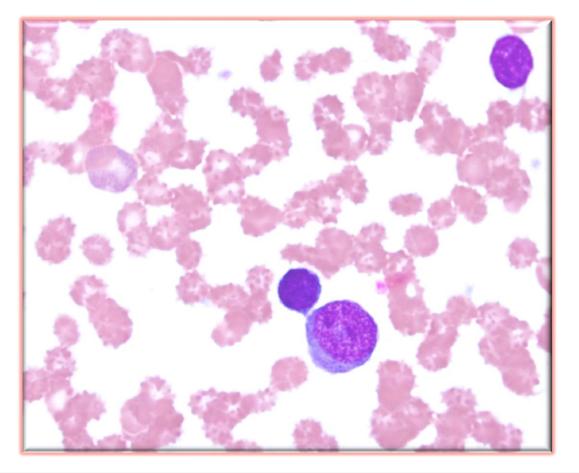
Common in all primary pediatric MDS (7-15%) and enriched in adolescents (72%) or MDS with monosomy 7 (37%) and trisomy 8 (16%)

- Immunodeficiency
 - MonoMAC syndrome (atypical mycobacterial infection)
 - Dendric cell, monocyte, B and NK cell deficiency (viral infection)
- Emberger syndrome
 - Lymphoedema
 - Warts
 - □ High risk of MDS/AML

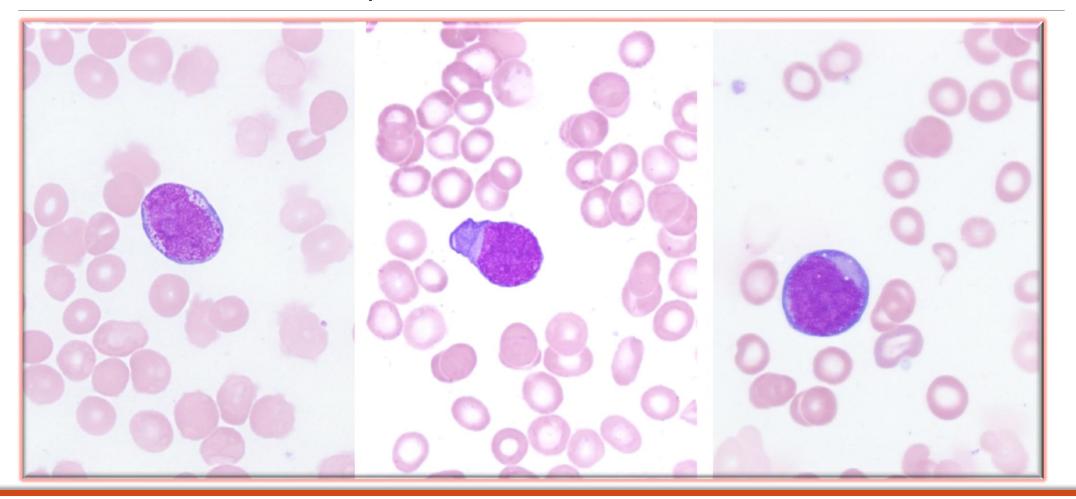
Case #2

- □ 31 year old male with easy bruising and fatigue for 3 months
- Found to have anemia and thrombocytopenia

Case #2 – CBC and Peripheral Blood


WBC: 17.7 × 10⁹/L (5.0−14.5 × 10⁹/L)

ANC: 1.2 × 10⁹/L (1.5−8.0 × 10⁹/L)

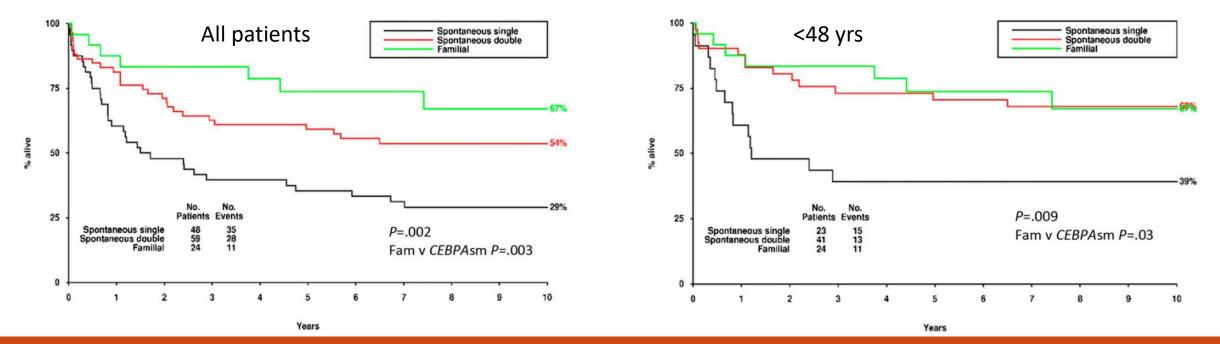

Other (blasts) 7.0 %

Hemoglobin: 7.4 g/L (131−169 g/L)

MCV 70.5 fl (76−90 fl)
Platelets: 5 × 10⁹/L (150−450 × 10⁹/L)

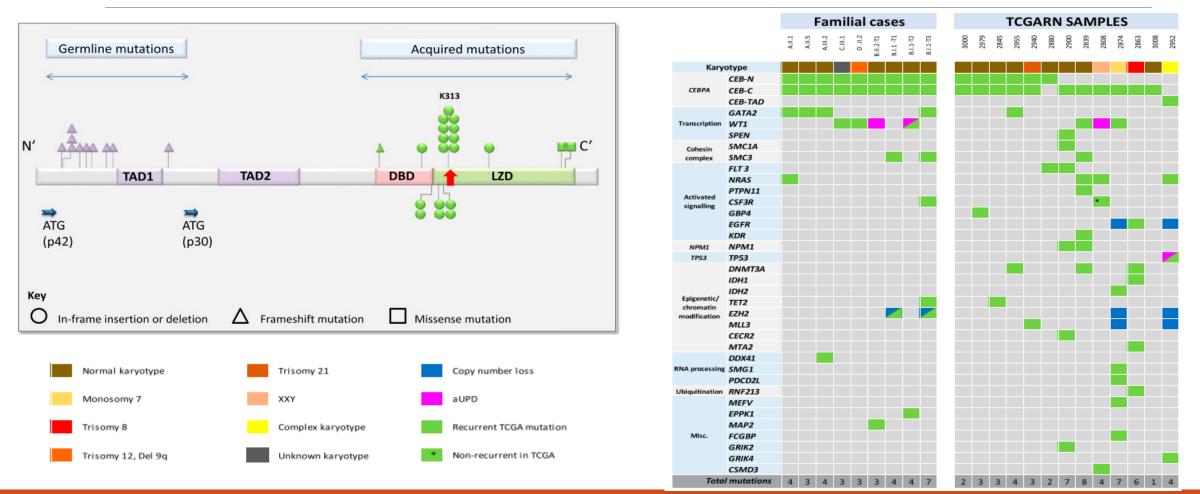
Bone Marrow Aspirate

Final Diagnosis and Ancillary Testing


- Acute myeloid leukemia (45% blasts) with biallelic mutation of CEBPA
- M2 by flow cytometry

Cytogenetics: 46,XY[20]

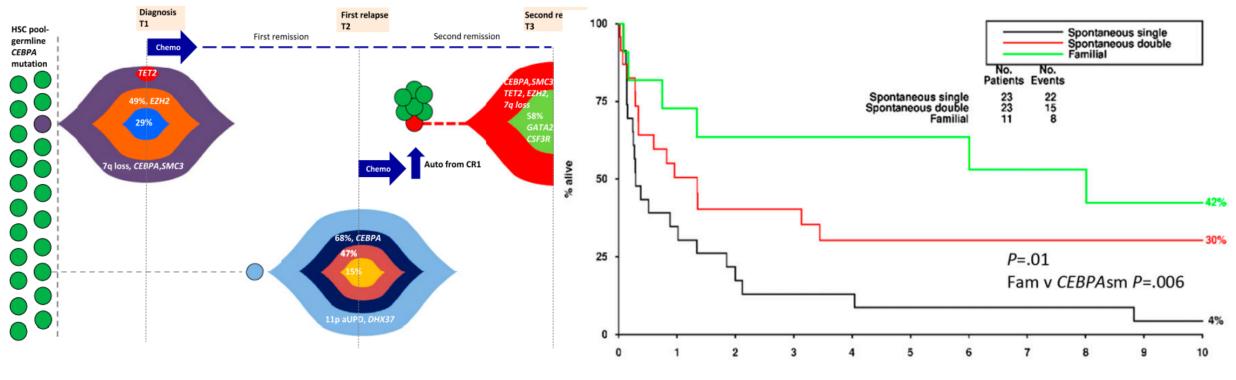
Mutations	Tiers	Initial diagnosis	Post induction
CEBPA c.287_311del, p.G96fs	1	45%	46%
<i>CEBPA</i> c.890G>C, p.R297P	1	42%	0%
GATA2 c.958Gdel, p.G320Sfs	1	6%	0%
<i>KMT2A</i> c.1975G>C, p.E659Q	2	46%	48%


AML with germline CEBPA mutations

- High penetrance, 10% of all AML with biallelic *CEBPA* mutations
- Early-onset AML
- Favorable survival outcomes

Tawana, Blood 2015

Genetic Profiles of AML with germline CEBPA Mutations



Tawana, Blood 2015

Private Information

Unique Model of Disease Progression

Recurrence caused by novel, independent leukemic episodes.

Years

Tawana, Blood 2015

Take Home Message – Case #2

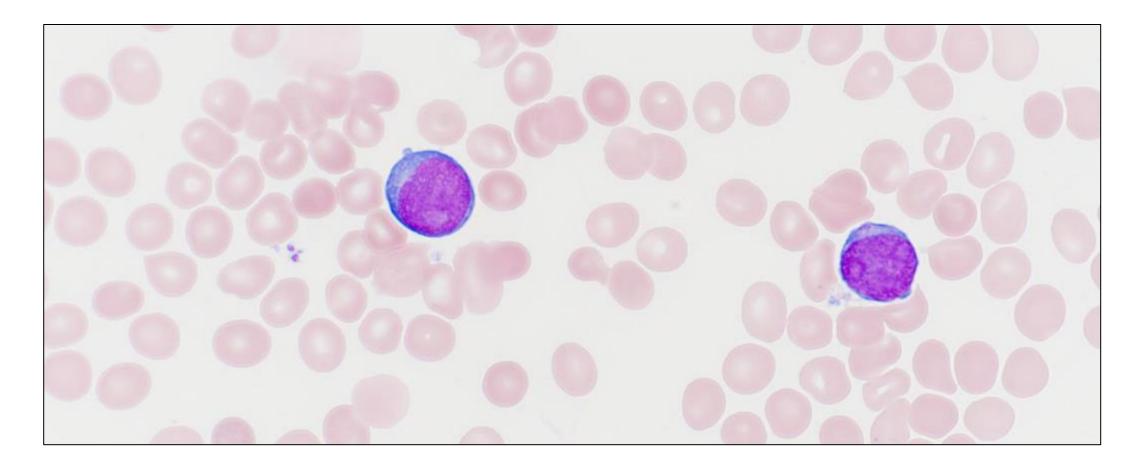
- Germline *CEBPA* mutations predispose to AML
- Early onset
- □ 10% of all AML with biallelic CEBPA mutations
- Favorable survival outcomes
- Recurrence caused by novel, independent leukemic episodes with favorable survival outcomes

Acute Myeloid Leukemia Updates in WHO

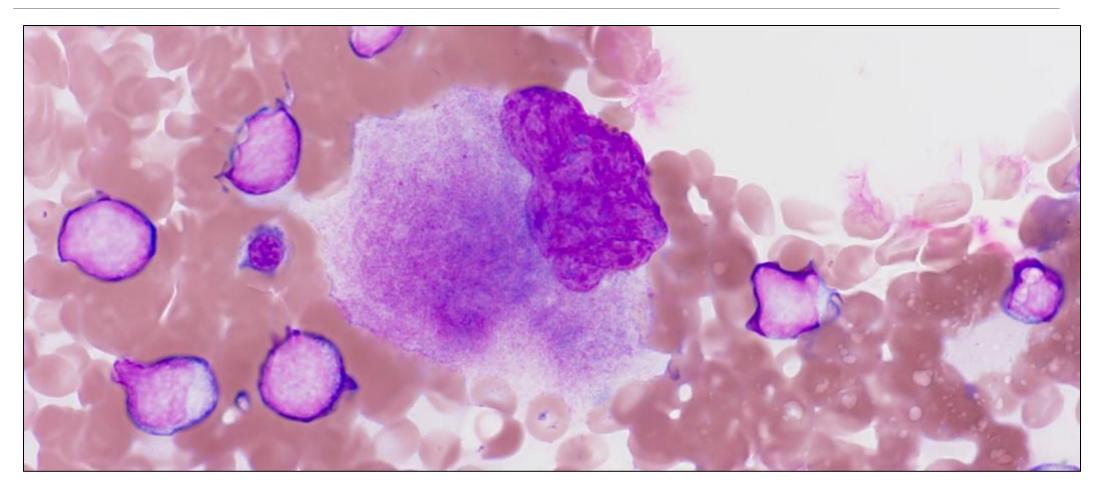
WHO Revised 4 th Ed.	WHO 5 th Ed.	ICC						
AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1	AML with RUNX1::RUNX1T1 fusion	AML with t(8;21)(q22;q22.1)/RUNX1::RUNX1T1 ≥10%						
AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-	AML with CBFB::MYH11 fusion	AML with inv(16)(p13.1q22) or						
MYH11		t(16;16)(p13.1;q22)/CBFB::MYH11 ≥10%						
APL with PML-RARA	Acute promyelocytic leukemia (APL) with PML::RARA fusion	APL with t(15;17)(q24.1;q21.2)/PML::RARA ≥10%						
Not included	Currently mentioned in text	APL with other RARA rearrangements ¹ ≥10%						
AML with t(9;11)(p21.3;q23.3); KMT2A-MLLT3	Included in AML with KMT2A rearrangement	AML with t(9;11)(p21.3;q23.3)/MLLT3::KMT2A ≥10%						
Not included	AML with KMT2A rearrangement	AML with other KMT2A rearrangements ² \geq 10%						
AML with t(6;9)(p23;q34.1); DEK-NUP214	AML with DEK::NUP214 fusion	AML with t(6;9)(p22.3;q34.1)/DEK::NUP214 ≥10%						
AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,	Included in AML with MECOM rearrangement	AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2;						
MECOM		MECOM(EVI1) ≥10%						
Mentioned in text	AML with MECOM rearrangement	AML with other MECOM rearrangements ³ ≥10%						
AML with t(1;22)(p13.3;q13.1); RBM15-MKL1	AML with RBM15::MRTFA fusion	Included in AML with other rare recurring translocations ≥10%						
AML with BCR-ABL 1	AML with BCR::ABL1 fusion*	AML with t(9;22)(q34.1;q11.2)/BCR::ABL1 ≥20% blasts*						
Not included	AML with NUP98 rearrangement	Included in AML with other rare recurring translocations ≥10%						
Not included	AML with other defined genetic alterations	AML with other rare recurring translocations						
AML with mutated NPM1	AML with NPM1 mutation	AML with mutated NPM1 ≥10%						
AML with biallelic mutation of CEBPA	AML with CEBPA mutation*	AML with in-frame bZIP CEBPA mutations ≥10%						
AML with mutated RUNX1	Not included	Not included						
Not included	Not included	AML and MDS/AML with mutated TP53 10-19% (MDS/AML) and ≥ 20% (AML): at least one TP53 mutation with VAF >10%						

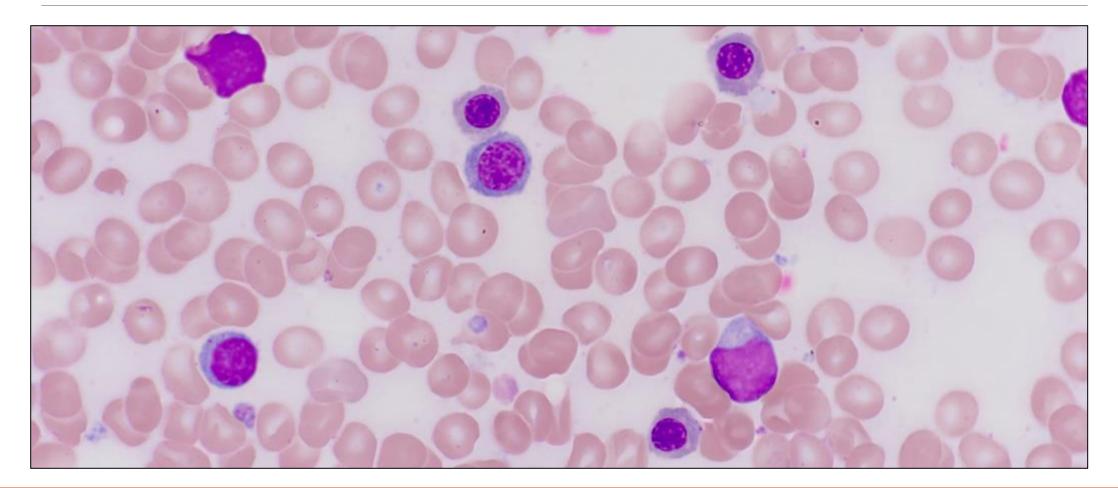
Case #3 Brief History

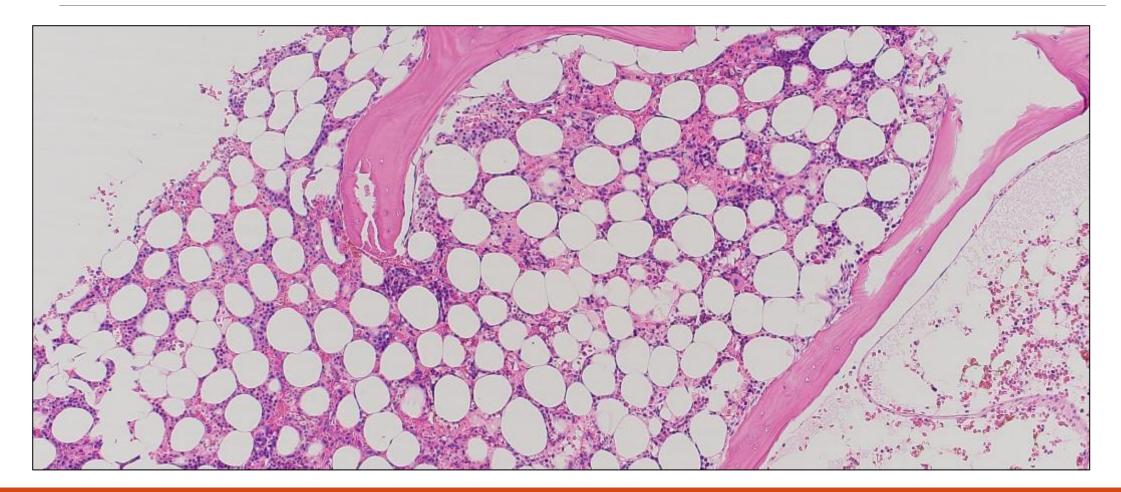
□ 77 year old male with fatigue who was found to have pancytopenia for one year

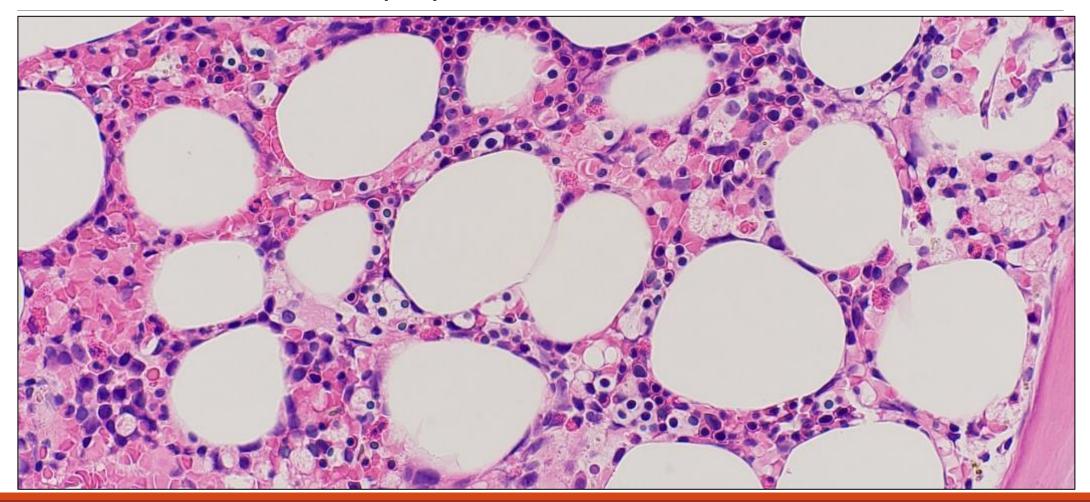

Bone marrow bx was performed

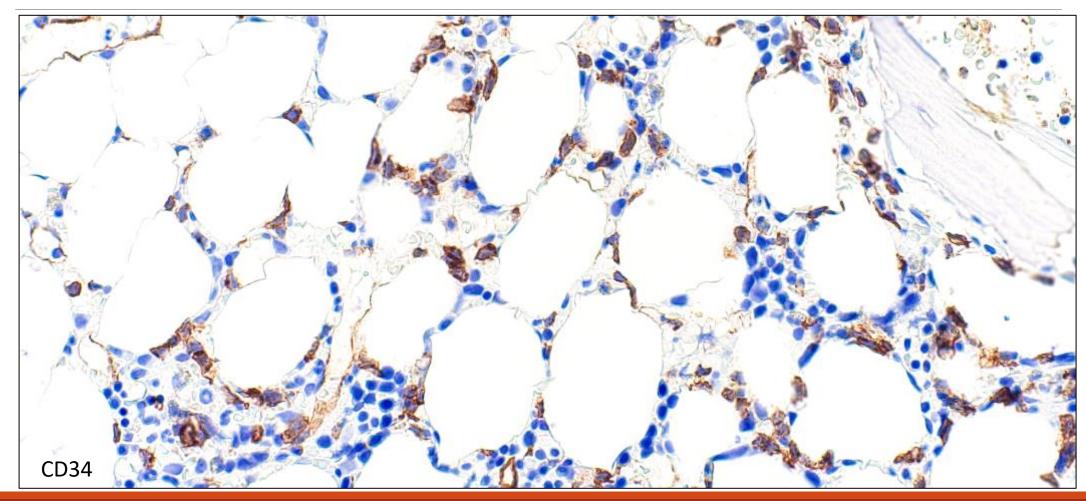
CBC (Reference)	Count									
WBC (4.3-11.3 x 10 ⁹ /L)	2.7 🕂									
Hemoglobin (14.8 – 17.8 g/dL)	10.9 🗸									
MCV (81.2 – 96.6 fL)	114 1									
Platelets (159 – 439 10 ⁹ /L)	77 🗘									
ANC (2.0 – 7.4 x 10 ⁹ /L)	1.6 🗸									

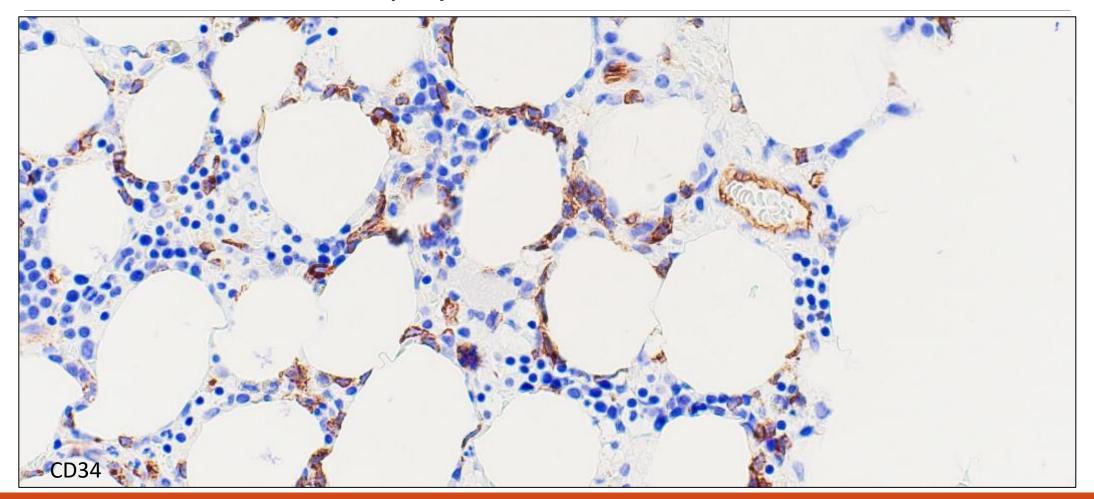

Peripheral Blood Findings

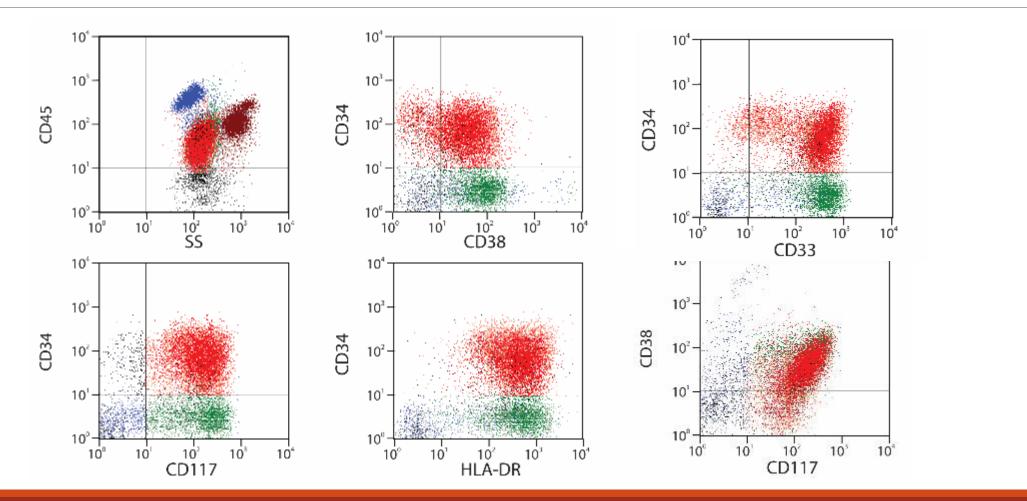

Bone Marrow Findings




Bone Marrow Findings




Bone Marrow Findings



Flow Cytometry

Private Information

Ancillary Studies

- Iron stain: adequate storage iron and no ring sideroblasts
- Reticulin stain: MF-1
- Cytogenetics
 - 46,XY[20]

Summary

- Old patient with chronic pancytopenia
- Rare circulating blasts
- Normo/hypocellular marrow with borderline increase in blasts (approximately 20-30%)
- No ring sideroblasts or overt dysplasia
- Normal cytogenetics
- NGS findings

	Patients	1*	2*	3	4	5	6	7	8	9	10	11	12	13*	14	15*	16	17	18	19	20	21	22*	23	24	25	26	27	28*
	gl <i>DDX41</i>	p.M1I	p.M1I	p.M1I	p.M1I	p.M1I	p.M1I	p.D140fs	p.D140fs	p.D140fs	p.D140fs	p.D140fs	p.D140fs	p.L283fs	c.645-1G>T	p.L216V													
	VAF	46	47	46	58	49	52	48	46	47	50	52	43	44	45	48	49	47	50	49	46	43	45	49	47	46	43	45	51
	sDDX41	p.R525H	p.C264Y	p.A346P						p.R525H	p.R525H					p.R525H	p.R525H	p.E345D											
	VAF	1	1	6	3	7	5	16	2	6	7	7	5	5	3						2	5					5	0.3	30
0	ASXL1		20	6	11			8											13			7						1	
etic	DNMT3A	5																										1	31
Gen	TET2																						1&1						
Epigenetic	EZH2											6																	
	BCORL1		1																										
SFs	ZRSR2				5																								
S	SF3B1							4																					
	CUX1			5																									
TFS	PHF6			4																		13							
F	TP53		1&2																	7									
	RUNX1						5													21									
ing	JAK2							5																					
Signaling	NF1						45																						
Sig	KRAS																		13										
	SETBP1	1																											
	Cytogenetics																												
					Norn	nal ka	iryoty	pe	Lo	ow ris	sk abr	norma	al kar	yotyp	e	Сс	omple	ex kar	yotyp	e	N	o info	rmati	on					

Article

Cancer Cell

Inherited and Somatic Defects in DDX41 in Myeloid Neoplasms

Highlights

- DDX41 represents a class of tumor suppressor genes in myeloid neoplasms
- Somatic missense mutations in DDX41 can be found in AML
- Germline DDX41 mutations predispose to somatic DDX41 mutations as a secondary hit
- DDX41 expression is haploinsufficient in cases with del(5q) involving DDX41 locus

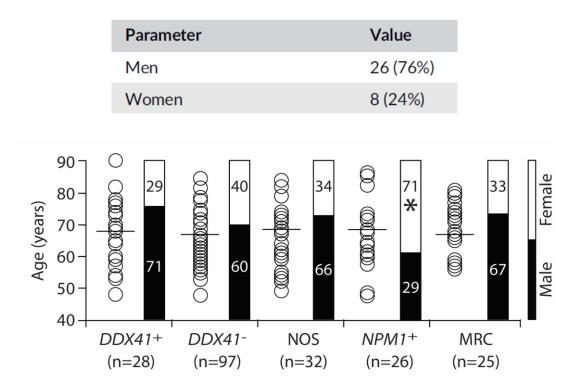
Authors

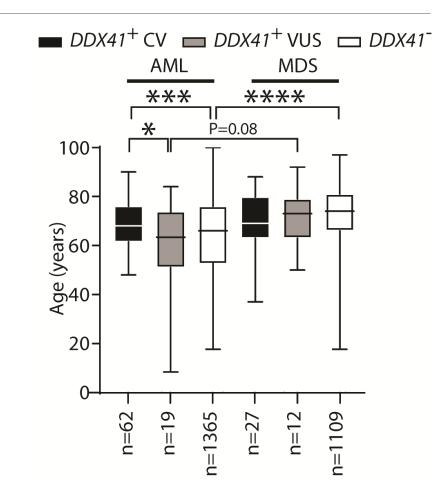
Chantana Polprasert, Isabell Schulze, ..., Carsten Müller-Tidow, Jaroslaw P. Maciejewski

Correspondence

carsten.mueller-tidow@uk-halle.de (C.M.-T.), maciejj@ccf.org (J.P.M.)

Polprasert et al. Cancer Cell, 2015

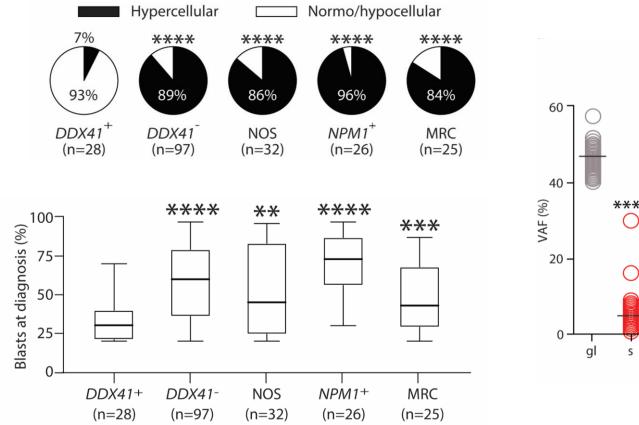

Prevalence of Germline DDX41 Mutation

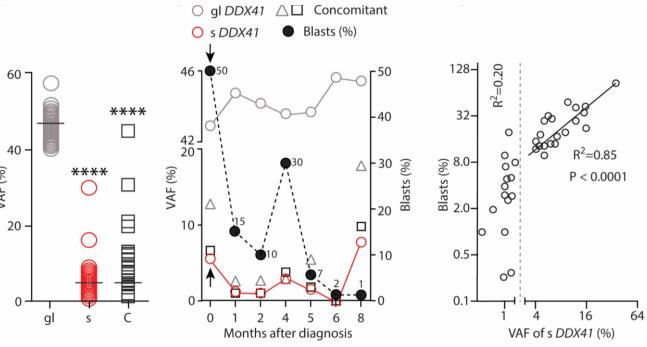

- Prevalence of familial MN with DDX41 mutation
 - Approximately 3% of index family with history, 5% of all newly diagnostic AML
- Prevalence of sporadic MN with DDX41 mutation
 - 3.0% (41/1406) of AML patients, 5% of adult AML and 7% of AML at age of 48 years and above
 - □ 1.4% (16/1125) of MDS patients
 - □ 2.0% (10/489) of MPN patients
- The prevalence of *DDX41*-related lymphoma is uncertain

Patient's Gender and Age

□ Marked male predominance (92%, Cleveland)

□ Male predominance (76%, MD Anderson)

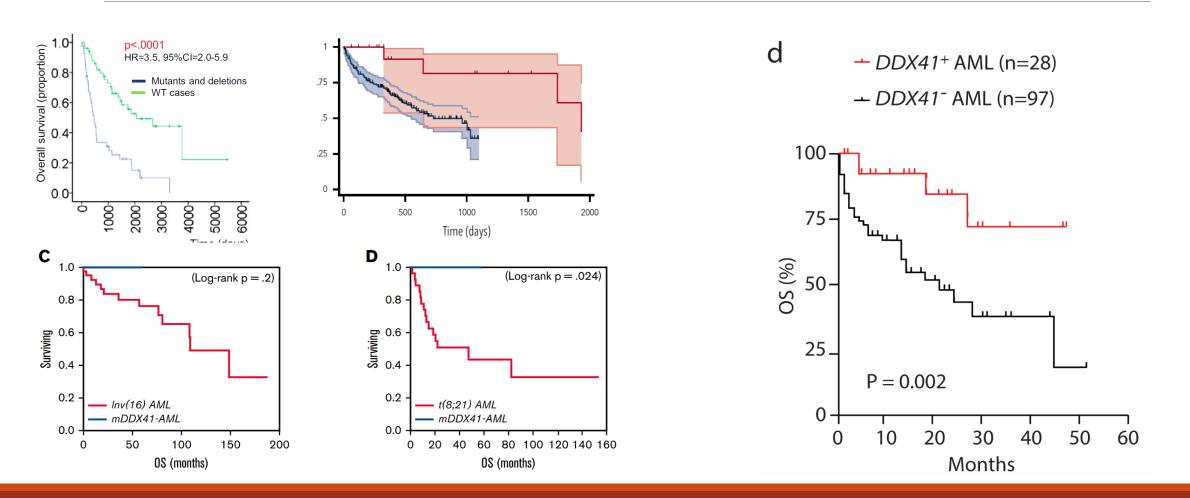

Li et al, Leukemia, 2021; Quesada et al, Am J Hematol 2019; Polprasert et al. Cancer Cell, 2015


Clinical Manifestations of DDX41 Mutant AML/MDS

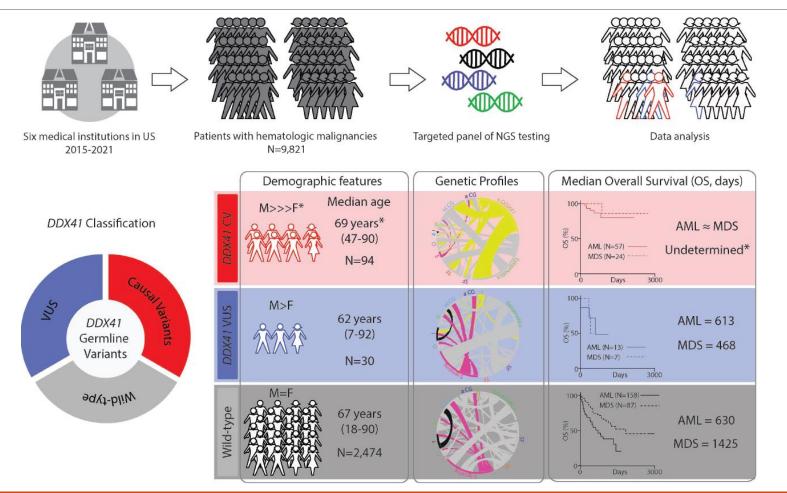
- Chronic cytopenia prior to initial AML diagnosis
- Manifest at an old age overlapping with sporadic AML/MDS
- No prior history or extramedullary manifestation
- Approximately 20% of all patients have family history of myeloid neoplasms

Quesada et al, Blood, 2019 Li, et al, Leukemia, 2022; Li, et al, Blood, 2022

Pathologic Features

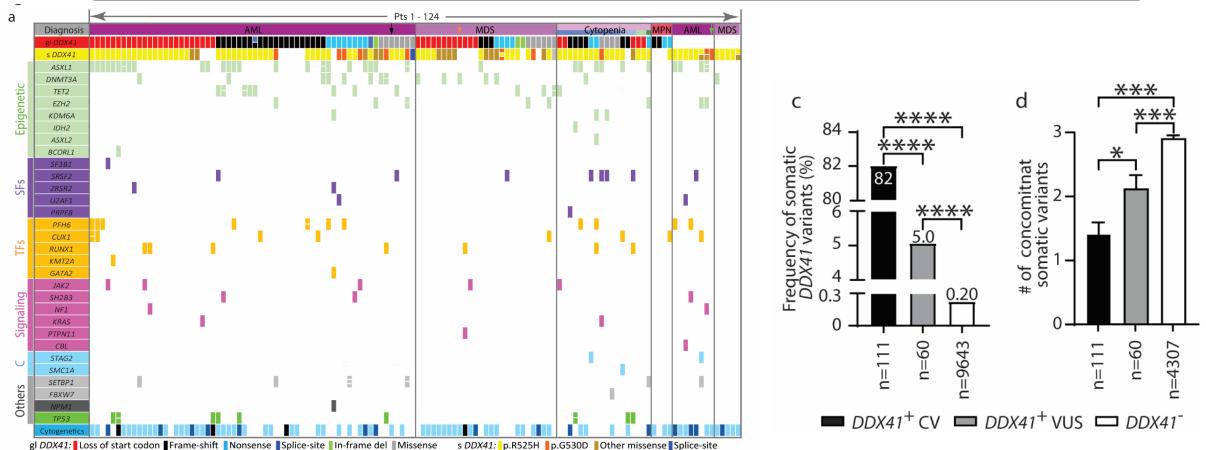


Li et al. Leukemia, 2021


Private Information

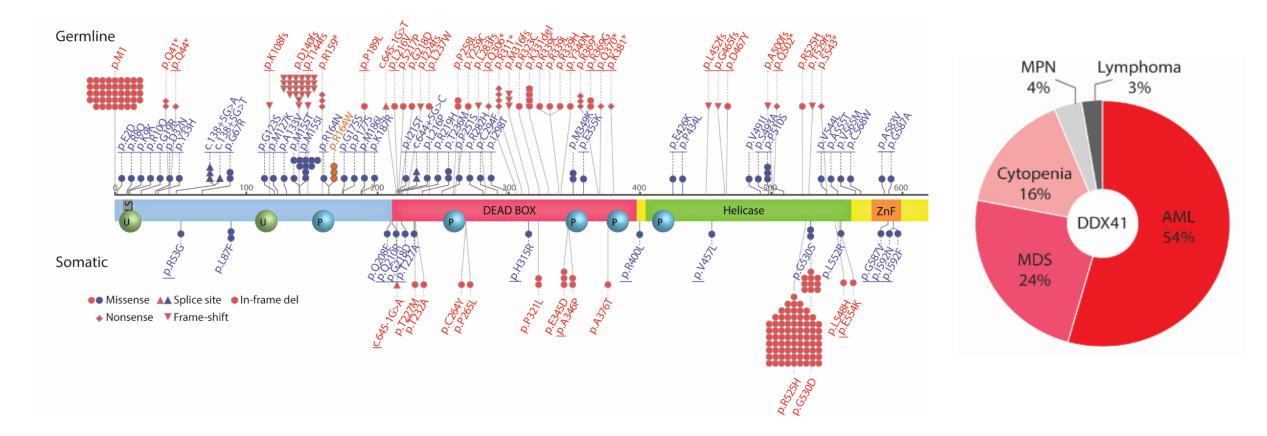
Overall Survival

Polprasert et al. Cancer Cell, 2015; Quesada et al, Blood, 2019; Li et al. Leukemia, 2021; Alkhateeb et al. Blood Adv., 2021 Private Information


Landscape of Causal DDX41 Mutations

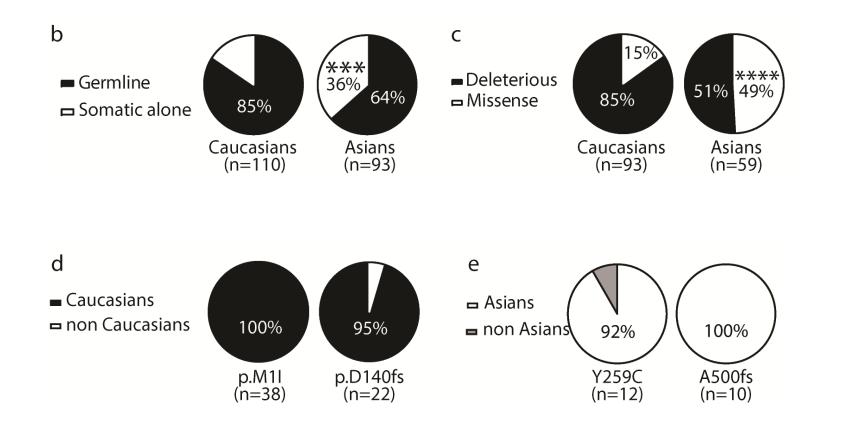
Li et al., Blood, 2022

Private Information


Landscape of Causal DDX41 Mutations

Diagnosis: VA&B VAML & DLBCL VMDS & MM & MBL = Pancytopenia = Thrombocytopenia = Anemia = Neutropenia Cytogenetics: NL LR Complex [NI

Li et al., Blood, 2022


Landscape and Disease Spectrum

Li et al., Blood, 2022

Private Information

Ethnic Difference

Li et al., Blood, 2022

Private Information

Take Home Message – Case #3

DDX41 mutations predispose to myeloid and lymphoid neoplasms

- Most common gene mutation in hereditary myeloid neoplasms in adults
- □ A clinically distinct AML/MDS is the most common disease
 - Indolent course of cytopenia
 - Favorable overall survival
 - Most response to hypomethylation agents or 7+3 and achieve CR
 - Male predominance in the elderly
- Often lack of FH (20% with family history of MNs)
- Asymptomatic carrier and BMT donor selection

Presentation Outline

- Clinical utilities of NGS testing
- Different types of NGS based testing for tumors
- Updates in common myeloid neoplasms with germline predisposition
- Challenges and future directions
- Take home message

Challenges and future directions

- Prevalence of each hematologic malignancy with germline predisposition
- Complete genetic landscape of causal variants of each gene (intronic variants)
- Complete disease spectrum
- Mechanisms of underlying pathogenesis (potential therapy)
- Gene-specific diagnostic and management guidelines

Take Home Message

- Rare disease is becoming more common
- Myeloid neoplasms with germline predisposition
 - GATA2
 - CEBPA
 - DDX41
- Gene-specific diagnostic and management guidelines