Carbapenem Resistance and Carbapenemase Detection in the Clinical Microbiology Lab

Rebekah M. Martin, PhD, MLS(ASCP)^{CM}

Medical Microbiology Fellow University of Utah Department of Pathology ARUP Laboratories

rebekah.martin@aruplab.com

Disclosures

• None

Objectives

1. Describe mechanisms of carbapenem resistance

2. Explain various methods for detecting carbapenemases in the clinical lab

3. Discuss the importance of carbapenemase detection for treatment of infections

Definitions

- Carbapenem:
 - A class of antibiotics

Carbapenem Resistance:

- A type of antimicrobial resistance occurring primarily among Gram-negative organisms. Considered a major, ongoing, global public health issue
- Organisms with this type of resistance are termed "<u>carbapenem-resistant</u>" (CR)

Carbapenemase:

An enzyme that confers carbapenem resistance to organisms

Carbapenemases

- <u>Carbapenemases</u>: β-lactamase enzymes capable of hydrolyzing carbapenem antibiotics
- Also able to hydrolyze other antibiotic classes:
 - Penicillins
 - Cephalosporins
 - Monobactams

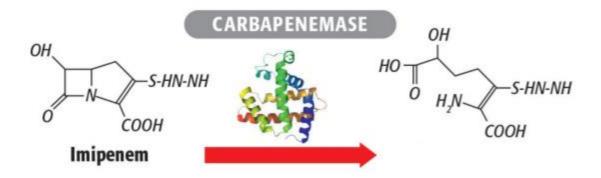
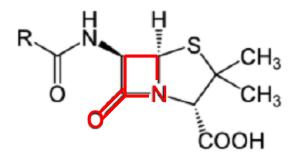
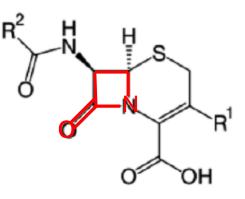
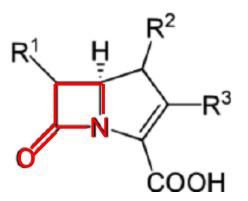
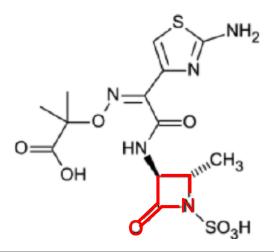



Image modified from https://www.biomerieux.co.uk/sites/clinic/files/carbapenem_resistance_booklet.pdf


Antibiotic Chemical Structures

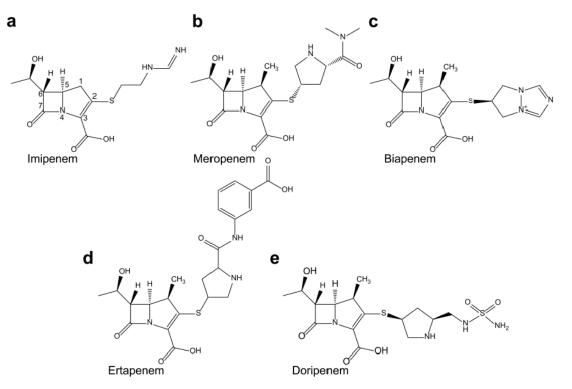
a. Core structure of penicillins




c. Core structure of carbapenems

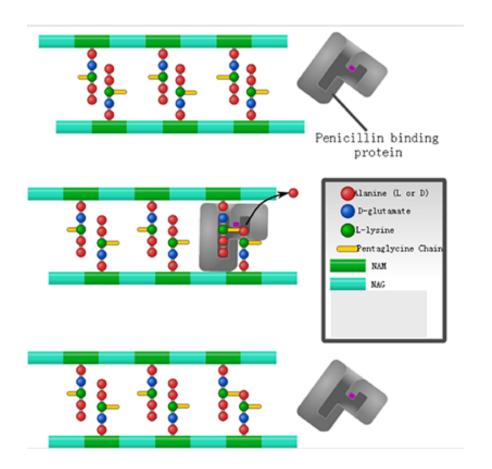
b. Core structure of cephalosporins

d. aztreonam chemical structure


Carbapenemase-Producing Organisms

- Carbapenemase-producing isolates of Enterobacteriaceae:
 - Intermediate (I) or resistant (R) to one or more carbapenems
 - Usually R to one or more 3rd generation cephalosporins

Carbapenems


- Broad-spectrum β-lactam antibiotics, bactericidal (targets the cell wall)
- Indications for treatment:
 - Used in treatment of severe GN infections (also cover GP and anaerobes)
 - Considered "drugs of last resort"

AR

PLABORATORIES

Carbapenem Mechanism of Action

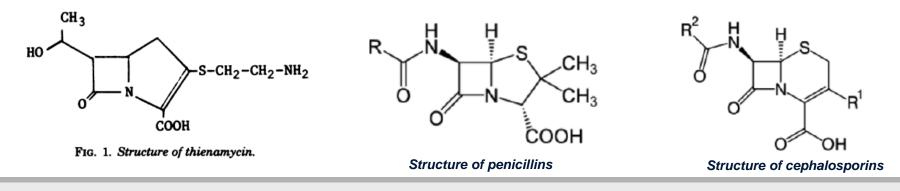

- PBPs play a role in synthesis of the bacterial cell wall peptidoglycan layer
- Carbapenems enter the cell through outer membrane porins
- Inhibit the cross-linking of peptidoglycan
 - Transpeptidase inhibition
- Prevents inhibition of autolytic enzymes, leading to cell death
- Carbapenems bind to many different PBPs

Image modified from Wikipedia

Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother. 2011;55(11):4943–4960. doi:10.1128/AAC.00296-11

Carbapenems – A History

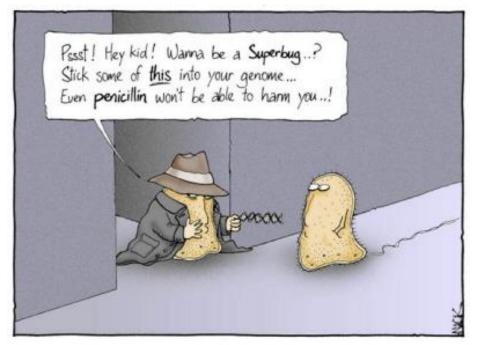
- Carbapenem discovery was driven by the search for β-lactamase inhibitors in the 1970s
 - 1976: Discovery of thienamycin, the first carbapenem
 - A compound produced by environmental organism Streptomyces cattleya
 - Differs from penicillins and cephalosporins: secondary ring does not contain sulfur
 - Broad antimicrobial activity:
 - β-lactamase inhibitor, active against most Gram negatives tested, anti-Staphylococcal activity, excellent anaerobic coverage

Carbapenems – A History

- 1980 US patent for imipenem was granted to Burton Christensen and colleagues
 - Approved for use in the United States in 1985
- 1984 Makoto Sunagawa and colleagues filed a patent with the European Patent Office for meropenem synthesis
 - Approved for use in the United States in 1996
- 1998 Resistance to imipenem identified

NATIONAL REFERENCE

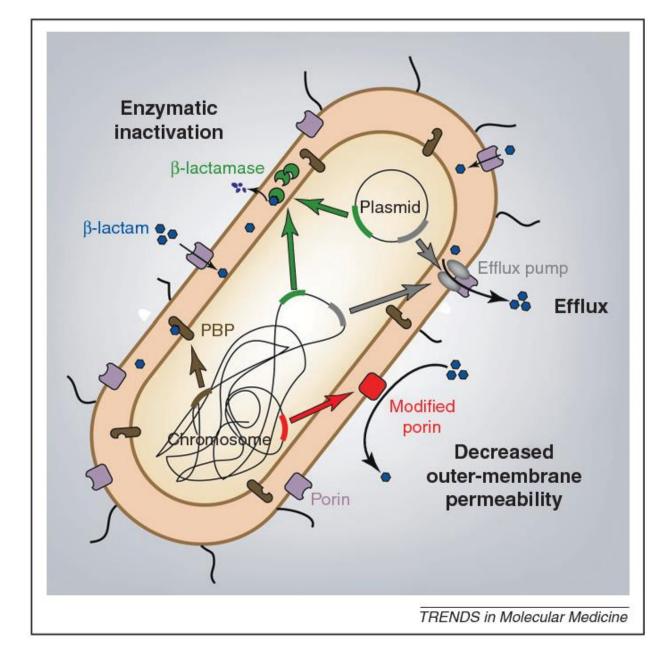
CDC Antibiotic Threat Report - 2013



Common Carbapenem-Resistant Organisms

- Carbapenem-resistant Enterobacteriaceae
 - Klebsiella spp.
 - Escherichia coli
 - Serratia spp.
- Pseudomonas spp.
- Acinetobacter spp.
- Enterobacter cloacae complex
- Stenotrophomonas maltophila

Mechanisms of Carbapenem Resistance


- Intrinsic
 - Chromosomally encoded carbapenemases
- Acquired
 - Decreased outer membrane permeability
 - Overexpression of efflux pumps
 - Horizontally transferred carbapenemases

It was on a short-cut through the hospital kitchens that Albert was first approached by a member of the Antibiotic Resistance.

Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis. 2016;3(1):15–21. doi:10.1177/2049936115621709; 14 Codjoe FS, Donkor ES. Carbapenem Resistance: A Review. Med Sci (Basel). 2017;6(1):1. Published 2017 Dec 21. doi:10.3390/medsci6010001

Carbapenemases

- **Carbapenemases**: β-lactamase enzymes capable of hydrolyzing carbapenem antibiotics
- Also able to hydrolyze other antibiotic classes:
 - Penicillins
 - Cephalosporins
 - Monobactams

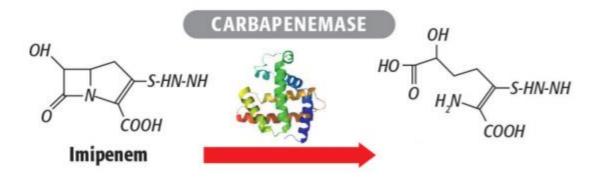
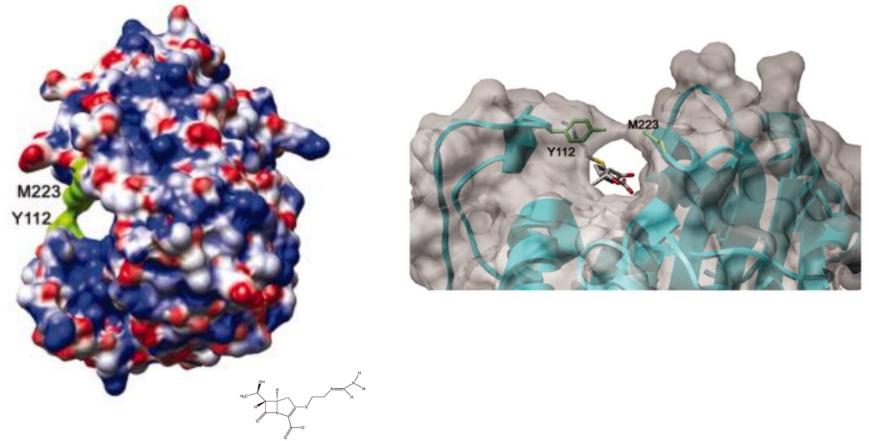
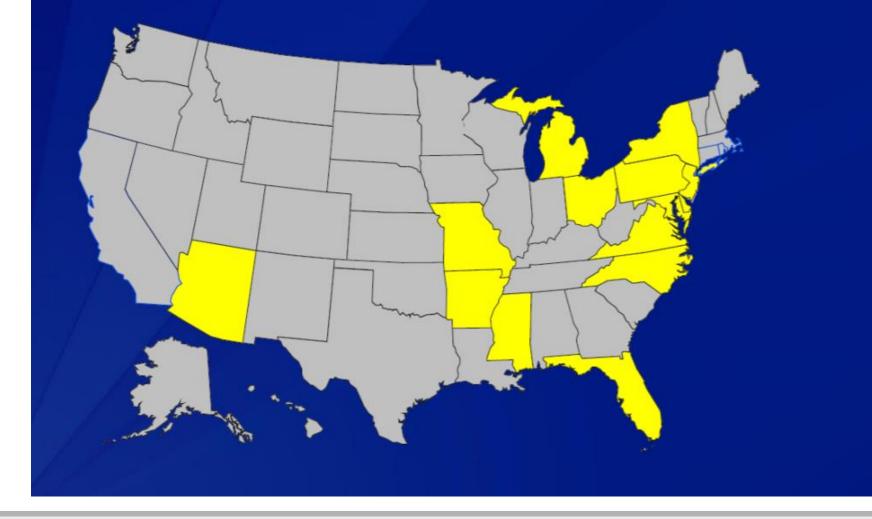
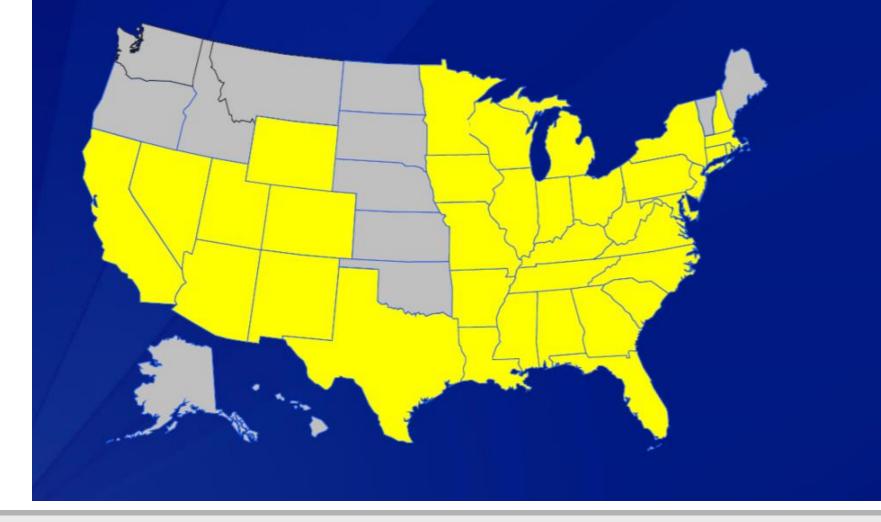



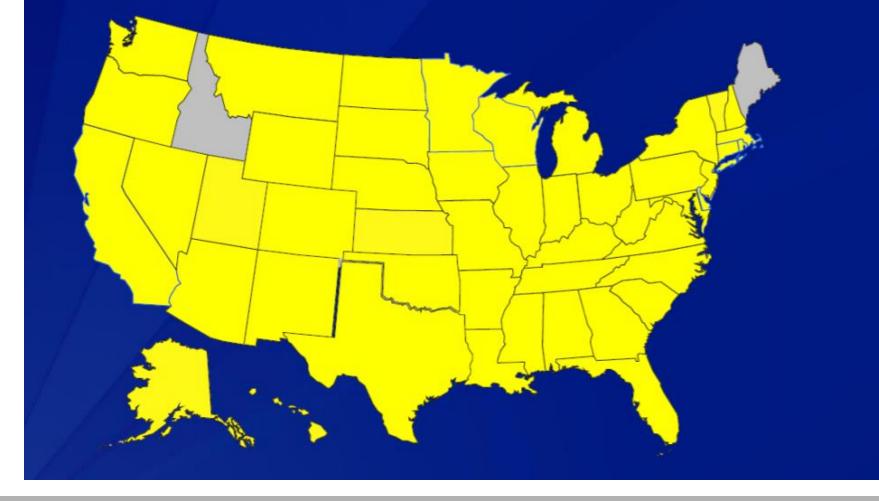
Image modified from https://www.biomerieux.co.uk/sites/clinic/files/carbapenem_resistance_booklet.pdf

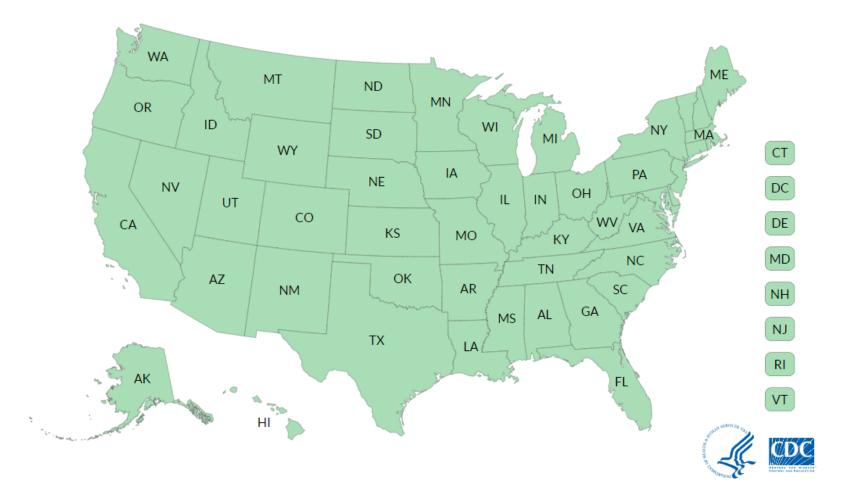
Carbapenem-Carbapenemase Complex

Ambler Classification of β-Lactamases


Ambler Class	Antibiotic Inactivation	Inhibition	Representative Enzymes	
A (Serine carbapenemases)	Penicillins, cephalosporins, carbapenems, and aztreonam	β-lactamase inhibitors (Clavulanate, Avibactam) + ceftazidime or aztreonam	KPCs	
B (Metallo-β- lactamases (MBLs))	All β-lactams except aztreonam	EDTA	IMP, VIM, NDM	
D (Oxacillinases; serine carbapenemases)	Penicillins, 1st gen cephalosporins, weak against carbapenems	Avibactam	OXA-48 and derivatives	
,		 Biomerieux Carbapenem Resistance Booklet Cadjoe & Donkor (2018) Med Sci (Basel) Queenan & Bush (2007) Clin Micro Rev Ambler (1980) Philos Trans R Soc Lond B Biol S Bush & Jacoby (2010) Antimicrob Agents Chemo 		







Patients with KPC-producing *Carbapenem-resistant Enterobacteriaceae* (CRE) reported to the Centers for Disease Control and Prevention (CDC) as of December 2017, by state

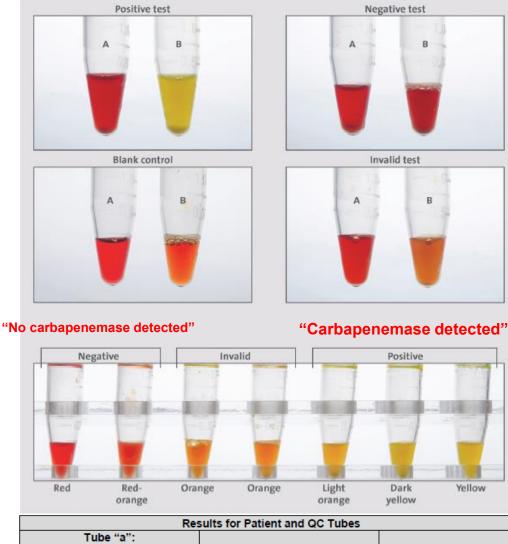
24

Table. A selection of carbapenemase detection tests that are currently available

Test (manufacturer)	Method	Specimen type	Turnaround time*	Carbapenemase gene(s) detected	Regulatory status
Phenotypic tests					
Carba NP	Color indicator of carbapenem (imipenem) hydrolysis	Isolates of Enterobacteriaceae and Pseudomonas aeruginosa	Same day	Not applicable	Commercial version U.S. FDA-cleared Rapidec Carba NP (bioMérieux); there is also a CLSI-recommended method
mCIM	Growth of carbapenem-susceptible indicator strain around meropenem disk incubated with a suspected carbapenemase-producing test strain	Isolates of Enterobacteriaceae and Pseudomonas aeruginosa	Next day	Not applicable	Laboratory-developed test
eCIM	Growth of carbapenem-susceptible indicator strain around meropenem disk incubated with a suspected carbapenemase-producing test strain in the presence and absence of EDTA	Isolates of <i>Enterobacteriaceae</i> (modification of mCIM that affords differentiation between serine- and metal- dependent carbapenemases)	Next day	Not applicable	Laboratory-developed test
Matrix-assisted laser desorption ionization time of flight mass spectrometry	Detection of carbapenem degradation products	Bacterial isolates	Same day	Not applicable	Laboratory-developed test
Genotypic tests					
FilmArray blood culture identification panel (BioFire Diagnostics)	Polymerase chain reaction	Positive blood culture broth with Gram-negative rods	Same day	bla _{KPC}	FDA cleared
Verigene Gram-negative blood culture test (Luminex)	Microarray	Positive blood culture broth with Gram-negative rods	Same day	bla _{IMP} , bla _{KPC} , bla _{NDM} , bla _{OXA-48} , bla _{VIM}	FDA cleared
Xpert Carba-R (Cepheid)	Polymerase chain reaction	Rectal swabs, also isolates of <i>Enterobacteriaceae</i> , <i>Pseudomonas aeruginosa</i> , and <i>Acinetobacter baumannii</i>	Same day	bla _{IMP} , bla _{KPC} , bla _{NDM} , bla _{OXA-48} , bla _{VIM}	FDA cleared

*Time to results from setting up the assay

captodayonline.com/pros-cons-carbapenemase-detection-tests March 2018


CarbaNP

• Purpose:

- To test for suspected carbapenemase production in *Enterobacteriaceae* and *Pseudomonas aeruginosa*
 - In laboratories using carbapenem breakpoints from M100 S20 (2010)
 - Enterobacteriaceae ex: imipenem or meropenem MICs 2-4 μg/mL, or ertapenem MIC 2 μg/mL
- Infection control or epidemiological purposes
 - Enterobacteriaceae and P. aeruginosa that are not S to one or more carbapenems
- Principle and Method:
 - Detection of carbapenemase production by imipenem hydrolization
 - Colorimetric microtube assay

CarbaNP

- Two tubes per patient ٠
- Emulsify one loop of bacteria ۲ in bacterial protein extract in each tube
- Add solution A to tube A, and ٠ solution B(A + impenem) to tube B
- Incubate at 35°C for up to 2 ۲ hours
- Any tube positive before 2 ٠ hours can be reported as positive

Results for Patient and QC Tubes					
Tube "a": Solution A (serves as internal control)	Tube "b": Solution B	Interpretation			
Red or red-orange	Red or red-orange	Negative, no carbapenemase detected			
Red or red-orange	Light orange, dark yellow, or yellow	Positive, carbapenemase producer			
Red or red-orange	Orange	Invalid			
Orange, light orange, dark yellow, or yellow	Any color	Invalid			

Vellow

CLSI M100 29th Ed. 2019

ARPLABORATORIES

NATIONAL REFERENCE LABORATORY

Principle of Colorimetric Detection of

Carbapenemases

Image modified from https://www.biomerieux.co.uk/sites/clinic/files/carbapenem_resistance_booklet.pdf

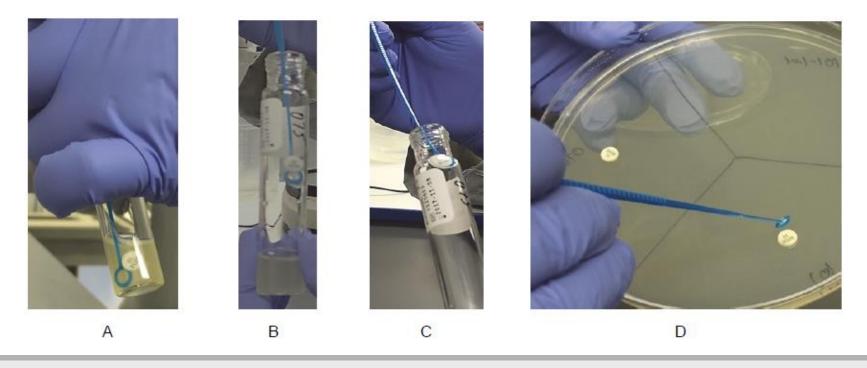
CarbaNP

ADVANTAGES

- Rapid: ~2hrs
- High sensitivity and specificity for detecting KPC, NDM, VIM, IMP, SPM, and SME-type carbapenemases
- Detection in Enterobacteriaceae and Pseudomonas aeruginosa

DISADVANTAGES

- Reading is subjective
- Need for special reagents
- Potential for invalid results
- Does not distinguish between classes
- Sensitivity for detecting OXA-48 is low (~11%)
- Testing of *Acinetobacter* spp. is not recommended due to poor sensitivity (21%)

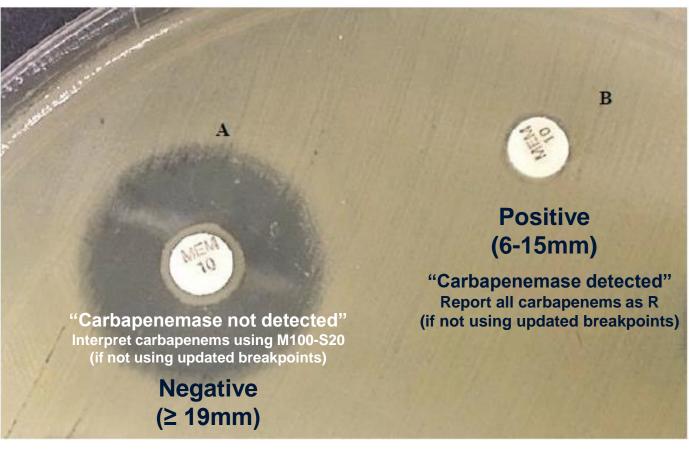

Modified Carbapenem Inactivation Method - mCIM

Purpose:

- To test for suspected carbapenemase production in *Enterobacteriaceae* and *Pseudomonas aeruginosa*
 - In laboratories using carbapenem breakpoints from M100 S20 (2010)
 - Enterobacteriaceae ex: imipenem or meropenem MICs 2-4 μg/mL, or ertapenem MIC 2 μg/mL
- Infection control or epidemiological purposes
 - Enterobacteriaceae and P. aeruginosa that are not S to one or more carbapenems
- Principle and Method:
 - Detection of meropenem disk inactivation
 - Disk diffusion

Modified Carbapenem Inactivation Method - mCIM

- Make a broth suspension of the isolate to be tested in 2 mL TSB
- Add 10µg meropenem disk to tube & incubate at 35°C 4hrs
- Remove disk from tube (below) an place on plate inoculated with a 0.5 McFarland lawn of meropenem-susceptible *E. coli*
- Incubate O/N at 35°C. Measure zones of inhibition after 18-24 hrs



mCIM Interpretation

Indeterminate:

- 16-18 mm
- ≥ 19 mm + pinpoint colonies in the zone

Neg: No inactivation of meropenem Pos: inactivates the meropenem mCIM

ADVANTAGES

- High sensitivity and specificity for detecting KPC, NDM, VIM, IMP, IMI, SPM, SME, and OXA-type carbapenemases among *Enterobacteriaceae*
- High sensitivity and specificity for detecting KPC, NDM, VIM, IMP, IMI, SPM, and OXA-type carbapenemases among *P. aeruginosa*

*Can be performed in tandem with eCIM to detect MBLs in *Enterobacteriaceae*

DISADVANTAGES

- Requires overnight incubation
- Potential for indeterminate results
- Does not distinguish between classes*
- Testing *Acinetobacter* spp. is not recommended (poor specificity and reproducibility)

EDTA-Modified Carbapenem Inactivation Method eCIM

- Purpose:
 - In conjunction with the mCIM, to test for suspected metallo-β-lactamase production (*Enterobacteriaceae* only)
- Principle and Method:
 - Detection of meropenem disk inactivation in the presence of EDTA
 - **Results are valid only for *Enterobacteriaceae* that are positive by mCIM
 - Disk diffusion

eCIM Method

- Add 0.5 M EDTA to the eCIM TSB tube (final 5mM EDTA)
- Make a broth suspension of the isolate to be tested in 2 mL TSB
- Add 10µg meropenem disk to tube & incubate at 35°C 4hrs
- Remove disk from tube (below) an place on plate inoculated with a 0.5 McFarland lawn of meropenem-susceptible *E. coli* (on the same plate as the mCIM)
- Incubate O/N at 35°C. Measure zones of inhibition after 18-24 hrs

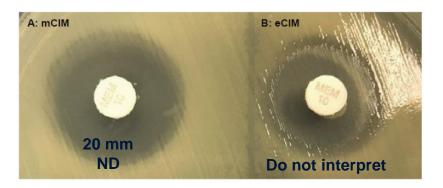
**mCIM and eCIM tubes should be processed in parallel

**eCIM can only be interpreted why the mCIM test is positive

eCIM Interpretation

- Metallo-β-lactamase positive:
 - ≥ 5 mm increase in zone diameter for eCIM vs mCIM
 - Ex: mCIM = 6 mm; eCIM = 15 mm; 9 mm zone diameter difference
 - For eCIM only, ignore pinpoint colonies within zone of inhibition

*EDTA inhibits the activity of metallo- β -lactamases. For eCIM the meropenem will not be hydrolyzed as efficiently


• Metallo-β-lactamase negative:

- ≤ 4 mm increase in zone diameter compared to mCIM
- Ignore pinpoint colonies

*If the test isolate produces a serine carbapenemase, EDTA will not affect the enzyme activity. NO or very little increase in zone diameter in presence of EDTA

eCIM Interpretation

Carbapenemase not detected

Metallo-β-lactamase detected

Serine carbapenemase detected

**Interpret ONLY when mCIM is positive

ADVANTAGES

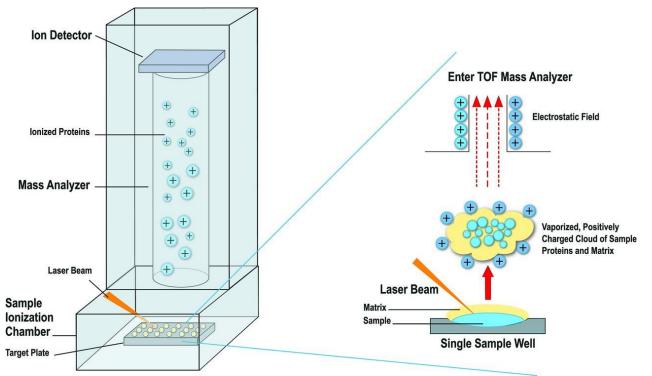
• High sensitivity and specificity for distinguishing MBLs from serine carbapenemases among *Enterobacteriaceae*

DISADVANTAGES

- Requires overnight incubation
- Potential for indeterminate results
- Presence of both a serine carbapenemase and MBL in one organism can lead to false negative eCIM
- Guidelines only available for Enterobacteriaceae

MALDI-TOF

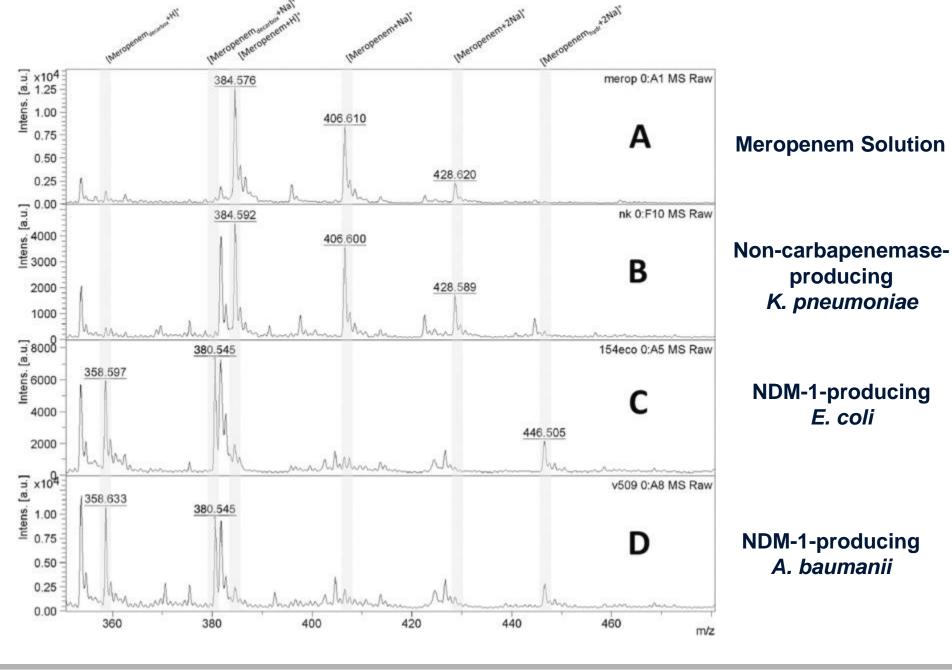
• Purpose:


 Detection of carbapenemase-mediated resistance to carbapenems in Enerobacteriaceae

• Principle and Method:

- Determination of presence or absence of peaks corresponding to intact meropenem and its sodium salt
- Absence indicates hydrolysis of meropenem by a carbapenemase
- MALDI-TOF MS

Hrabák, Jaroslav et al. "Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrixassisted laser desorption ionization-time of flight mass spectrometry." Journal of clinical microbiology vol. 50,7 (2012): 2441-3. doi:10.1128/JCM.01002-12


Hrabák, Jaroslav et al. "Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry." Journal of clinical microbiology vol. 49,9 (2011): 3222-7. doi:10.1128/JCM.00984-11

- Buffered meropenem solution incubated at 35°C with standardized bacterial culture for 2 hr
- Centrifuged, and supernatant analyzed by MALDI-TOF MS
- Determination of presence or absence of peaks corresponding to meropenem and its sodium salts
- Lack of intact meropenem and sodium salt peaks corresponds to carbapenemase presence

spectrometry." Journal of clinical microbiology vol. 49,9 (2011): 3222-7. doi:10.1128/JCM.00984-11

Hrabák, Jaroslav et al. "Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry." Journal of clinical microbiology vol. 50,7 (2012): 2441-3. doi:10.1128/JCM.01002-12

NATIONAL REFERENCE LABORATOR

MALDI-TOF

Advantages

- Detection of multiple carbapenemases (KPC, NDM-1, VIM, OXA-48, OXA-162)
- Rapid: ~2-4 hours

Disadvantages

- Distinguishing carbapenemases may be challenging
- Potential for false negatives with low carbapenemase expression

Genotypic Tests

FilmArray blood culture ID panel

Verigene GN blood culture ID

GenXpert Carba-R

Molecular Testing

"Enterobacteriaceae and *P. aeruginosa* that are not susceptible to one or more carbapenems to determine the presence of a carbapenemase, or to determine carbapenemase type in isolates positive by CarbaNP or mCIM"

FilmArray Blood Culture ID

• Purpose:

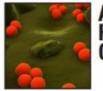
- "Detect and identify the most common causes of bloodstream infection" and select resistance genes
- Directly from a positive blood culture bottle
- Principle and Method:
 - Targeted detection of amplified nucleic acid from common bloodstream pathogens
 - Nested Polymerase Chain Reaction (PCR)

FilmArray Blood Culture Identification Panel

1 Test. 27 Targets. All in about an hour.

Gram-Positive Bacteria

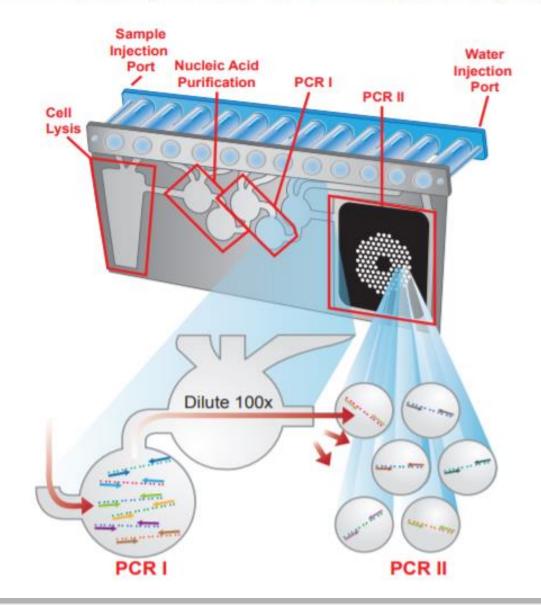
Enterococcus Listeria monocytogenes **Staphylococcus** Staphylococcus aureus **Streptococcus** Streptococcus agalactiae Streptococcus pyogenes Streptococcus pneumoniae



Gram-Negative Bacteria

Acinetobacter baumannii Haemophilus influenzae Neisseria meningitidis Pseudomonas aeruginosa **Enterobacteriaceae** Enterobacter cloacae complex Escherichia coli Klebsiella oxytoca Klebsiella pneumoniae Proteus Serratia marcescens

Candida albicans Candida glabrata Candida krusei Candida parapsilosis Candida tropicalis



Antibiotic Resistance Genes

mecA - methicillin resistant VanA/B - vancomycin resistant KPC - carbapenem resistant

The FilmArray Pouch

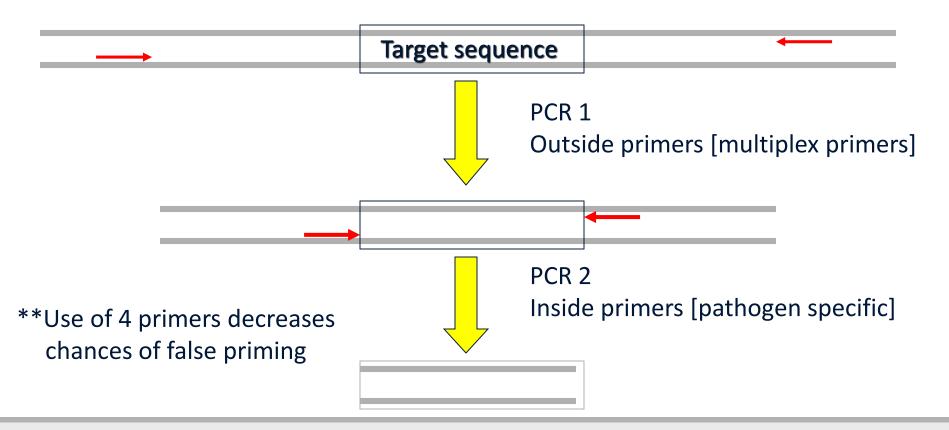


Image modified from www.biofiredx.com

Nested PCR

- Two pairs of primers: Inside and outside
 - Outside primers amplify the first product; the product of this PCR is transferred to a second reaction containing the inside primers

FilmArray Blood Culture ID Panel

ADVANTAGES

- FDA cleared
- Rapid: ~1 hr from blood culture positivity
- Direct from specimen

DISADVANTAGES

- Only detects KPC gene
- Only use blood as a sample
- Mutations and polymorphisms may affect detection
- Will not detect intrinsic resistance mechanisms
- One sample per instrument

Verigene Gram-negative Blood Culture Tests

• Purpose:

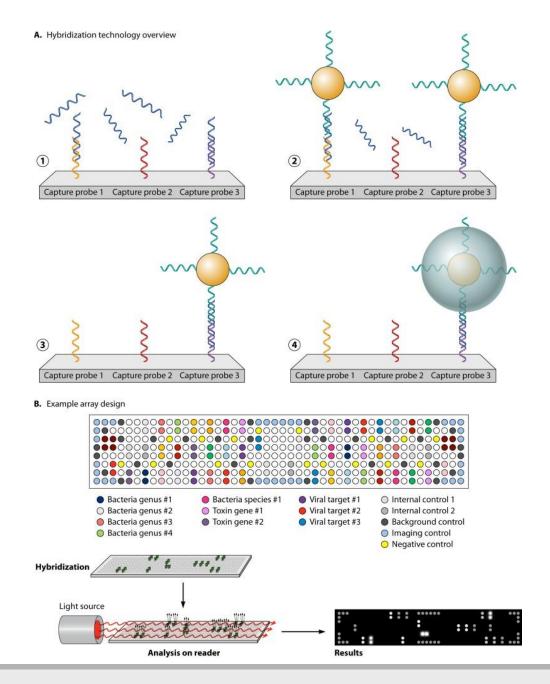
Detect and identify common Gram-negative bloodstream pathogens and select resistance genes

Principle and Method:

- Detection of bacterial DNA and resistance genes using target-specific capture probes
- Solid phase microarray; multiplexed nucleic acid assay (with no amplification)

Verigene Gram-negative Blood Culture Tests

Verigene BC-GN


SPECIES Escherichia coliª Klebsiella oxytoca Klebsiella pneumoniae Pseudomonas aeruginosa GENUS Acinetobacter spp. Citrobacter spp. Enterobacter spp. Proteus spp. RESISTANCE CTX-M(ESBL) IMP (carbapenemase) KPC (carbapenemase) NDM (carbapenemase) OXA (carbapenemase)

VIM (carbapenemase)

- 8 bacterial targets in the United States
- 6 resistance genes
 - 5 carbapenemases targets

Buchan BW, Ledeboer NA. Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev. 2014;27(4):783–822. doi:10.1128/CMR.00003-14

Verigene Gram-negative Blood Culture Tests

ADVANTAGES

- Quick setup time (<5min)
- Rapid detection (~2 hours)
- Direct from sample
- Ability to identify multiple resistance determinants (KPC, NDM, IMP, VIM, OXA)
- Separate panels for GN and GP organisms

DISADVANTAGES

- Only use blood as a sample
- Mutations and polymorphisms may affect detection
- Will not detect intrinsic resistance mechanisms
- One sample per instrument
- Serratia marcesans not FDAcleared in the US

GeneXpert CarbaR

• Purpose:

- To rapidly identify carbapenemase-producing organisms associated with non-susceptibility in *Enterobacteriaceae, Pseudomonas aeruginosa,* and *Acinetobacter baumanii*
 - Clinicians or infection control
- Principle and Method:
 - Detection and differentiation of genes encoding multiple carbapenemase-encoding genes
 - Real-time PCR

GeneXpert Carba-R

- Rectal swab: add 500µL of swab transport media to 5mL of sample reagent
- Isolate: Make 0.5 McFarland and add 10µL to 5mL of sample reagent
- Vortex 10 seconds
- Using provided transfer pipette, transfer prepared sample to cartridge chamber

- Close cartridge and place on the instrument within 30 min
- Principle: real-time PCR

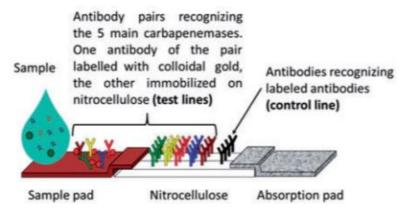
GeneXpert Carba-R

ADVANTAGES

- Rapid: ~1 hr
- FDA cleared
- Sample types: isolate or rectal swab
- Isolates of Enterobacteriaceae, P. aeruginosa, and Acinetobacter baumanii
- Detection and differentiation of KPC, NDM, VIM, IMP-1, and OXA-48

DISADVANTAGES

- Use of isolate still requires traditional culture methods
- Mutations and polymorphisms
 may affect detection
- Will not detect intrinsic resistance mechanisms
- May miss other OXA-types, SPM, SME, and IMI


• Purpose:

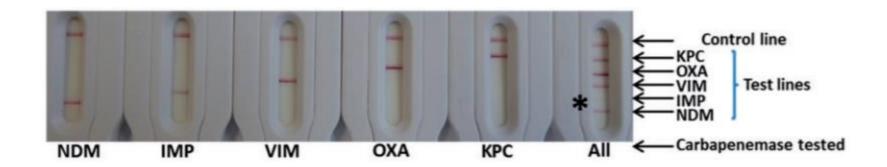
- Rapidly detect and distinguish between carbapenemases produced by Enterobacteriaceae
- Suggested for confirmation of strains with decreased susceptibility to at least one carbapenem
- Principle and Method:
 - Detect and distinguish multiple analytes (carbapenemases) potentially present in an isolate, which are able to bind to capture antibodies
 - Lateral flow immunoassay (LFIA)

Boutal H, Vogel A, Bernabeu S, et al. A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP- and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2018;73(4):909–915. doi:10.1093/jac/dkx521

- Isolated colony from overnight growth inoculated in lysis buffer (150 µL)
- Sample to be tested for analyte presence is added to the sample pad (100 µL)
- Capillary action moves the sample and analytes across the nitrocellulose
- Analyte binds to specific paired antibodies
 - 1. Flow along the nitrocellulose and a sandwich is formed
 - 2. Bound by control line antibodies
- Interpretation and reporting

1 - Structure of the strip

2 - Immunological detection



Sample flow: capillarity

3 - Result

- ✓ The control line appears: the test is correct
- One or several test lines appear: positive test for the corresponding carbapenemase(s)
- No test line appears: negative test for the 5 carbapenemases

Advantages

- Able to detect the 5 main carbapenemases (KPC, NDM, IMP, VIM, OXA-48 like) with high sensitivity and specificity
- Easy and rapid: ~15 min
- Potential for use with isolates from CRO screening media

Disadvantages

- Only for use on Enterobacteriaceae
- Requires an isolate (overnight growth)
- Not FDA-cleared

Boutal et al (2018) J Antimicrob Chemother; Takissian J, Bonnin RA, Naas T, Dortet L. 2019. NG-Test Carba 5 for rapid detection of carbapenemase-producing Enterobacterales from positive blood cultures. Antimicrob Agents Chemother 63:e00011-19. https://doi .org/10.1128/AAC.00011-19.

Significance

- Guidance for more effective therapy
 - Each class of enzymes has slightly different activity and inhibition
- MBLs in particular are more difficult to treat

Drug	Drug Class	Activity		
		KPC	MBL	OXA-48-like
Ceftazidime- avibactam	β-lactam/β-lactamase inhibitor	+	-	+
Ceftolozane- tazobactam	β-lactam/β-lactamase inhibitor	-	-	-
Meropenem- vaborbactam	Carbapenem/β-lactamase inhibitor	+	-	-
Eravacycline	Tetracycline	+	+	+
Plazomycin	Aminoglycoside	+	-	+
Cefiderocol	Siderophore β-lactam	+	+	+
Imipenem- relebactam	Carbapenem/β-lactamase inhibitor	+	-	+
Aztreonam- avibactam	β-lactam/β-lactamase inhibitor	+	+	+

References for Antibiotics Chart

- [1] Bonomo RA, Burd EM, Conly J, et al. Carbapenemase-Producing Organisms: A Global Scourge. Clin Infect Dis. 2018;66(8):1290–1297. doi:10.1093/cid/cix893
- [2] Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front Microbiol. 2019;10:80. Published 2019 Jan 30. doi:10.3389/fmicb.2019.00080
- [3] Livermore DM, Mushtaq S, Warner M, Woodford N. 2016. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob Agents Chemother 60:3840–3844. doi:10.1128/AAC.00436-16
- [4] Yunliang Zhang, Xiaoyan Lin, and Karen Bush. "In Vitro Susceptibility of β-Lactamase-Producing Carbapenem-Resistant Enterobacteriaceae (CRE) to Eravacycline." The Journal of Antibiotics 69.8 (2016): 600–604.
- [5] Petty LA, Henig O, Patel TS, Pogue JM, Kaye KS. Overview of meropenem-vaborbactam and newer antimicrobial agents for the treatment of carbapenem-resistant Enterobacteriaceae. Infect Drug Resist. 2018;11:1461–1472. Published 2018 Sep 12. doi:10.2147/IDR.S150447
- [6] van Duin D, Bonomo RA. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Secondgeneration β-Lactam/β-Lactamase Inhibitor Combinations. Clin Infect Dis. 2016;63(2):234–241. doi:10.1093/cid/ciw243

Summary

- Carbapenemases are β-lactamase enzymes capably of hydrolyzing and inactivating a number of antibiotic classes
- The emergence and spread of carbapenem resistance represents an urgent threat to public health in the United States
- Multiple methods are available for detection of carbapenemases
- Detection and differentiation of carbapenemases is important for implementing effective antibiotic therapy

